Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

There is a growing body of research investigating the relationships among gratitude, self-esteem, and subjective well-being. However, there remains a scarcity of research examining the impact of self-esteem on the relationship between gratitude and subjective well-being within Arabic context. In this study, 300 Arabic speaking adults completed measurements of gratitude, self-esteem, satisfaction with life, and positive and negative experiences. Participants’ ages ranged between 18 and 54 years with a mean age of 29.67 years (SD = 8.91). The correlation results revealed that there were significant positive relationships between gratitude, self-esteem, satisfaction with life, and positive experience, while there were significant negative relationships between gratitude, self-esteem, satisfaction with life, and negative experience. The results also showed that gratitude and self-esteem directly predicted subjective well-being. Additionally, using structural equation modeling, self-esteem exerted a mediation effect on the relationship between gratitude and subjective well-being. The results suggest that enhancing self-esteem could assist adults who have gratitude to experience greater subjective well-being. Using the source of self-esteem, researchers and professionals could improve one’s subjective wellbeing by employing various gratitude activities.

Go to article

Authors and Affiliations

Murat Yildirim
Nouf Abdullah Alshehri
Izaddin Ahmad Aziz
Download PDF Download RIS Download Bibtex

Abstract

Al-4.5Cu alloys are widely used in aerospace industries due to their low weight and high mechanical properties. This group of aluminium alloys is known as 2xx series and exhibits the highest mechanical properties however this alloy is known to suffer from feedability and high tendency for hot tearing. Al-Si alloys (3xx) have improved fluidity and better feedability particularly by several modifications such as Ti, B or Sr. Eutectic temperature is decreased and mechanical properties can be enhanced. Yet, the strength values of this alloy group cannot reach the values of 2xx series. Therefore, in this study, the effect of Ag addition on the fluidity of Al-4.5Cu alloy has been investigated. Standard size spiral mould was used. The casting temperature was selected to be 770oC. Five castings were made and Weibull statistical approach was used to evaluate the results. In addition, coating of the die with BN was also investigated. It was found that Ag addition and BN coating of the die revealed the most reproducible, reliable and high fluidity values.

Go to article

Authors and Affiliations

K. Yildirim
M. Helvaci
Ö. Gürsoy
E. Erzi
C. Kahruman
D. Dispinar
Download PDF Download RIS Download Bibtex

Abstract

Twenty eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague dawley rats were randomly divided into 4 groups as 7 rats in each group. Except for the control one, aflatoxin B1 (7.5 μg / 200 g), resvera- trol (60 mg / kg) was administered to rats of 3 other groups. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters. In terms of pathological parameters - histopathological examination - in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investi- gated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevent the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability.

Go to article

Authors and Affiliations

A.D. Omur
B. Yildirim
Y.S. Saglam
S. Comakli
M. Ozkaraca
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is an important metalloid that can cause poisoning in humans and domestic animals. Exposure to arsenic causes cell damage, increasing the production of reactive oxygen species. Chitosan is a biopolymer obtained by deacetylation of chitin with antioxidant and metal ion chelating properties. In this study, the protective effect of chitosan on arsenic-induced nephrotoxicity and oxidative damage was investigated. 32 male Wistar-albino rats were divided into 4 groups of 8 rats each as control group (C), chitosan group (CS group), arsenic group (AS group), and arsenic+chitosan group (AS+CS group). The C group was given distilled water by oral gavage, the AS group was given 100 ppm/day Na-arsenite ad libitum with drinking water, the CS group was given 200 mg/kg/day chitosan dissolved in saline by oral gavage, the AS+CS group was given 100 ppm/day Na-arsenite ad libitum with drinking water and 200 mg/kg/day chitosan dissolved in saline by oral gavage for 30 days. At the end of the 30-day experimental period, 90 mg/kg ketamine was administered intraperitoneally to all rats, and blood samples and kidney tissues were collected. Urea, uric acid, creatinine, P, Mg, K, Ca, Na, Cystatin C (CYS-C), Neutrophil Gelatinase Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM-1) levels were measured in serum samples. Malondialdehyde (MDA), Glutathione (GSH), Catalase (CAT) and Superoxide dismutase (SOD) levels in the supernatant obtained from kidney tissue were analyzed by ELISA method. Compared with AS group, uric acid and creatinine levels of the AS+CS group were significantly decreased (p<0.001), urea, KIM-1, CYS-C, NGAL, and MDA levels were numerically decreased and CAT, GSH, and SOD levels were numerically increased (p>0.05). In conclusion, based on both biochemical and histopathological-immunohistochemical- immunofluorescence findings, it can be concluded that chitosan attenuates kidney injury and protects the kidney.
Go to article

