Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cast high-manganese Hadfield steel is commonly used for machine components operating under dynamic load conditions. Their high fracture toughness and abrasive wear resistance is the result of an austenitic structure, which - while being ductile - at the same time tends to surface harden under the effect of cold work. Absence of dynamic loads (e.g. in the case of sand abrasion) causes rapid and premature wear of parts. In order to improve the abrasive wear resistance of cast high-manganese steel for operation under the conditions free from dynamic loads, primary titanium carbides are produced in this cast steel during melting process to obtain in castings, after melt solidification, the microstructure consisting of an austenitic matrix and primary carbides uniformly distributed therein. After heat treatment, the microhardness of the austenitic matrix of such cast steel is up to 580 μHV20 and the resulting carbides may reach even 4000 μHV20. The impact strength of this cast steel varies from 57 to 129 and it decreases with titanium content. Compared to common cast Hadfield steel, the abrasive wear resistance determined in Miller test is at least twice as high for the 0.4% Ti alloy and continues growing with titanium content.

Go to article

Authors and Affiliations

R. Zapała
G. Tęcza
Download PDF Download RIS Download Bibtex

Abstract

Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically

aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and

water and resistance to electrochemical corrosion in a 3% NaCl- H2O solution of selected cast steel grades, i.e. typical duplex cast steel,

high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L). The study shows that the best abrasion

wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N.

This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best

resistance to electrochemical corrosion in 3% NaCl- H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The

addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

Go to article

Authors and Affiliations

B. Kalandyk
R. Zapała
M. Starowicz
Download PDF Download RIS Download Bibtex

Abstract

A possibility to control the strength, hardness and ductility of the L35HM low-alloy structural cast steel by the applied tempering

temperature is discussed in the paper. Tests were carried out on samples taken from the two randomly selected industrial melts. Heat

treatment of the cast samples included quenching at 900 °C, cooling in an aqueous solution of polymer, and tempering at 600 and 650 °C.

The obtained results showed that the difference in the tempering temperature equal to 50 °C can cause the difference of 121 MPa in the

values of UTS and of 153 MPa in the values of 0.2%YS. For both melts tempered at 600 °C, the average values of UTS and 0.2%YS were

equal to 995 MPa and 933 MPa, respectively. The values of EL and RA did not show any significant differences. Attention was drawn to

large differences in strength and hardness observed between the melts tempered at 600 and 650 °C. Despite differences in the mechanical

properties of the examined cast steel, the obtained results were superior to those specified by the standard.

Go to article

Authors and Affiliations

B. Kalandyk
R. Zapała
P. Wawro
Download PDF Download RIS Download Bibtex

Abstract

The effect of CaSiAl modification (43-49% Ca, 43-48% Si, 2% Al) on the non-metallic inclusions and mechanical properties of cast lowcarbon steel is discussed. Tests were carried out on the cast steel with 0.2% C and micro-additives of V and Nb, used mainly for heavy steel castings (e.g. slag ladles). The modifier in an amount of 1.5 and 3 kg / Mg was introduced to the liquid steel before tapping the metal into a ladle. Test ingots of Y type and a weight of 10 kg were cast and then subjected to a normalizing heat treatment. Using light microscopy and scanning electron microscopy, qualitative and quantitative evaluation of the non-metallic inclusions present in as-cast samples was carried out. Additionally, tests of mechanical strength and impact strength were performed on cast steel with and without the different content of modifier. It was found that increasing the modifier addition affected impact strength but had no significant effect on tensile strength and yield strength. The material with high impact strength had the smallest area fraction of non-metallic inclusions in the microstructure (0.20%). The introduction of modifiers changed the morphology of non-metallic inclusions from dendritic to regular and nodular shapes.

Go to article

Authors and Affiliations

B. Kalandyk
R. Zapała
S. Sobula
G. Tęcza
Download PDF Download RIS Download Bibtex

Abstract

The results of the modification of austenitic matrix in cast high-manganese steel containing 11÷19% Mn with additions of Cr, Ni and Ti

were discussed. The introduction of carbide-forming alloying elements to this cast steel leads to the formation in matrix of stable complex

carbide phases, which effectively increase the abrasive wear resistance in a mixture of SiC and water. The starting material used in tests

was a cast Hadfield steel containing 11% Mn and 1.34% C. The results presented in the article show significant improvement in abrasive

wear resistance and hardness owing to the structure modification with additions of Cr and Ti.

