Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Go to article

Bibliography

  1.  K. Talbot, P. Duley, and M. Hyatt, “Specific emitter identification and verification,” Technol. Rev. J., vol.  Spring/Summer, pp. 113‒133, 2003.
  2.  G. Baldini, G. Steri, and R. Giuliani, “Identification of wireless devices from their physical layer radio-frequency fingerprints,” in Encyclopedia of Information Science and Technology, 4th Ed., 2018, ch. 533, pp. 6136‒6146.
  3.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, no. 1, pp. 34–41, 2016, doi: 10.1109/cjece.2015.2496143.
  4.  Y. Pan, H. Peng, T. Li, and W. Wang, “High-fidelity symbol synchronization for specific emitter identification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 15‒17 March 2019, pp.  393‒398, doi: 10.1109/ITNEC.2019.8729181.
  5.  S. Ching-Sung and L. Chin-Teng, “A vector neural network for emitter identification,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1120–1127, 2002, doi: 10.1109/TAP.2002.801387.
  6.  R. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance,” in 2009 IEEE International Conference on Communications, 14‒18 June 2009, pp. 1‒5, doi: 10.1109/ICC.2009.5199451.
  7.  O. Ureten and N. Serinken, “Bayesian detection of Wi-Fi transmitter RF fingerprints,” Electron. Lett., vol. 41, no. 6, pp.  373–374, 2005, doi: 10.1049/el:20057769.
  8.  J. Hall, M. Barbeau, and E. Kranakis, “Radio frequency fingerprinting for intrusion detection in wireless networks,” IEEE Trans. Dependable Secure Comput., vol. 12, pp. 1–35, 2005.
  9.  S. Guo, S. Akhtar, and A. Mella, “A Method for Radar Model Identification using Time-domain Transient Signals,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1‒1, 2021, doi: 10.1109/TAES.2021.3074129.
  10.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert–Huang transform-based time–frequency–energy distribution features,” IET Commun., vol. 8, no. 13, 2404–2412, 2014.
  11.  U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 581–591, 2019, doi: 10.1109/ tifs.2018.2855665.
  12.  L. Li, H. B. Ji, and L. Jiang, “Quadratic time-frequency analysis and sequential recognition for specific emitter identification,” IET Signal Proc., vol. 5, pp. 568–574, 2011, doi: 10.1049/iet-spr.2010.0070.
  13.  J. Zhang, F. Wang, Z. Zhong, and O. Dobre, “Novel Hilbert Spectrum-Based Specific Emitter Identification for Single-Hop and Relaying Scenarios,” in 2015 IEEE Global Communications Conference (GLOBECOM), 6–10 Dec. 2015 2015, pp. 1–6, doi: 10.1109/ GLOCOM.2015.7417299.
  14.  Z. Tang and S. Li, “Steady Signal-Based Fractal Method of Specific Communications Emitter Sources Identification,” in Wireless Communications, Networking and Applications, Q.-A. Zeng, Ed., Springer India, New Delhi, 2016, pp. 809–819, doi: 10.1007/978-81- 322-2580-5_73.
  15.  F. Zhuo, Y. Huang, and J. Chen, “Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance,” Procedia Comput. Sci., vol. 107, pp. 472–477, 2017, doi: 10.1016/j.procs.2017.03.092.
  16.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, pp. 34–41, 2016, doi: 10.1109/CJECE.2015.2496143.
  17.  M. Liu and J.F. Doherty, “Specific emitter identification using nonlinear device estimation,” in 2008 IEEE Sarnoff Symposium, 28‒30 April 2008, pp. 1–5, doi: 10.1109/SARNOF.2008.4520119.
  18.  M. Liu and J.F. Doherty, “Nonlinearity estimation for specific emitter identification in multipath channels,” IEEE Trans. Inf. Forensics Secur., vol. 6, no. 3, pp. 1076–1085, 2011, doi: 10.1109/TIFS.2011.2134848.
  19.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 2, pp. 391–396, 2015, doi: 10.1515/bpasts-2015-0044.
  20.  Y. Zhao, L. Wu, J. Zhang, and Y. Li, “Specific emitter identification using geometric features of frequency drift curve,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 99–108, 2018, doi: 10.24425/119063.
  21.  Ł. Rybak and J. Dudczyk, “A geometrical divide of data particle in gravitational classification of moons and circles data sets,” Entropy, vol. 22, p. 16, 2020, doi: 10.3390/e22101088.
