Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Free convection is one of the heat transfer modes which occurs within the heat-treated bundles of steel rectangular section. A comprehensive study of this phenomenon is necessary for optimizing the heating process of this type of charge. The free convection intensity is represented by the Rayleigh number Ra. The value of this criterion depends on the following parameters: the mean section temperature, temperature difference within the section, kinematic coefficient of viscosity, volume expansion coefficient and the Prandtl number. The paper presents the analysis of the impact of these factors on free convection in steel rectangular sections. The starting point for this analysis were the results of experimental examinations. It was found that the highest intensity of this process occurs for the temperature of 100°C. This is mainly caused by changes in the temperature difference observed in the area of sections and changes in kinematic coefficient of viscosity of air. The increase in the value of the Rayleigh number criterion at the initial stage is attributable to changes in the parameter of temperature difference within the section. After exceeding 100°C, the main effect on convection is from changes in air viscosity. Thus, with further increase in temperature, the Rayleigh number starts to decline rapidly despite further rise in the difference in temperature.
Go to article

Authors and Affiliations

Rafał Wyczółkowski
Download PDF Download RIS Download Bibtex

Abstract

The article describes the methodology for the determination of ambient temperature for thermovision measurements. The adopted methodology consists in the use of the technical blackbody model. Determining the value of the ambient temperature parameter makes it possible to enhance the accuracy of temperature measurement of objects exposed to strong irradiation using a thermovision camera.

Go to article

Authors and Affiliations

Rafał Wyczółkowski
Dorota Musiał
Download PDF Download RIS Download Bibtex

Abstract

The reason for undertaking this study was to determine the possible involvement of natural convection in the global heat transfer, that occurs in the heated steel rods bed. This problem is related to the setting of the effective thermal conductivity of the bars bed. This value is one of the boundary conditions for heating modeling of steel rods bundles during heat treatment. The aim of this study was to determine for which geometry of the bed bars, there will be no free convection. To analyze the problem the Rayleigh criterion was used. It was assumed that for the value of the number Ra < 1700 convection in the bed bars does not occur. For analysis, the results of measurements of the temperature distribution in the unidirectionally heated beds of bars were used. It has been shown, that for obtained, during the test, differences of temperature between the surfaces of adjacent rods, convection can occur only when the diameter of the rod exceeds 18 mm.

Go to article

Authors and Affiliations

Rafał Wyczółkowski
Dorota Musiał
Download PDF Download RIS Download Bibtex

Abstract

The paper describes tests intended to examine the occurrence of natural convection within the space occupied by 40×20 mm rectangular steel sections. Within these tests the bed of four layers of section was heated by the electric palate heater. Depending on the manner in which the heater was positioned, the tests were divided into two series. In the case of heating from above, the heat flowing through the bed is transferred only by conduction and radiation. When heating the bed from below, in addition to conduction and radiation, also a convective heat transfer will occur. Should this be the case, it will result in the intensification of the heat exchange. The results of measurements carried out have not demonstrated that the occurrence of any possible natural convection would influence the development of a temperature field in this type of charge.
Go to article

Authors and Affiliations

Rafał Wyczółkowski
Dorota Musiał
Download PDF Download RIS Download Bibtex

Abstract

Reliable knowledge of thermo-physical properties of materials is essential for the interpretation of solidification behaviour, forming, heat treatment and joining of metallic systems. It is also a precondition for precise simulation calculations of technological processes. Numerical calculations usually require the knowledge of temperature dependencies of three basic thermo-physical properties: thermal conductivity, heat capacity and density. The objective of this work is to find a correlation that fits the thermal conductivity of selected steel grades as a function of temperature (within the range of 0–800°C) and carbon content (within the range of 0.1–0.6%). The starting point for the analysis are the experimental data on thermal conductivity taken from literature. Using the method of least squares it was possible to fit an equation which allows calculating the thermal conductivity of steel depending on the temperature and carbon content. Two kinds of equations have been analyzed: a linear one (a linear model) and a second degree polynomial (a non-linear model). The thermal conductivity obtained by linear and nonlinear models varies on average from the measured values by 3% and 2.6% respectively.
Go to article

Authors and Affiliations

Rafał Wyczółkowski
1
Dominika Strychalska
1
Vazgen Bagdasaryan
2

  1. Czestochowa University of Technology, Department of Production Management, Armii Krajowej 19, 42-200 Czestochowa, Poland
  2. Warsaw University of Life Sciences, Institute of Civil Engineering – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland

This page uses 'cookies'. Learn more