Bibliography

1. Aboulthana WM, Ibrahim NE (2018) A renoprotective role of chitosan against lithium-induced renal toxicity in rats. Bull Natl Res Cent 42: 1-11.
2. Akao Y, Yamada H, Nakagawa Y (2000) Arsenic-induced apoptosis in malignant cells in vitro. Leuk Lymphoma 37: 53-63.
3. Aleksunes LM, Augustine LM, Scheffer GL, Cherrington NJ, Manautou JE (2008) Renal xenobiotic transporters are differentially ex-pressed in mice following cisplatin treatment. Toxicology 250: 82-88.
4. Aras S, Gerin F, Aydin B, Ustunsoy S, Sener U, Turan BC, Armutcu F (2015) Effects of sodium arsenite on the some laboratory signs and therapeutic role of thymoquinone in the rats. Eur Rev Med Pharmacol Sci 19: 658-663.
5. Bagga A, Bajpai A, Menon S (2005) Approach to renal tubular disorders. Indian J Pediatr 72: 771-776.
6. Bakan M (2019) Arsenic Metabolism and Arsenolipid Biosynthesis. MedFar 2: 83-88.
7. Büget Mİ, Özkilitçi E, Küçükgergin C, Seçkin Ş, Küçükay S, Yenigün Y, Orhun G, Akıncı İÖ, Özcan PE (2014) Early Diagnosis in Acute Kidney Failure: Neutrophil Gelatinase Associated Lipocain (NGAL), Kidney Injury Molecule-1 (KIM-1), Interleukine-18 (IL-18), Cystatin C. J Turk Soc Intens Care 12: 94-100.
8. Cai X, Yu Y, Huang Y, Zhang L, Jia PM, Zhao Q, Chen Z, Tong JH, Dai W, Chen GQ (2003) Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia 17: 1333-1337.
9. Chou CK, Li YC, Chen SM, Shih YM, Lee JA (2015) Chitosan prevents gentamicin-induced nephrotoxicity via a carbonyl stress-dependent pathway. Biomed Res Int 2015: 675714.
10. Danışman B, Çiçek B, Yıldırım S, Yüce N, Bolat I (2023) Gastroprotective effects of bromelain on indomethacin-induced gastric ulcer in rats. GSC Biological and Pharmaceutical Sciences 23: 277-286.
11. Demir A, Seventekin N (2009) Chitin, Chitosan And General Application Areas. TTED 3: 92-103.
12. Devarajan P (2010) Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Neph-rology (Carlton) 15: 419-428.
13. Dhondup T, Qian Q (2017) Electrolyte and acid-base disorders in chronic kidney disease and end-stage kidney failure. Blood Purif 43: 179-188.
14. Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, Pantano S, Moulin P, Wahl D, Mahl A, End P, Staedtler F, Legay F, Carl K, Laurie D, Chibout SD, Vonderscher J, Maurer G (2010) Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 28: 463-U114.
15. Duker AA, Carranza EJ, Hale M (2005) Arsenic geochemistry and health. Environ Int 31: 631-641.
16. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4: 411–427.
17. Ewere EG, Okolie NP, Eze GI, Jegede DA (2019) Irvingia gabonensis leaves mitigate arsenic-induced renal toxicity in Wistar rats. Asian J Biomed Pharmaceut Sci 9: 17-25.
18. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51: 257-281.
19. Florea AM, Yamoah EN, Dopp E (2005) Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction. Environ Health Perspect 113: 659-664.
20. Galanis A, Karapetsas A, Sandaltzopoulos R (2009) Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res 674: 31-35.
21. Ghys L, Paepe D, Smets P, Lefebvre H, Delanghe J, Daminet S (2014) Cystatin C: a new renal marker and its potential use in small ani-mal medicine. J Vet Intern Med 28: 1152-1164.
22. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133: 1-16.
