Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The microstructure and mechanical properties of hot-rolled Fe-9Mn-0.2C medium-manganese steels with different Al, Cu, and Ni contents were investigated in this study. Based on the SEM, XRD, and EBSD analysis results, the microstructure was composed of martensite, band-type delta ferrite, and retained austenite phases depending on the Al, Cu, and Ni additions. The tensile and Charpy impact test results showed that the sole addition of Al reduced significantly impact toughness by the presence of delta-ferrite and the decrease of austenite stability although it increased yield strength. However, the combined addition of Al and Cu or Ni provided the best combination of high yield strength and good impact toughness because of solid solution strengthening and increased austenite stability.
Go to article

Bibliography

[1] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[2] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[3] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A. 711, 22- 28 (2018).
[4] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A. 758, 56-59 (2019). 1011
[5] H . Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C.D. Cooman, Met. Mater. Int. 25, 594-605 (2019).
[6] Y. Kwon, J.H. Hwang, H.C. Choi, T.T.T. Trang, B. Kim, A. Zargaran, N.J. Kim, Met. Mater. Int. 26, 75-82 (2020).
[7] M . Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86, 182-192 (2015).
[8] H . Choi, S. Lee, J. Lee, F. Barlat, B.C.D. Cooman, Mater. Sci. Eng. A 687, 200-210 (2017).
[9] Z.H. Cai, H. Ding, R.D.K. Misra, H. Kong, H.Y. Wu, Mater. Sci. Eng. A 595, 86-91 (2014).
[10] Z.C. Li, H. Ding, Z.H. Cai, Mater. Sci. Eng. A 639, 559-566 (2015).
[11] T.W. Hong, S.I. Lee, J.H. Shim, J. Lee, M.G. Lee, B. Hwang, Korean J. Mater. Res. 28, 570-577 (2018).
[12] M .T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, J. Han, Acta. Mater. 164, 122-134 (2019).
[13] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[14] S. H. Kim, H. Kim, N. J. Kim, Nature 518, 77-19 (2015).
[15] J.H. Hollomon, Trans. Metall. Soc. AIME, 162, 268-290 (1945).
[16] G E. Dieter, McGraw-Hill, Mechanical Metallurgy, London 1988.
[17] J. Chen, M. Lv, S. Tang, Z. Liu, G. Wang, Mater. Charact. 106, 108-111 (2015).
[18] Y.K. Lee, J. Han, Mater. Sci, Technol. 31, 843-856 (2015).
[19] J. Han, A.K. Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, B. Hwang, Acta Mater. 122, 199-206 (2017).
Go to article

Authors and Affiliations

Young-Chul Yoon
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Sang-Hyeok Lee
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232, Gongneung-Ro., Nowon-gu, Seoul 01811, Korea
Download PDF Download RIS Download Bibtex

Abstract

The present research deals with the effect of pre-strain on the hydrogen embrittlement behavior of intercritically annealed medium-Mn steels. A slow strain-rate tensile test was conducted after hydrogen charging by an electrochemical permeation method. Based on EBSD and XRD analysis results, the microstructure was composed of martensite and retained austenite of which fraction increased with an increase in the intercritical annealing temperature. The tensile test results showed that the steel with a higher fraction of retained austenite had relatively high hydrogen embrittlement resistance because the retained austenite acts as an irreversible hydrogen trap site. As the amount of pre-strain was increased, the hydrogen embrittlement resistance decreased notably due to an increase in the dislocation density and strain-induced martensite transformation.
Go to article

Authors and Affiliations

Sang-Gyu Kim
1
ORCID: ORCID
Young-Chul Yoon
1
ORCID: ORCID
Seok-Woo Ko
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea

This page uses 'cookies'. Learn more