  22.  J. Han, T. Zhang, D. Ren, and X. Zheng, “Mechanism analysis and feature extraction algorithm of communication emitter fingerprint,” AEU Int. J. Electron. Commun., vol. 106, 2019, doi: 10.1016/j.aeue.2019.04.020.
  23.  M.K.M. Fadul, D.R. Reising, and M. Sartipi, “Identification of OFDM-based radios under rayleigh fading using RF-DNA and deep learning,” IEEE Access, vol. 9, pp. 17100–17113, 2021, doi: 10.1109/ACCESS.2021.3053491.
  24.  J. Dudczyk, “A method of feature selection in the aspect of specific identification of radar signals,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, pp. 113–119, 2017, doi: 10.1515/bpasts-2017-0014.
  25.  K. Sa, D. Lang, C. Wang, and Y. Bai, “Specific emitter identification techniques for the internet of things,” IEEE Access, vol. 8, pp. 1644– 1652, 2020, doi: 10.1109/ACCESS.2019.2962626.
  26.  Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter identification based on deep residual networks,” IEEE Access, vol. 7, pp. 54425–54434, 2019, doi: 10.1109/ACCESS.2019.2913759.
  27.  L.J. Wong, W.C. Headley, S. Andrews, R.M. Gerdes, and A.J. Michaels, “Clustering learned CNN features from raw I/Q data for emitter identification,” in MILCOM 2018 – 2018 IEEE Military Communications Conference (MILCOM), 29–31 Oct. 2018, pp. 26–33, doi: 10.1109/MILCOM.2018.8599847.
  28.  M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for automatic cognitive radio waveform recognition,” IEEE Access, vol. 5, pp. 11074–11082, 2017, doi: 10.1109/ACCESS.2017.2716191.
  29.  N.E. West and T.O. Shea, “Deep architectures for modulation recognition,” in 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 6‒9 March 2017, pp.  1‒6, doi: 10.1109/DySPAN.2017.7920754.
  30.  Q. Wu et al., “Deep learning based RF fingerprinting for device identification and wireless security,” Electron. Lett., vol. 54, pp. 1405–1407, 2018, doi: 10.1049/el.2018.6404.
  31.  L. Ding, W. Shilian, F. Wang, and W. Zhang, “Specific emitter identification via convolutional neural networks,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2591–2594, 2018, doi: 10.1109/LCOMM.2018.2871465.
  32.  G. Baldini, C. Gentile, R. Giuliani, and G. Steri, “A comparison of techniques for radiometric identification based on deep convolutional neural networks,” Electron. Lett., vol. 55, pp. 90–92, 2018, doi: 10.1049/el.2018.6229.
  33.  K. Huang, J. Yang, H. Liu, and P. Hu, “Deep adversarial neural network for specific emitter identification under varying frequency,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136716, 2021, doi: 10.24425/bpasts.2021.136737.
  34.  B. Wu, S. Yuan, P. Li, Z. Jing, S. Huang, and Y. Zhao, “Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism,” Sensors, vol. 20, p.  6350, 2020, doi: 10.3390/s20216350.
  35.  T.J. Shea and N. West, “Radio Machine Learning Dataset Generation with GNU Radio,” Proceedings of the GNU Radio Conference, vol 1, no.1, 2016. [Online]. Available: https://pubs.gnuradio.org/index.php/grcon/article/view/11.
  36.  T.J. O’Shea, T. Roy, and T.C. Clancy, “Over-the-Air deep learning based radio signal classification,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 168‒179, 2018, doi: 10.1109/JSTSP.2018.2797022.
  37.  A. Hirose and S. Yoshida, “Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence,” IEEE Trans. Neural Networks, vol. 23, pp.  541–551, 2012, doi: 10.1109/TNNLS.2012.2183613.
  38.  C. Trabelsi et al., “Deep complex networks,” presented at the ICLR 2018, 2018.
  39.  Y. Ying and J. Li, “Radio frequency fingerprint identification based on deep complex residual network,” IEEE Access, vol. 8, pp. 204417– 204424, 2020, doi: 10.1109/ACCESS.2020.3037206.
  40.  S. Woo, J. Park, J.-Y. Lee, and I.S. Kweon, “CBAM: Convolutional Block Attention Module,” in Computer Vision – ECCV 2018, Cham, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., Springer International Publishing, 2018, pp. 3–19.
Go to article