23. Ibaokurgil F, Aydin H, Yildirim S, Sengul E (2023) Melatonin alleviates oxidative stress, inflammation, apoptosis, and DNA damage in acrylamide–induced nephrotoxicity in rats. Asian Pac J Trop Biomed 13: 121-130.
24. Ishaq A, Gulzar H, Hassan A, Kamran M, Riaz M, Parveen A, Chattha MS, Walayat N, Fatima S, Afzal S, Fahad S (2021) Ameliorative mechanisms of turmeric-extracted curcumin on arsenic (As)-induced biochemical alterations, oxidative damage, and impaired organ func-tions in rats. Environ Sci Pollut Res Int 28: 66313-66326.
25. Jeon TI, Hwang SG, Park NG, Jung YR, Shin SI, Choi SD, Park DK (2003) Antioxidative effect of chitosan on chronic carbon tetra-chloride induced hepatic injury in rats. Toxicology 187: 67-73.
26. Jia G, Sone H, Nishimura N, Satoh M, Tohyama C (2004) Metallothionein (I/II) suppresses genotoxicity caused by dimethylarsinic acid. Int J Oncol 25: 325-333.
27. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283: 65-87.
28. Kamran M, Malik Z, Parveen A, Huang L, Riaz M, Bashir S, Mustafa A, Abbasi GH, Xue B, Ali U (2020) Ameliorative effects of bio-char on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J Plant Growth Regul 39: 266-281.
29. Kaya Z, Eraslan G (2013) The effects of evening primrose oil on arsenic-induced oxidative stress in rats. Toxicol Environ Chem 95: 1416-1423.
30. Kitchin KT, Conolly R (2010) Arsenic-induced carcinogenesis oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23: 327-335.
31. Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105: 24-32.
32. Liu YC, Huang H (1997) Involvement of calcium-dependent protein kinase C in arsenite-induced genotoxicity in chinese hamster ovary cells. J Cell Biochem 64: 423-433.
33. Mehrzadi S, Fatemi I, Malayeri AR, Khodadadi A, Mohammadi F, Mansouri E, Rashno M, Goudarzi M (2018) Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats. Pharmacol Rep 70: 712-719.
34. Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41: 467-550.
35. Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M (2023) Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 39: 85-110.
36. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174: 130-138.
37. Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33: 2-16.
38. Noman AS, Dilruba S, Mohanto NC, Rahman L, Khatun Z, Riad W, Al Mamun A, Alam S, Aktar S, Chowdhury S, Saud ZA, Rahman Z, Hossain K, Haque A (2015) Arsenic-induced histological alterations in various organs of mice. J Cytol Histol 6: 323.
39. Nomier YA, Alshahrani S, Elsabahy M, Asaad GF, Hassan A, El-Dakroury WA (2022) Ameliorative effect of chitosan nanoparticles against carbon tetrachloride-induced nephrotoxicity in Wistar rats. Pharm Biol 60: 2134-2144.
40. Nozohour Y, Jalilzadeh-Amin G (2019) Histopathological changes and antioxidant enzymes status in oxidative stress induction using Sodium arsenite in rats. J Appl Biotechnol Rep 6: 40-44.
41. Özdek U, Toz H, Kömüroğlu AU, Mis L, Huyut Z, Değer Y (2019) Protective Effect of Chitosan Against Lead-Induced Oxidative Stress in Rat Kidney. Van Vet J 30: 187-191.
42. Patel HV, Kalia K (2010) Sub-chronic arsenic exposure aggravates nephrotoxicity in experimental diabetic rats. Indian J Exp Biol 48: 762-768.
43. Peters BA, Hall MN, Liu X, Neugut YD, Pilsner JR, Levy D, Ilievski V, Slavkovich V, Islam T, Factor-Litvak P, Graziano JH, Gamble MV (2014) Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh. PLoS One 9: e113760.