Go to article

Authors and Affiliations

B. Kalandyk
R. Zapała
G. Tęcza
S. Sobula
Download PDF Download RIS Download Bibtex

Abstract

Characteristics of the microstructure of corrosion-resistant cast 24Cr-5Ni-2.5Mo duplex steel after introduction of 0.98, 1.67 and 4.3% Si were described. Based on the test results it has been found that silicon addition introduced to the corrosion-resistant cast two-phase duplex steel significantly reduces austenite content in the alloy matrix. Increasing silicon content in the test alloy to 4.3% has resulted, in addition to the elimination of austenite, also in the precipitation of Si-containing intermetallic phases at the grain boundaries and inside the grains. The precipitates were characterized by varying content of Cr and Mo, indicating the presence in the structure of more than one type of the brittle phase characteristic for this group of materials. The simulation using Thermo-Calc software has confirmed the presence of ferrite in all tested alloys. In the material containing 4.3% Si, the Cr and Si enriched precipitates, such as G phase and Cr3Si were additionally observed to occur.

Go to article

Authors and Affiliations

J. Kowalska
M. Witkowska
B. Kalandyk
R. Zapała
Download PDF Download RIS Download Bibtex

Abstract

The results of microstructure examinations and hardness measurements carried out on two selected grades of high-manganese cast steel with an austenitic matrix, i.e. GX120Mn13 and GX120MnCr18-2, are presented. The examinations of the cast steel microstructure have revealed that the matrix of the GX120MnCr18-2 cast steel contains the precipitates of complex carbides enriched in Cr and Mn with two different morphologies. The presence of these precipitates leads to an increase in hardness by approx. 30 HB compared to the GX120Mn13 cast steel. Samples cut out from the tested materials were loaded (10 strokes) with an energy of 53 J, and then a ball-on-disc tribological test was performed. The test was carried out in reciprocating motion under technically dry friction conditions. While analyzing the obtained results of the microstructure, hardness, and abrasion tests, it was found that the presence of the hard carbide precipitates in the plastic matrix of the tested GX120MnCr18-2 cast steel promoted an increase in hardness, but also led to chipping of these particles from the alloy matrix, thus contributing to micro-cutting during friction.
Go to article

