Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90°C, for a supercritical power block of 900 MWelfuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.
Go to article

Authors and Affiliations

Paweł Ziółkowski
Janusz Badur
Tomasz Kowalczyk
Download PDF Download RIS Download Bibtex

Abstract

The objective of the paper is to analyse thermodynamical and operational parameters of the supercritical power plant with reference conditions as well as following the introduction of the hybrid system incorporating ORC. In ORC the upper heat source is a stream of hot water from the system of heat recovery having temperature of 90 °C, which is additionally aided by heat from the bleeds of the steam turbine. Thermodynamical analysis of the supercritical plant with and without incorporation of ORC was accomplished using computational flow mechanics numerical codes. Investigated were six working fluids such as propane, isobutane, pentane, ethanol, R236ea and R245fa. In the course of calculations determined were primarily the increase of the unit power and efficiency for the reference case and that with the ORC.

Go to article

Authors and Affiliations

Dariusz Mikielewicz
Jarosław Mikielewicz
Paweł Ziółkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a thermodynamic analysis of the integration of a cryogenic air separation unit into a negative CO 2 emission gas power plant. The power cycle utilizes sewage sludge as fuel so this system fits into the innovative idea of bioenergy with carbon capture and storage. A cryogenic air separation unit integrated with the power plant was simulated in professional plant engineering and thermodynamic process analysis software. Two cases of the thermodynamic cycle have been studied, namely with the exhaust bleed for fuel treatment and without it. The results of calculations indicate that the net efficiencies of the negative CO 2 emission gas power plant reach 27.05% (combustion in 95.0% pure oxygen) and 24.57% (combustion in 99.5% pure oxygen) with the bleed. The efficiencies of the cycle without the bleed are 29.26% and 27.0% for combustion in 95.0% pure oxygen and 99.5% pure oxygen, respectively. For the mentioned cycle, the calculated energy penalty of oxygen production was 0.235 MWh/kgO 2 for the lower purity value. However, for higher purity namely 99.5%, the energy penalty of oxygen production for the thermodynamic cycle including the bleed and excluding the bleed was indicated 0.346 and 0.347 MWh/kgO 2, respectively. Additionally, the analysis of the oxygen purity impact on the carbon dioxide purity at the end of the carbon capture and storage installation shows that for the case with the bleed, CO 2 purities are 93.8% and 97.6%, and excluding the bleed they are 93.8% and 97.8%, for the mentioned oxygen purities respectively. Insertion of the cryogenic oxygen production installation is required as the considered gas power plant uses oxy-combustion to facilitate carbon capture and storage method.
Go to article

Authors and Affiliations

Maja Kaszuba
1
Paweł Ziółkowski
1
Dariusz Mikielewicz
1

  1. Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents thermodynamic analysis of the gas-steam unit of the 65 MWe combined heat and power station. Numerical analyses of the station was performed for the nominal operation conditions determining the Brayton and combined cycle. Furthermore, steam utilization for the gas turbine propulsion in the Cheng cycle was analysed. In the considered modernization, steam generated in the heat recovery steam generator unit is directed into the gas turbine combustion chamber, resulting in the Brayton cycle power increase. Computational flow mechanics codes were used in the analysis of the thermodynamic and operational parameters of the unit.
Go to article

Authors and Affiliations

Andrzej Chrzczonowski
Paweł Ziółkowski
Janusz Badur
Krzysztof Jesionek
Download PDF Download RIS Download Bibtex

Abstract

In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.

Go to article

Authors and Affiliations

Paweł Ziółkowski
Janusz Badur
Witold Zakrzewski
Oktawia Kaczmarczyk
Download PDF Download RIS Download Bibtex

Abstract

The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Go to article

Authors and Affiliations

Janusz Badur
Marcin Lemański
Tomasz Kowalczyk
Paweł Ziółkowski
Sebastian Kornet
Download PDF Download RIS Download Bibtex

Abstract

This work aims to determine and compare heat generation and propagation of densely packed gold nanoparticles (Au NPs) induced by a resonant laser beam (532 nm) according to the Mie theory. The heat flux propagation is transferred into the materials, which here are: silica glass; soda-lime-silica glass; borosilicate glass; polymethyl methacrylate (PMMA); polycarbonate (PC); and polydimetylosiloxane (PDMS). This analysis aims to select the optimum material serving as a base for using photo-thermoablation. On the other hand, research focused only on Newtonian heat transfer in gold, not on non-Fourier ones, like the Cattaneo approach. As a simulation tool, a computational fluid dynamics code with the second-order upwind algorithm is selected. Results reveal a near-Gaussian and Gaussian temperature distribution profile during the heating and cooling processes, respectively. Dependence between the maximum temperature after irradiation and the glass thermal conductivity is observed confirming the Fourier law. Due to the maximum heating area, the borosilicate or soda-lime glass, which serves as a base, shall represent an excellent candidate for future experiments.
Go to article

