Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Development of mineral deposits located at significant depth may be carried out by means of vertical shafts. Shaft sinking technology usually requires a number of works to be carried out, including the selection of appropriate excavating techniques adapted to geological and hydrological conditions, including natural hazards. The production technology and the machines used determine the level of sinking costs and execution period. The article discusses the excavating technologies currently used across the world. Then the assumptions, concept and construction of a new generation of shaft sinking system were presented. The proposed new solution of the system and the excavating technology allow for parallel execution of key processes related to winning, loading, transport and shaft wall-side lining, which significantly increases the progress of sinking. The shaft sinking system was created by scientists from AGH in cooperation with KOPEX – Przedsiębiorstwo Budowy Szybów S. A. and Instytut Techniki Górniczej KOMAG.

Go to article

Authors and Affiliations

Krzysztof Krauze
ORCID: ORCID
Łukasz Bołoz
ORCID: ORCID
Tomasz Wydro
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Shifting masses in a confined space in the company of other machines and devices, which limits the manoeuvring and transport area, poses a significant problem in every field of industry, especially with underground mining. The works involved in transporting and manoeuvring masses in underground workings are challenging and are most often performed using various auxiliary machines or manually. Hence the need arose to develop a device carrying out activities related to the shifting of masses with the assumed maximum value. The device was created as a result of cooperation between FAMA sp. z o.o. and the AGH University of Science and Technology in Kraków, Poland. The mining modular transport and assembly unit (MZT-M) enables assembling and transporting various masses, especially the elements of the roadway support in the face. The primary function of this device is its movement in the excavation along with the transported mass and delivering it to a specific place. Therefore, an important issue is to ensure the module’s stability in different phases of its operation (lifting, transport, manoeuvring, feeding, lowering) due to the limited space in the excavation. That is why an analytical model and specialised software were created to determine the design parameters of the device as a function of its operating phases, especially the counterweight’s mass. As previously mentioned, an analytical model (physical, mathematical) with equations and applications written in Microsoft Visual Studio and Matlab was used for this purpose. It is beneficial at the design or construction changes stage. Calculation results are documented in the form of numerical summaries and graphs.
Go to article

Authors and Affiliations

Krzysztof Krauze
1
ORCID: ORCID
Ryszard Klempka
1
ORCID: ORCID
Kamil Mucha
1
ORCID: ORCID
Tomasz Wydro
1
ORCID: ORCID

  1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

This page uses 'cookies'. Learn more