Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effect of different proximate index on minimum ignition temperature(MIT) of coal dust cloud, 30 types of coal specimens with different characteristics were chosen. A two-furnace automatic coal proximate analyzer was employed to determine the indexes for moisture content, ash content, volatile matter, fixed carbon and MIT of different types of coal specimens. As the calculated results showed that these indexes exhibited high correlation, a principal component analysis (PCA) was adopted to extract principal components for multiple factors affecting MIT of coal dust, and then, the effect of the indexes for each type of coal on MIT of coal dust was analyzed. Based on experimental data, support vector machine (SVM) regression model was constructed to predicate the MIT of coal dust, having a predicating error below 10%. This method can be applied in the predication of the MIT for coal dust, which is beneficial to the assessment of the risk induced by coal dust explosion (CDE).

Go to article

Authors and Affiliations

Dan Zhao
ORCID: ORCID
Hao Qi
Jingtao Pan
Download PDF Download RIS Download Bibtex

Abstract

The effective utilisation of monitoring data of the coal mine is the core of realising intelligent mine. The complex and challenging underground environment, coupled with unstable sensors, can result in “dirty” data in monitoring information. A reliable data cleaning method is necessary to figure out how to extract high-quality information from large monitoring data sets while minimising data redundancy. Based on this, a cleaning method for sensor monitoring data based on stacked denoising autoencoders (SDAE) is proposed. The sample data of the ventilation system under normal conditions are trained by the SDAE algorithm and the upper limit of reconstruction errors is obtained by Kernel density estimation (KDE). The Apriori algorithm is used to study the correlation between monitoring data time series. By comparing reconstruction errors and error duration of test data with the upper limit of reconstruction error and tolerance time, cooperating with the correlation rule, the “dirty” data is resolved. The method is tested in the Dongshan coal mine. The experimental results show that the proposed method can not only identify the dirty data but retain the faulty information. The research provides effective basic data for fault diagnosis and disaster warning.
Go to article

Authors and Affiliations

Dan Zhao
1
ORCID: ORCID
Zhiyuan Shen
1
ORCID: ORCID
Zihao Song
1
ORCID: ORCID
Lina Xie
2
ORCID: ORCID

  1. Liaoning Technical University, College of Safety Science & Engineering, Fuxin 123000, China
  2. Shenyang Institute of Technology, Shenyang 110000, China

This page uses 'cookies'. Learn more