Bibliography

[1] Dash S., Mohanty S., Pradhan S., Mishra B.K.: CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles. J. Taiwan Inst. Chem. Eng. 58(2016), 39–48.
[2] Paruch M., Mochnacki B.: Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue. Comput. Assist. Meth. Eng. Sci. 25(2018), 2–3, 71–80.
[3] Alia M.E., Sandeep N.: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study. Results Phys. 7(2017), 21–30.
[4] Paruch M., Majchrzak E.: The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 10(2008), 2, 29–37.
[5] Feng B., Li Z., Zhang X.: Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films 517(2009), 8, 2803–2807.
[6] Wang B.-X., Zhou L.-P., Peng X.-F.: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 1(2006), 27, 139–151.
[7] Mie G.: Beträge zur Optik trüber Medien, speziell kolloidaler Metalösungen. Annalen der Physik 330(1908), 3, 377–445.
[8] Pezzi L., De Sio L. Veltri I., Placido T. et al.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic menamic liquid crystals. Phys. Chem. Chem. Phys. 17(2015), 31, 20281–20287.
[9] Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L.: Thermoplasmonics with Gold Nanoparticles: A new weapon in Modern Optics and Biomedicine. Adv. Photonics Res. 2(2021), 8, 1–17.
[10] Annesi F. et al.: Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloid. Surface. A 625(2021), 126950.
[11] Bohren C.F., Huffman D.R.: Absorption and Scattering of Light by Small Particles: Wiley-VCH, 1998.
[12] Guglielmelli A. et al.: Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 16(2021), 2, 121– 138.
[13] Black S.E.: Laser ablation: Effects and Applications. Nova Science, New York 2011.
[14] Radhakrishnan A., Murugesan V.: Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations. AIP Conf. Proc. 1620(2014), 52–57.
[15] Giannini V, Fernandez-Domínguez A.I., Heck S.C., Maier S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(2011), 6, 3888 – 3912.
[16] Louis C., Pluchery O. (Eds.): Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College, London 2012.
[17] Martin R.J.: Mie scattering formulae for non-spherical particles. J. Mod. Optic. 12(1993), 40, 2467–2494
[18] Myers T.G.: Why are the slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10(2011), 1145–1145.
[19] Whitby M., Cagnon L., Thanou M., Quirke N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(2008), 9, 2632–2637.
[20] Maxwell J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. T. R. Soc. Lond. 170(1879), 231–25.
[21] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018), 1, 64–80.
[22] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. AIP Conf. Proc. 2077(2019), 020065-1–020065-9.
[23] Badur J., Freidt M., Ziółkowski P.: Neoclassical Navier–Stokes equations considering the Gyftopolous–Beretta exposition of thermodynamics. Energies 13(2020), 1656, 1–32.
[24] Mikielewicz D.: Hydrodynamics and heat transfer in bubbly two-phase flows. Int. J. Heat Mass Tran. 46(2002), 2, 207–220.
[25] Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409.
[26] Badur J.: Concept of Energy Evolution. Wydawn. IMP PAN, Gdansk 2009 (in Polish).
[27] Smoluchowski M.: On conduction of heat by rarefied gases. Phyl. Mag. 46(1898), 192–206.
[28] Smoluchowski M.: On conduction of heat in pulverized solids. Pol. Ac. Art. Sci. 2(1927), 1, 66–77.
[29] Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M.: Multiscale simulation of heat transfer in a rarefied gas. Int. J. Heat. Fluid. Fl. 50(2014), 114–125.
[30] Stephenson D., Lockerby D.A., Borg M.K., Reese J.M.: Multiscale simulation of nanofluidic networks of arbitrary complexity. Microfluid. Nanofluid. 18(2015), 5– 6, 841–858.
[31] Lockerby D.A., Patronis A., Borg M.K., Reese J.M.: Asynchronous coupling of hybrid models for efficient simulation of multiscale systems. J. Comput. Phys. 284(2015) 261–272.
[32] Sobieski W., Zhang Q.: Multi-scale modeling of flow resistance in granular porous media. Math. Comput. Simulat. 132(2017), 159–171.
[33] Johnson P.B., Christy R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(1972), 12, 4370–4379.
[34] Narottam P.B.: Handbook of Glass Properties. Academic Press, New York 1986.
[35] Agari Y., Ueda A., Omura Y.: Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38(1997), 4, 801–807.
[36] Cahill D.G., Olson J.R., Fischer H.E., Watson S.K., Stephens R.B., Tait R.H., Ashworth T., Pohl R.O.: Thermal conductivity and specific heat of glass ceramics. Phys. Rev. B 44(1991), 22, 226–232,
[37] James E.M. (Ed.): Polymer Data Handbook. Oxford University Press (1999), 131, 363–367, 411–435, 655–657.
[38] Dixon M.C., Daniel T.A., Hieda M., Smilgies D.M., Chan M.C., Allara D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(2007), 5, 2414–2422.
[39] Harvey B.S.: Hyperthermia. New Engl. J. Med. 329(1993), 483–487.
[40] Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model withcomplete frequency redistribution. J. Quant. Spectrosc. Ra. 2(1999), 2, 665–675.
[41] Koniorczyk P., Zmywaczyk J.: Analysis of thermal conductivity reduction in grey medium using a discrete ordinate method and the Henyey–Greenstein phase function for absorbing, emitting and anisotropically scattering media. Arch. Thermodyn. 29(2008), 2, 47–60.
[42] Filkoski R.V.: Radiation heat transfer modeling and CFD analysis of pulverizedcoal combustion with staged air introduction. Arch. Thermodyn. 30(2009), 4, 97–118.
[43] Dabrowski P.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 38(2017), 3, 135–148.
Go to article