Authors and Affiliations

Lingzhi Qu
1
Junan Yang
1
Keju Huang
1
Hui Liu
1

  1. College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Go to article

Bibliography

  1. K.I. Talbot, P.R. Duley, and M.H. Hyatt, “Specific emitter identification and verification”, Technol. Rev. 2003, 113–133, (2003).
  2. G. Baldini, G. Steri, and R. Giuliani, “Identification of wireless devices from their physical layer radio-frequency fingerprints”, in: Encyclopedia of Information Science and Technology, pp. 6136–6146, 4th Edition, IGI Global, 2018.
  3. A.E. Spezio, “Electronic warfare systems”, IEEE Trans. Microw. Theory Tech. 50(3), 633–644 (2002).
  4. O. Ureten and N. Serinken, “Wireless security through rf fingerprinting”, Can. J. Electr. Comp. Eng. 32(1), 27–33 (2007).
  5. S.U. Rehman, K.W. Sowerby, and C. Coghill, “Radio-frequency fingerprinting for mitigating primary user emulation attack in low-end cognitive radios”, IET Commun. 8(8), 1274–1284 (2014).
  6. V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identification with radiometric signatures”, in: Proceedings of the 14th ACM international Conference on Mobile Computing and Networking, San Francisco, USA: ACM, 2008, pp. 116– 127.
  7. Y. Huang, et al., “Radio frequency fingerprint extraction of radio emitter based on i/q imbalance”, Procedia Computer Science 107, 472–477 (2017).
  8. L.J. Wong, W.C. Headley, and A.J. Michaels, “Specific emitter identification using convolutional neural network-based iq imbalance estimators”, IEEE Access 7, 33544–33555 (2019).
  9. G. López-Risueño, J. Grajal, and A. Sanz-Osorio, “Digital channelized receiver based on time-frequency analysis for signal interception”, IEEE Trans. Aerosp. Electron. Syst. 41(3), 879–898 (2005).
  10. C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet fingerprinting of radio-frequency identification (rfid) tags”, EEE Trans. Ind. Electron. 59(12), 4843–4850 (2011).
  11. J. Lundén and V. Koivunen, “Automatic radar waveform recognition”, IEEE J. Sel. Top. Signal Process. 1(1), 124–136 (2007).
  12. L. Li, H.B. Ji, and L. Jiang, “Quadratic time–frequency analysis and sequential recognition for specific emitter identification”, IET Signal Process. 5(6), 568–574 (2011).
  13. Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert–Huang transform-based time– frequency–energy distribution features”, IET Commun. 8(13), 2404–2412 (2014).
  14. J. Zhang, F. Wang, Z. Zhong, and O. Dobre, “Novel hilbert spectrum-based specific emitter identification for single-hop and relaying scenarios”, in: 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, IEEE, 2015, pp. 1–6.
  15. J. Zhang, F. Wang, O. Dobre, and Z. Zhong, “Specific emitter identification via Hilbert–Huang transform in single-hop and relaying scenarios”, IEEE Trans. Inf. Forensic Secur. 11(6), 1192–1205 (2016).
  16. Z. Tang and S. Li, “Steady signal-based fractal method of specific communications emitter sources identification”, in: Wireless Communications, Networking and Applications, pp. 809– 819, Springer, 2016.
  17. G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics”, Can. J. Electr. Comp. Eng. 39(1), 34–41 (2016).
  18. Y. Jia, S. Zhu, and L. Gan, “Specific emitter identification based on the natural measure”, Entropy 19(3), 117 (2017).
  19. J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters”, Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 391–396 (2015).
  20. Y. Zhao, Y. Li, L. Wui, and J. Zhang, “Specific emitter identification using geometric features of frequency drift curve”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 99–108 (2018).
  21. L. Rybak and J. Dudczyk, “A geometrical divide of data particle in gravitational classification of moons and circles data sets”, Entropy 22(10), 1088 (2020).
  22. Q. Wu, et al., “Deep learning based rf fingerprinting for device identification and wireless security”, Electron. Lett. 54(24), 1405–1407 (2018).
