Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The grid integration of large-scale wind power will alter the dynamic characteristics of the original system and the power distribution among synchronous machines. Meanwhile, the interaction between wind turbines and synchronous machines will affect the damping oscillation characteristics of the system. The additional damping control of traditional synchronous generators provides an important means for wind turbines to enhance the damping characteristics of the system. To improve the low frequency oscillation characteristics of wind power grid-connected power systems, this paper adds a parallel virtual impedance link to the traditional damping controller and designs a DFIG-PSS-VI controller. In the designed controller, the turbine active power difference is chosen as the input signal based on residual analysis, and the output signal is fed back to the reactive power control loop to obtain the rotor voltage quadrature component. With DigSILENT/PowerFactory, the influence of the controller parameters is analyzed. In addition, based on different tie-line transmission powers, the impact of the controller on the low-frequency oscillation characteristics of the power system is examined through utilizing the characteristic root and time domain simulation analysis.
Go to article

Authors and Affiliations

Ping He
1
ORCID: ORCID
Yongliang Zhu
2
Qiuyan Li
3
Jiale Fan
1
Yukun Tao
1

  1. Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
  2. Zhengzhou University of Light Industry, College of Materials and Chemical Engineering, China
  3. State Grid Henan Electric Power Company, Economic and Technical Research Institute, China

This page uses 'cookies'. Learn more