44. Poręba R, Gać P, Poręba M, Antonowicz-Juchniewicz J, Andrzejak R (2011) Relation between occupational exposure to lead, cadmium, arsenic and concentration of cystatin C. Toxicology 283: 88-95.
45. Robles-Osorio ML, Sabath-Silva E, Sabath E (2015) Arsenic-mediated nephrotoxicity. Ren Fail 37: 542-547.
46. Roy M, Roy S (2011) Ameliorative potential of Psidium guajava in induced arsenic toxicity in Wistar rats. Vet World 4: 82-83.
47. Selby LA, Case AA, Osweiler GD, Hayes HM Jr (1977) Epidemiology and toxicology of arsenic poisoning in domestic ani-mals. Environ Health Perspect 19: 183-189.
48. Sharma S, Kaur T, Sharma AK, Singh B, Pathak D, Yadav HN, Singh AP (2022) Betaine attenuates sodium arsenite-induced renal dys-function in rats. Drug Chem Toxicol 45: 2488-2495.
49. Shen ZY, Shen WY, Chen MH, Shen J, Cai WJ, Yi Z (2002) Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells in-duced by arsenite. World J Gastroenterol 8: 40-43.
50. Shen ZY, Shen J, Cai WJ, Hong CQ, Zheng MH (2000) The alteration of mitochondria is an early event of arsenic trioxide induced apoptosis in esophageal carcinoma cells. Int J Mol Med 5: 155-158.
51. Singh MK, Yadav SS, Yadav RS, Singh US, Shukla Y, Pant KK, Khattri S (2014) Efficacy of crude extract of Emblica officinalis (amla) in arsenic-induced oxidative damage and apoptosis in splenocytes of mice. Toxicol Int 21: 8-17.
52. Sinha M, Manna P, Sil PC (2008) Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology 15: 147-156.
53. Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99: 6434-6439.
54. Tilako BH, Ogbodo SO, Okonkwo IN, Nubila IN, Shuneba IL, Ogbonna E, Odoma S, Gali RM, Bassey BE, Shu EN (2020) Distribu-tion and interactions of priority heavy metals with some antioxidant micronutrients in inhabitants of a lead-zinc mining community of eb-onyi state, Nigeria. Adv Toxicol Toxic Effects 4: 011-017.
55. Toz H, Değer Y (2018) The Effect of Chitosan on the Erythrocyte Antioxidant Potential of Lead Toxicity-Induced Rats. Biol Trace Elem Res 184:114-118
56. Wang Z, Yan Y, Yu X, Li W, Li B, Qin C (2016) Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int J Biol Macromol 83: 442-449.
57. Wan Muhamad Salahudin WS, Norlelawati AT, Nor ZA, Aung S, Asmah HH, Zunariah B (2021) Histopathological changes in chronic low dose organic arsenic exposure in rats kidney. IIUM Med J Malays 20: 91-98.
58. Wu KY, Wu M, Fu ML, Li H, Yang Y, Zhang H, Cheng C, Wang ZZ, Wang XY, Lu XB, Liu DG, Li H, Gao R (2006) A novel chi-tosan CpG nanoparticle regulates cellular and humoral immunity of mice. Biomed Environ Sci 19: 87-95.
59. Yuan WP, Liu B, Liu CH, Wang XJ, Zhang MS, Meng XM, Xia XK (2009) Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World J Gastroenterol 15: 1339.
60. Zalups RK (1997) Reductions in renal mass and the nephropathy induced by mercury. Toxicol Appl Pharmacol 143: 366-379.
61. Zeng L, Qin C, Wang W, Chi W, Li W (2008) Absorption and distribution of chitosan in mice after oral administra-tion. Carbohydr Polym 71: 435-440.
62. Zhang Z, Lu B, Sheng X, Jin N (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kid-ney Dis 58: 356-365.
63. Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A (2014) Arsenic and chronic kidney disease: a systematic re-view. Curr Environ Health Rep 1: 192-207.