  23. L. Ding, S. Wang, F. Wang, and W. Zhang, “Specific emitter identification via convolutional neural networks”, IEEE Commun. Lett. 22(12), 2591–2594 (2018).
  24. K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for rf device fingerprinting in cognitive communication networks”, IEEE J. Sel. Top. Signal Process. 12(1), 160–167 (2018).
  25. Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter identification based on deep residual networks”, IEEE Access 7, 54425– 54434 (2019).
  26. J. Matuszewski and D. Pietrow, “Recognition of electromagnetic sources with the use of deep neural networks”, in XII Conference on Reconnaissance and Electronic Warfare Systems, 2019, vol. 11055, pp. 100–114, doi: 10.1117/12.2524536.
  27. L.J. Wong, W.C. Headley, S. Andrews, R.M. Gerdes, and A.J. Michaels, “Clustering learned cnn features from raw i/q data for emitteridentification”, in: MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), Los Angeles, USA, 2018, pp. 26–33.
  28. G. Baldini, C. Gentile, R. Giuliani, and G. Steri, “Comparison of techniques for radiometric identification based on deep convolutional neural networks”, Electron. Lett. 55(2), 90–92 (2018).
  29. W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, “Wireless physical-layer identification: Modeling and validation”, IEEE Trans. Inf. Forensic Secur. 11(9), 2091–2106 (2016).
  30. S. Andrews, R.M. Gerdes, and M. Li, “Towards physical layer identification of cognitive radio devices”, IEEE Conference on Communications and Network Security (CNS), Las Vegas, USA, IEEE, 2017, pp. 1–9.
  31. I.F. Akyildiz, W.Y. Lee, M.C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey”, Comput. Netw. 50(13), 2127–2159 (2006).
  32. S.J. Pan and Q. Yang, “A survey on transfer learning”, IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009), doi: 10.1109/ TKDE.2009.191.
  33. Y. Sharaf-Dabbagh and W. Saad, “Transfer learning for device fingerprinting with application to cognitive radio networks”, in: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 2015, pp. 2138–2142.
  34. M. Wang and W. Deng, “Deep visual domain adaptation: A survey”, Neurocomputing 312, 135–153 (2018). doi: 10.1016/j. neucom.2018.05.083.
  35. Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation”, in: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 2015, pp. 1180–1189.
  36. Y. Ganin, et al., “Domain-adversarial training of neural networks”, J. Mach. Learn. Res. 17(1), 2096–2030 (2016).
  37. G. Wilson and D.J. Cook, “A survey of unsupervised deep domain adaptation”, CoRR, 2018, abs/1812.02849. Available from: http://arxiv. org/abs/1812.02849.
  38. I. Goodfellow, et al., “Generative adversarial nets”, in: Advances in Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672–2680.
  39. U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios”, IEEE Trans. Inf. Forensic Secur. 14(3), 581–591 (2018).
  40. E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation”, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, 2017, pp. 7167–7176.
  41. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, in: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016, pp. 770–778.
  42. L. Maaten and G. Hinton, “Visualizing data using t-sne”, J. Mach. Learn. Res. 9, 2579–2605 (2008).
  43. C. Chen, et al., “Progressive feature alignment for unsupervised domain adaptation”, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 627–636.
  44. P. Panareda-Busto and J. Gall, “Open set domain adaptation”, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 754–763.
  45. Z. Cao, M. Long, J. Wang, and M.I. Jordan, “Partial transfer learning with selective adversarial networks”, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018, pp. 2724–2732.
  46. K. You, M. Long, Z. Cao, J. Wang, and M.I. Jordan, “Universal domain adaptation”, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA,2019.
Go to article

Authors and Affiliations

Keju Huang
1
Junan Yang
1
Hui Liu
1
Pengjiang Hu
1

  1. College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, China

This page uses 'cookies'. Learn more