Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The factor which essentially affects sludge biodegradation rate is the degree of fluidization of insoluble organic polymers to the solved form, which is a precondition for availability of nutrients for microorganisms. The phases which substantially limit the rate of anaerobic decomposition include hydrolytic and methanogenic phase.

Subjecting excess sludge to the process of initial disintegration substantially affects the effectiveness of the process of anaerobic stabilization. As a result of intensification of the process of hydrolysis, which manifests itself in the increase in the value and rate of generating volatile fatty acids (VFA), elongation of methanogenic phase of the process and increase in the degree of fermentation of modified sludge can be observed. Use of initial treatment of sewage sludge i.e. thermal disintegration is aimed at breaking microorganisms' cells and release of intracellular organic matter to the liquid phase. As a result of thermal hydrolysis in the sludge, the volatile fatty acids (VFA) are generated as early as at the stage of the process of conditioning. The obtained value of VFA determines the course of biological hydrolysis which is the first phase of anaerobic stabilization.

The aim of the present study was to determine the effect of thermal disintegration of excess sludge on the effectiveness of the process of hydrolysis in anaerobic stabilization i.e. the rate of production of volatile fatty acids, changes in the level of chemical oxygen demand (COD) and increase in the degree of reduction in organic matter. During the first stage of the investigations, the most favourable conditions of thermal disintegration of excess sludge were identified using the temperatures of 50°C, 70°C, 90°C and heating times of 1.5 h - 6 h. The sludge was placed in laboratory flasks secured with a glass plug with liquid-column gauge and subjected to thermal treatment in water bath with shaker option. Another stage involved 8-day process of anaerobic stabilization of raw and thermally disintegrated excess sludge. Stabilization was carried out in mesophilic temperature regime i.e. at 37°C, under periodical conditions. In the case of the process of anaerobic stabilization of thermally disintegrated excess sludge at the temperature of 50°C and heating time of 6 h (mixture B) and 70°C and heating time of 4.5% (mixture C), the degree of fermentation of 30.67% and 33.63%, respectively, was obtained. For the studied sludge, i.e. mixture B and mixture C, maximal level of volatile fatty acids i.e. 874.29 mg CH3COOH/dm3 and 1131.43 mg CH3COOH/dm3 was found on the 2nd day of the process. The maximal obtained value of VFA was correlated on this day with maximal COD level, which was 1344 mg O2/dm3 for mixture B and 1778 mg O2/dm3 for mixture C.

Go to article

Authors and Affiliations

I. Zawieja
P. Wolski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the investigations aimed at the determination of the effect of time and wavelength of ultrasound field on the value of capillary suction time (CST), sludge thickening and dry matter of the excess sludge subjected to the process of stabilization.

The investigations were carried out on the excess sludge which comes from communal waste treatment plant. The sludge was exposed to ultrasound field, using ultrasound generator with power of 1500 W, frequency of 20 kHz and amplitude 39.42 μm (which corresponded to the amplitude of 100%). Sonication of the sludge was carried out for different amplitudes and sonication times. The non-conditioned sludge and the sludge initially conditioned with ultrasound field were subjected to the process of stabilization in laboratory flasks (V = 0.5 dm3) for the period of 10 days. On each day, sludge thickening and dewatering capacities were determined.

The sludge subjected to the effect of ultrasound field exhibited elevated levels of CST. However, the sonication time had positive effect on the increase in the degree of thickening for each of the amplitudes studied. Also, the process of stabilization positively affected final thickening and dewatering of the sludge.

Go to article

Authors and Affiliations

P. Wolski
I. Zawieja
Download PDF Download RIS Download Bibtex

Abstract

The essence of the methane fermentation course is the phase nature of changes taking place during the process. The biodegradation degree of sewage sludge is determined by the effectiveness of the hydrolysis phase. Excess sludge, in the form of a flocculent suspension of microorganisms, subjected to the methane fermentation process show limited susceptibility to the biodegradation. Excess sludge is characterized by a significant content of volatile suspended solids equal about 65 ÷ 75%. Promising technological solution in terms of increasing the efficiency of fermentation process is the application of thermal modification of sludge with the use of dry ice. As a result of excess sludge disintegration by dry ice, denaturation of microbial cells with a mechanical support occurs. The crystallization process takes place and microorganisms of excess sludge undergo the so-called “thermal shock”. The aim of the study was to determine the effect of dry ice disintegration on the course of the methane fermentation process of the modified excess sludge. In the case of dry ice modification reagent in a granular form with a grain diameter of 0.6 mm was used. Dry ice was mixed with excess sludge in a volume ratio of 0.15/1, 0.25/1, 0.35/1, 0.45/1, 0.55/1, 0.65/1, 0.75/1, respectively. The methane fermentation process lasting for 8 and 28 days, respectively, was carried out in mesophilic conditions at 37°C. In the first series untreated sludge was used, and for the second and third series the following treatment parameters were applied: the dose of dry ice in a volume ratio to excess sludge equal 0.55/1, pretreatment time 12 hours. The increase of the excess sludge disintegration degree, as well as the increase of the digestion degree and biogas yield, was a confirmation of the supporting operation of the applied modification. The mixture of reactant and excess sludge in a volume ratio of 0.55/1 was considered the most favorable combination. In relation to not prepared sludge for the selected most favorable conditions of excess sludge modification, about 2.7 and 3-fold increase of TOC and SCOD values and a 2.8-fold increase in VFAs concentration were obtained respectively. In relation to the effects of the methane fermentation of non-prepared sludge, for modified sludge, about 33 percentage increase of the sludge digestion degree and about 31 percentage increase of the biogas yield was noticed.

