Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Conventionally, Porcine sapelovirus (PSV) has been considered to comprise a single geno- type, PSV-1; however, a potentially novel member of PSV was recently discovered. In the present study, we propose a genotype definition of PSV based on phylogenetic and genetic analyses of the polyprotein, P1, and VP1 genes of available PSV sequences. Two genotypes, with pro- posed names PSV-1 and PSV-2, were identified. Moreover, the cut-off values (number of diffe- rences per site between amino acid sequences) for the definition of genotypes were established to be 0.1115 (polyprotein), 0.176 (P1), and 0.272 (VP1). The findings of this study are expected to enrich knowledge of PSV classification.
Go to article

Authors and Affiliations

T. Yang
1
Y. Lu
1
L. Zhang
1

  1. College of Life Sciences and Resource Environment, Yichun University, Yichun, Jiangxi 336000, China
Download PDF Download RIS Download Bibtex

Abstract

The pathogenesis of porcine contagious pleuropneumonia is poorly understood. In the present study, a mouse model of intranasal infection by Actinobacillus pleuropneumoniae (App) was used to examine lung inflammation. The pathogical results of lung tissues showed that App-infected mice showed dyspnea and anorexia, with severe damage by acute hemorrhage, and infiltration of eosinophils and lymphocytes, as well as increased expression of caspase-1 p20, interleukin (IL)-1β, IL-6, IL-8, IL-18 and tumor necrosis factor (TNF)-α. Caspase-1 inhibitors reduced both lung tissue damage and the expression of caspase-1 p20, IL-1β, IL-6, IL-8, TNF-α and IL-18 in infected mice. These findings suggest that the caspase-1 dependent pyroptosis involved in the pathogenesis of the mouse pleuropneumonia caused by App and the inhibition of caspase-1 reduced the lung injury of this pleuropneumonia

Go to article

Authors and Affiliations

Y. Zhang
T. Yang
F. Huang
Download PDF Download RIS Download Bibtex

Abstract

To develop a sensitive, specific, and rapid approach for the detection Getah virus (GETV), a set of primers targeting the conserved region of the E1 gene was created. The TaqMan-based real-time PCR method for GETV detection was developed by optimizing the reaction conditions. The method demonstrated excellent specificity, and amplification did not occur with the causative agents of all prevalent swine viral infections (CSFV, PRRSV, PRV, PEDV, PTV, and JEV), except GETV. Additionally, upon assessing the sensitivity of the method, the minimum detection limit for GETV was found to be 5.94 copies/μL, which is 10 times higher than that of the traditional PCR approach. Further, the intra- and inter-assay variation coefficients were less than 1%, demonstrating good repeatability. Moreover, GETV was found in 10 of the 20 field serum samples using real-time PCR but only in three of the samples using traditional PCR. Consequently, the first GETV TaqMan-based real-time PCR approach based on the E1 gene was developed for GETV pathogenic diagnoses, and this exhibited high specificity, sensitivity, and repeatability. This assay is practical for the pathogenic diagnosis and epidemiology of GETV.
Go to article

Authors and Affiliations

A. Lin
1
X. Hu
1
S. Cui
1
T. Yang
1
Z. Zhang
1
P. Li
1
M. Guo
1
Y. Lu
1

  1. College of Life Sciences and Resource Environment, Yichun University, No 576, Xuefu Road, Yuanzhou district, Yichun, Jiangxi, 336000, China
Download PDF Download RIS Download Bibtex

Abstract

Porcine epidemic diarrhea (PED) is a disease extremely harmful to pig health. Intramuscular and Houhai acupoint injections are the main immunization routes to prevent and control PED. This study aimed to evaluate the efficacy of these two routes in pregnant sows based on serum IgG, IgA, and neutralizing antibody levels. PED virus (PEDV) immunoprophylaxis with live-attenuated and inactivated vaccines was administered. The vaccinations for the intramuscular injections elevated IgG and neutralizing antibody levels more than Houhai acupoint injections at most timepoints after immunization. However, the anti-PEDV IgA antibodies induced by vaccination with the two immunization routes did not differ significantly. In conclusion, intramuscular injections are better than Houhai acupoint injections for PEDV vaccination of pregnant sows.
Go to article

Bibliography

1. Brown J, Poonsuk K, Cheng TY, Rademacher C, Kalkwarf E, Tian L, McKeen LA, Wang C, Gimenez-Lirola L, Baum D, Karriker LA (2023) Comparison of two diagnostic assays for the detection of serum neutralizing antibody to porcine epidemic diarrhea virus. Animals (Basel) 13:757.
2. Hsueh FC, Chang YC, Kao CF, Hsu CW, Chang HW (2020) Intramuscular immunization with chemokine-adjuvanted inactive porcine epidemic diarrhea virus induces substantial protection in pigs. Vaccines (Basel) 8:102.
3. Jin H, Wu Y, Bi S, Xu Y, Shi F, Li X, Ma X, Hu S (2020) Higher immune response induced by vaccination in Houhai acupoint relates to the lymphatic drainage of the injection site. Res Vet Sci 130: 230-236.
4. Jung K, Saif LJ, Wang Q (2020) Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and pre-vention and control. Virus Res 286: 198045.
5. Krishna VD, Kim Y, Yang M, Vannucci F, Molitor T, Torremorell M, Cheeran MC (2020) Immune responses to porcine epidemic diar-rhea virus (PEDV) in swine and protection against subsequent infection. PLoS One 15: e0231723.
6. Langel SN, Paim FC, Alhamo MA, Buckley A, Van Geelen A, Lager KM, Vlasova AN, Saif LJ (2019) Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets. Front Immunol 10: 727.
7. Lee C (2015) Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J 12: 193.
8. Lv C, Xiao Y, Li X, Tian K (2016) Porcine epidemic diarrhea virus: current insights. Virus Adapt Treat 8: 1-12.
9. Shibata I, Tsuda T, Mori M, Ono M, Sueyoshi M, Uruno K (2000) Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Vet Microbiol 72: 173-182.
10. Sun D, Wang X, Wei S, Chen J, Feng L (2016) Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review. J Vet Med Sci 78: 355-363.
11. Xu W, Hu S (2021) Administration of infectious bursal disease vaccine in Houhai acupoint promotes robust immune responses in chickens. Res Vet Sci 142: 149-153.
Go to article

Authors and Affiliations

C. Hu
1
X. Xie
2
D. Zhao
3
H. Liu
1
ORCID: ORCID
X. Liu
4
T. Yang
5
W. Sun
6

  1. Pulike Biological Engineering Inc., Luoyang, Henan, 471000, China
  2. Yiyang Vocational and Technical College, Yiyang, Hunan, 413055, China
  3. College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
  4. Xiangtan Center for Animal Disease Prevention and Control, Xiangtan, Hunan, 411104, China
  5. College of Life Sciences and Resource Environment, Yichun University, Yichun, Jiangxi, 336000, China
  6. Sinopharm Animal Health Corporation Ltd., Wuhan, Hubei, 430075, China

This page uses 'cookies'. Learn more