Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A high performance distributed sensor system with multi-intrusions simultaneous detection capability based on phase sensitive OTDR (Φ−OTDR) has been proposed and demonstrated. To improve system performance, three aspects have been investigated. Firstly, a model of one−dimensional impulse response of backscattered light and a Monte Carlo method have been used to study how the laser line width affects the system performance. Theoretical and experimental results show that the performances of the system, especially the signal−noise−ratio (SNR), decrease with the broadening of laser linewidth. Secondly, a temperature−compensated fibre Bragg grating with a 3 dB linewidth of 0.05 nm and a wavelength stability of 0.1 pm has been applied as an optical filter for effective denoising. Thirdly, a novel interrogation method for multi−intrusions simultaneous detection is proposed and applied in data denoising and processing. Consequently, benefiting from the three−in−one improvement, a high performance Φ−OTDR has been realized and four simultaneous applied intrusions have been detected and located at the same time along a 14 km sensing fibre with a spatial resolution of 6 m and a high SNR of 16 dB. To the best of our knowledge, this is the most multifunctional Φ−OTDR up to now and it can be used for perimeter and/or pipeline intrusion real−time monitoring.

Go to article

Authors and Affiliations

Y. Zhan
Q. Yu
K. Wang
F. Yang
Y. Kong
X. Zhao
Download PDF Download RIS Download Bibtex

Abstract

Classical swine fever (CSF) and porcine reproductive and respiratory syndrome (PRRS) are responsible for major economic losses and represent a threat to the swine industry worldwide. Routine surveillance serology for CSF and PRRS viruses is critical to maintaining the health status of sow farms in Hunan Province, which is one of the top pig production provinces in China. The aim of our study was to investigate the serological statistics of CSF virus (CSFV) and PRRS virus (PRRSV) in Hunan Province. The cohort serum samples were collected from vaccinated and unvaccinated pigs. Our findings showed that the average rates of CSFV and PRRSV antibody seropositivity were 82.2% (95% CI: 80.1-84.3) and 84.8% (95% CI: 82.5-87.1), respectively, in the immunized group and that these rates were higher than those in the unvaccinated group (58.6% for CSFV and 47.8% for PRRSV). Additionally, the level of CSFV antibody in piglet serum declined gradually with age, whereas PRRSV-specific antibody level increased initially (1 to 2 weeks old) and then declined with age (2 to 4 weeks old). In summary, we investigated the difference in CSFV/PRRSV antibody levels among piglets at various weeks old (1 to 4 weeks) to further establish the duration of maternal immunity in piglets. In addition, routine monitoring of CSFV/PRRSV antibodies in immunized pigs was carried out to evaluate the efficacy of vaccination.
Go to article

Bibliography


Brown VR, Bevins SN (2018) A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front Vet Sci 5: 31.
Chae C (2021) Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 9: 185.
Deka D, Barman NN, Deka N, Batth BK, Singh G, Singh S, Agrawal RK, Mukhopadhyay CS, Ramneek (2021) Sero-epidemiology of por-cine parvovirus, circovirus, and classical swine fever virus infections in India. Trop Anim Health Prod 53: 180.
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G (2017) Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 45: 85-92.
Gao JC, Xiong JY, Ye C, Chang XB, Guo JC, Jiang CG, Zhang GH, Tian ZJ, Cai XH, Tong GZ, An TQ (2017) Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996-2016. Vet Microbiol 208: 164-172.
Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C (2019) Virulence evalua-tion of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 232: 114-120.
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X (2018) Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 119: 248-254.
Guo Z, Chen XX, Li R, Qiao S, Zhang G (2018) The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 15: 2.
Han M, Yoo D (2014) Engineering the PRRS virus genome: updates and perspectives. Vet Microbiol 174: 279-295.
Luo Y, Li S, Sun Y, Qiu HJ (2014) Classical swine fever in China: a minireview. Vet Microbiol 172: 1-6.
Madapong A, Saeng-Chuto K, Chaikhumwang P, Tantituvanont A, Saardrak K, Pedrazuela Sanz R, Miranda Alvarez J, Nilubol D (2020) Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome vi-rus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet Microbiol 244: 108655.
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L (2019) Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 6: 38.
Stoian AM, Rowland RR (2019) Challenges for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions with CD163 and Targets of Virus Neutralization. Vet Sci 6: 9.
Suradhat S, Damrongwatanapokin S, Thanawongnuwech R (2007) Factors critical for successful vaccination against classical swine fever in endemic areas. Vet Microbiol 119: 1-9.
VanderWaal K, Deen J (2018) Global trends in infectious diseases of swine. Proc Natl Acad Sci USA 115: 11495-11500.
Yin B, Qi S, Sha W, Qin H, Liu L, Yun J, Zhu J, Li G, Sun D (2021) Molecular Characterization of the Nsp2 and ORF5 (ORF5a) Genes of PRRSV Strains in Nine Provinces of China During 2016-2018. Front Vet Sci 8: 605832.
Zhang H, Leng C, Tian Z, Liu C, Chen J, Bai Y, Li Z, Xiang L, Zhai H, Wang Q, Peng J, An T, Kan Y, Yao L, Yang X, Cai X, Tong G (2018) Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Vet Res 14: 204.
Zhou B (2019) Classical Swine Fever in China-An Update Minireview. Front Vet Sci 6: 187.
Zhou L, Ge X, Yang H (2021) Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A “Leaky” Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 9: 362.
Go to article

Authors and Affiliations

H. Yu
1
L. Zhang
1
Y. Cai
1
Z. Hao
2
Z. Luo
3
T. Peng
1
L. Liu
N. Wang
1
G. Wang
1
Z. Deng
1
Y. Zhan
1

  1. Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
  2. Yongzhou Animal Husbandry and Aquatic Affairs Center, Yongzhou, Hunan 425000, China
  3. Dingcheng Animal Husbandry and Aquatic Affairs Center, Changde, Hunan 415100, China

This page uses 'cookies'. Learn more