Bibliography

[1] Standard PN-EN 10349: 2009. Steel castings - Austenitic manganese steel castings.
[2] Banerjee, M.K. (2017). Heat Treatment of Commercial Steels for Engineering Applications. Comprehensive Materials Finishing. 2, 180-213.
[3] Dobrzański, L.A. (2002). Fundamentals of materials science and metal science. Warszawa: Wyd. Naukowo-Techniczne. ISBN: 83-204-2793-2. (in Polish).
[4] Baza materiałowa. Total materia. (June 2021). Retrieved August 13, 2021, from https://portal-1totalmateria1com 1000022kc0110.wbg2.bg.agh.edu.pl/search/quick/materials/1040932/material-description.
[5] Fedorko, G., Molnár, V., Pribulová, A., Futaš, P., Baricová, D. (2011). The influence of Ni and Cr-content on mechanical properties of Hadfield ́s steel. In 20th Anniversary International Conference on Metallurgy and Materials. Metal 2011, 18-20.05.2011 (pp.1-6). Brno, Czech Republic.
[6] Dastur, Y.N. & Leslie, W.C. (1981). Mechanism of work hardening in Hadfield manganese steel. Metallurgical Transactions A. 12A, 749-759.
[7] Austenitic Manganese Steels. (June 2021). Retrieved August 13, 2021, from http://www.keytometals.com/Articles/Art69.htm.
[8] Stradomski, Z. (2010). The role of microstructure in the wear behaviour of abrasion-resistant cast steels. Częstochowa: Wyd. Politechniki Częstochowskiej. ISBN: 978-83-7193-468-1. (in Polish).
[9] Kniaginin, G. (1977). Cast steel. Metallurgy and founding. Katowice: Wyd. Śląsk. (in Polish).
[10] Varela, L.B., Tressia, G., Masoumi, M., Bortoleto, E.M., Regattieri, C. & Sinatora, A. (2021). Roller crushers in iron mining, how does the degradation of Hadfield steel components occur. Engineering Failure Analysis. 122, 1-18.
[11] Głownia, J. (2002). Alloy steel castings – applications. Kraków: Wyd. FotoBit. ISBN: 83-917129-1-5. (in Polish).
[12] Kosturek, R., Maranda, A., Senderowski, C. & Zasada, D. (2016). Research into the application of explosive welding of metal sheets with Hadfield’s steel (Mangalloy). High-Energetic Materials. 8, 91-102.
[13] White, C.H. & Honeycombe, R.W.K. (1962). Structural changes during the deformation of high purity iron-manganese-carbon alloys. Journal Iron and Steel Institute. 200, 457-466.
[14] Subramanyam, D.K., Swansiger, A.E., Avery, H.S. (1990). Austenitic manganese steels ASM Metals Handbook 1. Properties and Selections: Irons, Steels and High - Performance Alloys. (pp. 822-840). ASM International. ISBN: 978-1-62708-161-0.
[15] Quan Shan, Ru Ge, Zulai Li, Zaifeng Zhou, Yehua Jiang, Yun-Soo Lee, & Hong Wu. (2021). Wear properties of high-manganese steel strengthened with nano-sized V2C precipitates. Wear. 482-483, 203922.
[16] Jia-li Cao, Ai-min Zhao, Ji-xiong Liu, Jian-guo He, & Ran Ding. (2014). Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel. Journal of Iron and Steel Research International. 21(6), 600-605.
[17] Atasoy, O.A., Ozbaysal, K. & Inal, O.T. (1989). Precipitation of vanadium carbides in 0.8% C-13% Mn-1% V austenitic steel. Journal of Materials Science. 24, 1393-1398.
[18] Iglesiasa, C., Solórzanob, G. & Schulza, B. (2009). Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel. Materials Characterization. 60(9), 971- 979.
[19] Mahlami, C.S., Pan, X. (2017). Mechanical properties and microstructure evaluation of high manganese steel alloyed with vanadium. Retrieved August 10, 2021, from https://doi.org/10.1063/1.4990236
[20] Delgado, F., Rodríguez, S.A., Coronado, J.J. (2019). Effect of chemical composition and shot peening treatment on Hadfield steel swing hammers exposed to impact wear. International Tribology Council The 10th International Conference BALTTRIB'2019, 14–16 November 2019, (pp. 87-93). Kaunas, Lithuania: Vytautas Magnus University Agriculture Academy.
[21] Sant, S.B., & Smith, R.W. (1987). A study in the work-hardening behaviour of austenitic manganese steels. Journal of Materials Science. 22, 1808-1814.
[22] Adler, P.H., Olson, G.B. & Owen, W.S. (1986). Strain hardening of Hadfield manganese steel. Metallurgical Transactions A. 17a, 1725-1737.
[23] Malkiewicz, T. (1978). Metallurgy of iron alloys. Warszawa: Wyd. PWN. (in Polish).
[24] Ashok Kumar Srivastava, Karabi Das. (2008). Microstructural characterization of Hadfield austenitic manganese steel. Journal of Materials Science. 43(16), 5654-5658.
[25] Bolanowski, K. (2013). The influence of the hardness of the surface layer on the abrasion resistance of Hadfield steel. Problemy Eksploatacji. 1, 127-139.

Go to article

Authors and Affiliations

Barbara Kalandyk
ORCID: ORCID
R. Zapała
1
ORCID: ORCID
Justyna Kasińska
ORCID: ORCID
M. Madej
2

  1. AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Krakow, Poland
  2. Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of tests and examinations of the microstructure and mechanical properties of cast steel used for large-size slag ladles are presented. Castings of this type (especially large-size ladles with a capacity of up to 16 m3) operate under very demanding conditions resulting from the repeated cycles of filling and emptying the ladle with liquid slag at a temperature exceeding even 1600°C. The changes in operating temperature cause faster degradation and wear of slag ladle castings, mainly due to thermal fatigue.
The tests carried out on samples taken from different parts/areas of the ladle (flange, bottom and half-height) showed significant differences in the microstructure of the flange and bottom part as compared to the microstructure obtained at half-height of the ladle wall. The flange and bottom were characterized by a ferritic-pearlitic microstructure, while the microstructure at the ladle half-height consisted of a ferritic matrix, cementite and graphite precipitates. Changes in microstructure affected the mechanical properties. Based on the test results it was found that both the flange and the bottom of the ladle had higher mechanical properties, i.e. UTS, YS, hardness, and impact energy than the centre of the ladle wall. Fractography showed the mixed character of fractures with the predominance of brittle fracture. Microporosity and clusters of non-metallic inclusions were also found in the fractures of samples characterized by low properties.
Go to article

Authors and Affiliations

Barbara Kalandyk
ORCID: ORCID
R. Zapała
1
ORCID: ORCID
S. Sobula
1
ORCID: ORCID
Grzegorz Tęcza
ORCID: ORCID
K. Piotrowski
2
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Krakow, Poland
  2. Krakodlew S.A., 1 Ujastek Str., 30-969 Krakow, Poland

This page uses 'cookies'. Learn more