Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The authors studied the fracture mechanical properties under half-symmetric loading in this paper. The stress distribution around the crack tip and the stress intensity factor of three kinds of notched specimens under half symmetric loading were compared. The maximum tensile stress σmax of double notch specimens was much greater than that of single notch specimens and the maximum shear stress τmax was almost equal, which means that the single notch specimens were more prone to Mode II fractures. The intensity factors KII of central notch specimens were very small compared with other specimens and they induced Mode I fractures. For both double notch and single notch specimens, KII was kept at a constant level and did not change with the change of a/h, and KII was much larger than KI. KII has the potential to reach its fracture toughness KIIC before KI and Mode II fractures occurred. Rock-like materials were introduced to produce single notch specimens. Test results show that the crack had been initiated at the crack tip and propagated along the original notch face, and a Mode II fracture occurred. There was no relationship between the peak load and the original notch length. The average value of KIIC was about 0.602 MPa×m1/2, and KIIC was about 3.8 times KIC. The half symmetric loading test of single notch specimens was one of the most effective methods to obtain a true Mode II fracture and determine Mode fracture toughness.

Go to article

Authors and Affiliations

Zhi Wang
Jiajia Zhou
Long Li
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the toughness of traditional epoxy resin, dibutyl phthalate (DBP) was introduced into the epoxy resin. The static mechanical performance of plasticized and unplasticized epoxy resin was evaluated. The test results showed that the DBP modified epoxy resin can obtain a higher toughness than conventional epoxy resin, but the elastic modulus and the tensile strength were slightly reduced. The low cycle fatigue test results indicated that the stress ratio and the stress level were two critical factors of fatigue life, which was increased with the growth of stress ratio. It was also found that the fatigue life of plasticized specimen was much less than that of the unplasticized specimen because of the plastic deformation. A logarithmic linear relationship was then established to predict the fatigue life for plasticized epoxy resin. The strain energy density was also applied to demonstrate the accumulation of energy loss. In addition, the fatigue toughness can be obtained by the hysteresis loop area method.

Go to article

Authors and Affiliations

Zhi Wang
Jiajia Zhou
Linjian Song
Long Li

This page uses 'cookies'. Learn more