Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

African swine fever virus (ASFV) causes feverous and hemorrhagic disease of domestic pigs and European wild boars with high mortality, yet no commercial vaccine is currently available. Several ASFV strains with natural deletion or gene-targeted knockout of multiple MGF360 and MGF505 genes are attenuated in vitro and in vivo, and can offer full protection against homologous challenge. However, the mechanisms underlying the protection are not fully understood. This study aims to investigate the effects of MGF360-12L of ASFV-SY18 on the cGAS-STING signaling pathway and explore the potential mechanisms. We identified that ASFV-SY18 MGF360-12L could inhibit cGAS-STING, TBK1, or IRF3-5D-stimulated IFN-β expression and ISRE activation. Specifically, MGF360-12L inhibits both the activation of PRD(III-I) in a dose-dependent manner, and suppresses the exogenous expression of TBK1 and IRF3-5D. MGF360-12L could block NF-κB activation induced by overexpression of cGAS-STING, TBK1, IKKβ. Downstream of the IFN-β signaling, MGF360-12L blocks the ISRE promoter activation by reducing total protein level of IRF9. Moreover, MGF360-12L protein can inhibit IFN-β-mediated antiviral effects. In conclusion, our findings suggest that MGF360-12L is a multifunctional immune-evasion protein that inhibits both the expression and effect of IFN-β, which could partially explain the attenuation of relevant gene-deleted ASFV strains, and shed light on the development of efficient ASFV live attenuated vaccines in the future.
Go to article

Authors and Affiliations

Q. Chen
1
X.X. Wang
2
S.W. Jiang
1
X.T. Gao
3
S.Y. Huang
1
Y. Liang
1
H. Jia
2
H.F. Zhu
2

  1. Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, 102206 Beijing, China
  2. Department of Veterinary Medicine, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, 100193 Beijing, China
  3. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, 100081 Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

Canine parvovirus (CPV) causes acute gastroenteritis in domestic dogs, cats, and several wild carnivore species. In this study, the full-length VP2 gene of 36 CPV isolates from dogs and cats infected between 2016 and 2017 in Beijing was sequenced and analyzed. The results showed that, in dogs, the new CPV-2a strain was the predominant variant (n = 18; 50%), followed by the new CPV-2b (n = 6; 16.7%) and CPV-2c (n = 3; 8.3%) strains, whereas, among cats, the predominant strain was still CPV-2 (n = 9; 25%). One new CPV-2a strain, 20170320-BJ-11, and two CPV-2c strains, 20160810-BJ-81 and 20170322-BJ-26, were isolated and used to perform experimental infections. Multiple organs of beagles that died tested PCR positive for CPV, and characteristic histopathological lesions were observed in organs, including the liver, spleen, lungs, kidneys, small intestines, and lymph nodes. Experimental infections showed that the isolates from the epidemic caused high morbidity in beagles, indicating their virulence in animals and suggesting the need to further monitor evolution of CPV in China.

Go to article

Authors and Affiliations

M.R. Chen
X.Y. Guo
Z.Y. Wang
Y.T. Jiang
W.F. Yuan
T. Xin
S.H. Hou
T.Q. Song
W.D. Lin
H.F. Zhu
H. Jia

This page uses 'cookies'. Learn more