Go to article

Authors and Affiliations

K. İrak
1
Ö.Y. Çelik
2
M. Bolacalı
3
T. Tufan
4
S. Özcan
4
S. Yıldırım
5
İ. Bolat
5

  1. Department of Biochemistry, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  3. Kırsehir Ahi Evran University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirsehir, Turkey
  4. Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  5. Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this study, it was aimed to investigate the effect of hip dysplasia on some biochemical parameters, oxidative stress factors and hematocrit values in dogs. Hematocrit values (HTC), serum calcium (Ca), phosphorus (P) levels, serum alkaline phosphatase (ALP), creatine kinase (CK) activities and oxidative stress factors were evaluated in a total of 27 dogs with healthy hip joints (n: 11) and hip dysplasia (n: 16). There was no statistically significant difference between the two groups in terms of HCT, Ca and P values (p˃0.05). ALP and CK activities were found to be statistically significantly increased in the group with hip dysplasia compared to the control group with a healthy hip joint (p˂0.05). While malondialdehyde (MDA) level, one of the oxidative stress factors, was increased in the group with hip dysplasia, decreased glutathione (GSH) levels, catalase (CAT) and glutathione peroxidase (GSH-Px) activities were significantly decreased. There was no significant difference between the two groups in terms of superoxide dismutase (SOD) level. As a result, it was determined that oxidative stress factors differ in dogs with hip dysplasia compared to dogs with the healthy hip joint.
Go to article

Bibliography


Aebi H (1984) Catalase. Methods Enzymol 105: 121-126.

Ajadi AR, Sanni JL, Sobayo EF, Ijaopo K (2018) Evaluation of plasma trace elements and oxidant/antioxidant status in Boerboel dogs with hip dysplasia. Bulg J Vet Med 23: 1-11.

Altıner A, Atalay H, Bilal T (2018) Free radicals and the relationship with stress. Balikesir Health Sci J 7: 51-55.

Bakır B, Büyükönder H, Özer K, Belge A (1992) Studies on blood serum alkaline phosphatase enzyme activity in hip dysplasia and normal sivas kangal dogs. Proceedings of the 3rd National Veterinary Surgery Congress, pp 64-70.

Beutler E (1984) Red cell metabolism. A manual of biochemical methods. 2nd ed., Grune and Starton, New York: 160.

Birben E, Şahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World AO J 5: 9-19.

Bostancı B, Demirkan I (2017) Determination of Prevalance of Canine Hip Dysplasia By Pennhip Method. Kocatepe Vet J 10: 269-277.

Candas A (1982) Hip dysplasias in dogs. Vet J AU 29: 235-248.

Çaptug Ö, Bilgili H (2007) Current Approaches of Canine Hip Dysplasia Part II: Clinical Diagnosis of Canine Hip Dysplasia. J Fac Vet Med Univ Erciyes 4(1): 35-42.

Dassler CL (2002) Canine hip dysplasia: Diagnosis and nonsurgical treatment. In: Slatter D, Textbook of Small Animal Surgery. 3rd ed., Saunders, Philadelphia, 2019-2029.

Denny HR, Buerworth S (2000) The Hip. In: A guide to canine and feline orthopaedic surgery. 4 ed., Blackwell Science, London: pp 455-494.

Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95.

Frankel S, Reitman S, Sonnen AC (1970) A textbook on laboratory procedure and their interpretation. Grand-Wohl’s clinical laboratory methods and diagnosis. Mosby Co, London, pp 403-404.

Ginja MMD, Ferreira AJA, Silvestre AM, Gonzale-Orden JM, Llorens-Pena MP (2006) Hip joint fluid and passive laxity in puppies at 7 or 8 weeks of age and its correlation with late hip laxity and canine hip dysplasia. 13th ESVOT Congress. September, 7-10, Munich, Germany, pp 232-233.

Karabaglı M, Olgun- Erdikmen D, Özer K (2014) Diagnosis and Treatment Options in Hip Dysplasia. Türkiye Klinikleri J Vet Sci 5: 54-61.