Go to article

Authors and Affiliations

Iwona Ewa Zawieja
Download PDF Download RIS Download Bibtex

Abstract

The paper includes the TG-DTG thermogravimetric air-testing of a cellulose mixture modified with the additives of expanded vermiculite or expanded perlite. A thermal degradation test was carried out at 1000°C with a simultaneous qualitative analysis of the emitted gases. During the thermal degradation process, the thermal effects were also measured. The research results indicate that expanded vermiculite or expanded perlite do not emit toxic gases during thermal degradation. The cellulose mixture modification, with the additives of expanded vermiculite or perlite, does not result in the creation of new gaseous compounds in the process of thermal degradation. A s investigated below, the mixtures tested in this article find application in gating systems for supplying liquid metal in no-bake moulds. Such cellulose-based material solutions shall allow the foundry industry to introduce less gas vaporising technologies within the entire casting production process.

Go to article

Authors and Affiliations

Z. Zawieja
J. Sawicki
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the findings of a study of gas emissivity and the volumetric gas flow rate from a patented modified cellulose mix used

in production of disposable sand casting moulds. The modified cellulose mix with such additives as expanded perlite, expanded

vermiculite and microspheres was used as the study material. The results for gas emissivity and the gas flow rate for the modified cellulose

mix were compared with the gas emissivity of the commercial material used in gating systems in disposable sand casting moulds. The

results have shown that the modified cellulose mix is characterized by a lower gas emissivity by as much as 50% and lower gas flow rate

per unit mass during the process of thermal degradation at the temperature of 900°C, compared to the commercial mix. It was also noted

that the amount of microspheres considerably affected the amount of gas produced.

Go to article

Authors and Affiliations

J. Sawicki
Z. Zawieja
Download PDF Download RIS Download Bibtex

Abstract

Here One important aspect of the process of anaerobic stabilisation of sewage sludge in medium and large sewage treatment plants, in addition to sludge mineralisation, is the acquisition of a valuable source of energy, which is biogas. There are well-known methods of intensifying the process of methane fermentation by subjecting sludge to disintegration using physical factors, i.e. ultrasonic field. Acetate production is the ratelimiting step in the acetate consumption pathway and affects the efficiency of the anaerobic stabilisation process. The product of the first stage of the process is also the substrate for the next stage. Therefore, it is advisable to subject sewage sludge to disintegration, which increases its susceptibility to biodegradation. Sludge modification with the above-mentioned method causes a significant increase in the concentration of organic substances in the supernatant liquid. The reflection of the physical and chemical transformations of sludge in the disintegration processes is the change in their structure expressed by the increase in the degree of particle dispersion. The disintegration of sludge using sonolysis is an effective process solution, both in terms of technology and energy, in terms of obtaining biogas, which is a valuable source of energy.
Go to article

Authors and Affiliations

Iwona Zawieja
1
ORCID: ORCID

  1. Faculty of Infrastructure and Environment, Czestochowa University of Technology,Dąbrowskiego 73, 42-201, Czestochowa, Poland, ORCID 0000-0002-4480-8736
Download PDF Download RIS Download Bibtex

Abstract

The herein paper contains the results of investigations on a new type of cellulose blend used for the manufacture of profiles applied in the

process of making gating systems in the foundry industry. A standard cellulose profile was subjected to an experiment. During the

experiment the profile was filled with a liquid cast iron and at the same time the temperatures of the liquid metal crystallizing inside the

profile were measured as well as the temperature of the outer layer of the profile was controlled. Further, the microstructure of the cast

iron, which crystallized out inside the cellulose profile, was analysed and the cellulose, thermally degraded after the experiment, was

verified with the use of the chemical analysis method. Moreover, a quality analysis of the original as well as the degraded cellulose profile

was run with the use of the FTIR infrared spectroscopy. The presented results revealed that the cellulose blend is aluminium silicate

enriched and contains organic binder additives. The cast iron, which crystallized out, tended to have an equilibrium pearlitic structure with

the release of graphite and carbides. The generation of disequilibrium ausferrite phases was also observed in the structure.

Go to article

Authors and Affiliations

J. Sawicki
G. Gumienny
Z. Zawieja
A. Sobczyk-Guzenda
Download PDF Download RIS Download Bibtex

Abstract

This study presents the determination of the content of selected metals (Ba, Ca, Fe, Nb, Rb, Sr, Y, Zn, and Zr) in postglacial deposits from two glacial valleys (Ebbadalen and Elsadalen) in the Petunia Bay (southern Spitsbergen). The aim of the research was to experimentally check the usefulness of the handheld energy dispersive X-ray fluorescence technique in the study of samples from the polar zone, before performing the future field tests. Deposit analyses were performed (in parallel) with two handheld X-ray fluorescence spectrometers from different manufacturers, to investigate the accuracy and reliability of the instruments. The statistical analysis of the results indicated that the measurements carried out with two spectrometers were statistically significantly different, which was probably due to the different calibration characteristics used by the manufacturers. However, the analysis of the spatial distribution of element concentrations using Geographic Information System tools showed that the distribution maps of elements concentrations were similar regardless of the spectrometer used in the analyses.
Go to article

Authors and Affiliations

Lidia Kozak
1
Juliana Silva Souza
1
Adam Nawrot
2
Jędrzej Proch
1
Marcin Kaźmierski
3
Agnieszka Zawieja
4
Przemysław Niedzielski
1

  1. Adam Mickiewicz University in Poznań, Faculty of Chemistry, Department of Analytical Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  2. Institute of Geophysics Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warszawa, Poland
  3. Adam Mickiewicz University in Poznań, Faculty of Geographical and Geological Sciences, Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
  4. MEWO S.A., Starogardzka 16, 83-010 Straszyn, Poland

This page uses 'cookies'. Learn more