Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The sodium silicate sands hardened by microwave have the advantages of high strength, fast hardening speed and low residual strength with the lower addition of sodium silicate. However, the sodium ion in the sands will absorb moisture from the atmosphere, which would lead to lower storing strength, so the protection of a bonding bridge of sodium silicate between the sands is crucial. Methyl silicone oil is a cheap hydrophobic industrial raw material. The influence of the addition amount of methyl silicone oil modifier on compressive strength and moisture absorption of sodium silicate sands was studied in this work. The microscopic analysis of modified before and after sodium silicate sands has been carried on employing scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The results showed that the strength of modified sodium silicate sands was significantly higher than that of unmodified sodium silicate sands, and the best addition of methyl silicone oil in the quantity of sodium silicate was 15%. It was also found that the bonding bridge of modified sodium silicate sands was the density and the adhesive film was smooth, and the methyl silicone oil was completely covered on the surface of the sodium silicate bonding bridge to protect it.
Go to article

Bibliography

[1] Stachowicz, M., Pałyga, Ł. & Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.
[2] Nowak, D.(2017).The impact of microwave penetration depth on the process of hardening the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[3] Gal, B., Granat, K. & Nowak, D. (2017). Effect of compaction degree on permittivity of water-glass containing moulding sand. Metalurgija. 56(1), 17-20.
[4] Kaźnica, N. & Zych, J. (2019). Indicator wso: a new parameter for characterization of protective coating efficiency against humidity. Journal of Materials Engineering and Performance. 28(7), 3960-3965.
[5] Bae, M.A., Lee, M.S. & Baek, J.H. (2020). The effect of the surface energy of water glass on the fluidity of sand. Journal of Korean Institute of Metals and Materials. 58(5), 319-325.
[6] Peng, Q.S., Wang, P.C., Huang, W., & Chen, H.B. (2020). The irradiation-induced grafting of nano-silica with methyl silicone oil. Polymer. 192(4), 122315.
[7] Stachowicz, M., Granat, K., & Payga. (2017). Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of Metallurgy and Materials. 62(1), 379-383.
[8] Zhu, C. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[9] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening. Metalurgija. 53(4), 455-458.
[10] Masuda, Y., Tsubota, K., Ishii, K., Imakoma, H. & Ohmura, N. (2009). Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. KAGAKU KOGAKU RONBUNSHU. 35(2), 229-231.
[11] Kosuge, K., Sunaga, M., Goda, R., Onodera, H. & Okane, T. (2018). Cure and collapse mechanism of inorganic mold using spherical artificial sand and water glass binder. Materials transactions. 59(11), 1784-1790.
[12] Zhang, Y.H., Liu, Z.Y., Liu, Z.C. & Yao, L.P. (2020). Mechanical properties of high-ductility cementitious composites with methyl silicone oil. Magazine of Concrete Research. 72(14), 747-756.
Go to article

Authors and Affiliations

Huafang Wang
1
ORCID: ORCID
Xiang Gao
1
Lei Yang
1
ORCID: ORCID
Wei He
1
Jijun Lu
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China
Download PDF Download RIS Download Bibtex

Abstract

The exothermic insulating riser played an important role in the solidification process of metal liquid for the improvement of casting quality. This paper focused on the use of organosilicon slag to replace part of the aluminum powder as an exothermic agent for the riser, to reduce production costs and turn waste into treasure. The experiments firstly studied the effect of organosilicon slag content on the combustion temperature and holding time and determined the components of the riser exothermic agent and organosilicon slag. On this basis, the effects of the content of Na3AlF6 flux and alkali phenolic resin binder on the combustion heating time and strength properties of the riser were studied. And the ratio of mixed oxidants was determined by single-factor orthogonal experiments to optimize the addition of three oxidants, Fe3O4, MnO2, and KNO3. Finally, the performance of the riser prepared after optimization was compared with that of the riser prepared with general aluminum powder. The results showed that with the mixture of 21% organosilicon slag and 14% aluminum powder as the exothermic agent, the highest combustion temperature of the prepared exothermic insulating riser was 1451℃ and the holding time was 193 s; the optimal content of Na3AlF6 flux was 4%, and the best addition alkali phenolic resin binder was 12%; the optimized mixing ratio of three oxidants was 12% for Fe3O4, 6% for MnO2, and 6% for KNO3. Under the optimized ratio, the maximum combustion temperature of the homemade riser was 52℃ and the heat preservation time was 14% longer compared with the conventional exothermic insulating riser with 25-35% aluminum powder.
Go to article

Authors and Affiliations

Jijun Lu
1
ORCID: ORCID
Jiangbing Qian
1
ORCID: ORCID
Lei Yang
1
ORCID: ORCID
Huafang Wang
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China

This page uses 'cookies'. Learn more