Lust G, Rendano VT, Summers BA (1985) Canine hip dysplasia: concepts and diagnosis. J Am Vet Med Assoc 187(6): 638-640.

Mukherjee S, Ghosh S, Choudhury S, Adhikary A, Manna K, Dey S, Sa G, Das T, Chattopadhyay S (2013) Pomegranate reverses metho-trexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-κB pathways. J Nutr Biochem 24: 2040-2050.

Or ME, Gülanber EG, Kalınbacak A, et al. (2001) The correlations of some serum parameters and hip dysplasia on Turkish Shepherd (Sivas Kangal) and German Shepherd dogs. Acta Veterinaria Eurasia 27: 469-476.

Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation in biochemical systems. Anal Biochem 16: 359-364.

Prasad AS (1978) Trace elements and iron in human metabolism. John Willey and Sons, NY.

Polat E (2021) Hip dysplasia in dogs. Veterinary Medicine and a New Look at Beekeepıng. 1st ed., IKSAD Publishing House, Ankara, pp 41-74.

Sarı H, Bilgili H (2011) Evaluation of Norberg-Olsson and distraction index hip joint angles measurement using with a new computerized programme on canine hip dysplasia. Vet Hek Der Derg 82: 49-58.

Schachner ER, Lopez MJ (2015) Diagnosis, prevention, and management of canine hip dysplasia: A review. Vet Med Res Rep 6: 181-192.

Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: An overview. Indian J Clin Biochem 29: 269–278.

Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34: 497-500.

Szilagyi M, Sagi L (1976) Bone mineral contents and serum alkaline phosphatase activity of healthy and hip dysplasic German Sheep dogs. Acta Vet Acad Sci Hung 25: 297-301.

Teixeira AM, Borges GF (2012) Creatine kinase: structure and function. Brazi J Biomotr 6: 53-65.

Wallace LJ (1987) Canine hip dysplasia: Past and present. Semin Vet Med Surg 2: 92-106.

Zilva FJ, Pannal PR (1975) Clinical Chemistry in Diagnosis and Treatment, 2nd ed., Lloyd-Luke LTD, London.
Go to article

Authors and Affiliations

E. Polat
1
M.C. Han
1
E. Kaya
2
S. Yilmaz
2
S.D. Kayapinar
1
S. Coskun
1
A. Yildirim
1
U.K. Can
1

  1. Fırat University, Faculty of Veterinary Medicine, Department of Surgery, Elazig, Turkey
  2. Fırat University, Faculty of Veterinary Medicine, Department of Biochemistry, Elazig, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The microstructural properties and hardness of a model ternary Fe-4Cr-6Ti ferritic alloy aged at 800°C for 8, 16 and 24 h are investigated in detail. Fine Fe2Ti Laves phase particles precipitate in the α-Fe (ferrite) matrix phase after solutionizing and subsequent aging treatments. The size and amount of Fe2Ti precipitates gradually increase with increasing aging time. The magnetic measurements of the aged samples confirm the variations in the microstructural properties including the volume fraction of the constituent phases, and Ti content of the α-Fe matrix phase. The mean Vickers microhardness value also increases from 203.5 to 238.4 with increasing aging time from 8 to 24 h. In addition, the cyclic oxidation behavior of 24 h aged sample, which contains maximum amount of Fe2Ti precipitates, is also investigated in detail. X-ray diffraction analysis reveals that scale product is α-Fe2O3 (hematite). Significant scale spallation and void formation is observed on the surfaces of 24 h aged Fe-4Cr-6Ti sample oxidized at 500°C.
Go to article

Authors and Affiliations

Ahmet Demirel
1
ORCID: ORCID
Emre Can Çetin
1
ORCID: ORCID
Ali Karakuş
1
ORCID: ORCID
Mehmet Şahin Ataş
1
ORCID: ORCID
Mehmet Yildirim
1
ORCID: ORCID

  1. Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Konya , Turkey

This page uses 'cookies'. Learn more