Authors and Affiliations

Piotr Radomski
1
Paweł Ziółkowski
1
Luciano de Sio
2
Dariusz Mikielewicz
1

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Shipbuilding, Energy Institute, Narutowicza 11/12, 80-233 Gdansk, Poland
  2. Sapienza University of Rome, Department of Medico-Surgical Sciencesand Biotechnologies, Center for Biophotonics, Piazzale Aldo Moro 5,00185 Roma, RM, Italy
Download PDF Download RIS Download Bibtex

Abstract

Research regarding blade design and analysis of flow has been attracting interest for over a century. Meanwhile new concepts and design approaches were created and improved. Advancements in information technologies allowed to introduce computational fluid dynamics and computational flow mechanics. Currently a combination of mentioned methods is used for the design of turbine blades. These methods enabled us to improve flow efficiency and strength of turbine blades. This paper relates to a new type turbine which is in the phase of theoretical analysis, because the working fluid is a mixture of steam and gas generated in a wet combustion chamber. The main aim of this paper is to design and analyze the flow characteristics of the last stage of gas-steam turbine. When creating the spatial model, the atlas of profiles of reaction turbine steps was used. Results of computational fluid dynamics simulations of twisting of the last stage are presented. Blades geometry and the computational mesh are also presented. Velocity vectors, for selected dividing sections that the velocity along the pitch diameter varies greatly. The blade has the shape of its cross-section similar to action type blades near the root and to reaction type blades near the tip. Velocity fields and pressure fields show the flow characteristics of the last stage of gas-steam turbine. The net efficiency of the cycle is equal to 52.61%.
Go to article

Bibliography

[1] Szewalski R.: Rational Blade Height Calculation in Action Turbines. Czasopismo Techniczne (1930), 1, 83–86 (in Polish).
[2] Szewalski R.: A novel design of turbine blading of extreme length. Trans. Inst. Fluid-Flow Mach. 70–72(1976) 137–143.
[3] Szewalski R.: Present Problems of Power Engineering Development. Increase of Unit Power and Efficiency of Turbines and Power Palnts. Ossolineum, Wrocław Warszawa Kraków Gdansk 1978 (in Polsih).
[4] Gardzilewicz A., Swirydczuk J., Badur J., Karcz M., Werner R., Szyrejko C.: Methodology of CFD computations applied for analyzing flows through steam turbine exhaust hoods. Trans. Inst. Fluid-Flow Mach. 113(2003), 157–168.
[5] Knitter D., Badur J.: Coupled 0D and 3D analyzis of axial force actiong on regulation stage during unsteady work. Systems 13(2008), 1/2 Spec. Issu., 244–262 (in Polsih).
[6] Knitter D.: Adaptation of inlet and outlet of turbine for new working conditions. PhD dissertation, Inst. Fluid Flow Mach. Pol. Ac. Sci., Gdansk, 2008 (in Polish).
[7] Ziółkowski P.: Thermodynamic analysis of low emission gas-steam cycles with oxy combustion. PhD dissertation, Inst. of Fluid Flow Mach. Pol. Ac. Sci., Gdansk 2018 (in Polish).
[8] Ziółkowski P., Badur J.: A study of a compact high-efficiency zero-emission power plant with oxy-fuel combustion. In: Proc. 32nd Int.Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS, Wroclaw, 2019 (W. Stanek, P. Gładysz, S. Werle, W. Adamczyk, Eds.), 1557–1568.
[9] Rubechini F., Marconcini M., Arnone A., Stefano C., Daccà F.: Some aspects of CFD modelling in the análisis of a low-pressure steam turbine. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Montrèal, May, 14–17 2007, GT2007- 27235.
[10] Fiaschi D., Manfrida G., Maraschiello F.: Design and performance prediction of radial ORC turboexpanders. Appl. Energ. 138(2015), 517–532.
[11] Fiaschi D., Innocenti G., Manfrida G., Maraschiello F.: Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D. Appl. Therm. Eng. 99(2016), 402–410.
[12] Noori Rahim Abadi M.A., Ahmadpour A., Abadi S.M.N.R., Meyer J.P.: CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl. Therm. Eng. 112(2017), 1575–1589.
[13] Tanuma T., Okuda H., Hashimoto G., Yamamoto S., Shibukawa N., Okuno K., Saeki H., Tsukuda T.: Aerodynamic and structural numerical investigation of unsteady flow effects on last stage blades. In: Microturbines, Turbochargers and Small Turbomachines, Steam Turbine, Proc. ASME Turbo Expo, Montrèal, June 15–19, 2015, GT2015-43848.
[14] Tanuma T.: Development of last-stage long blades for steam turbines. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 279–305.
[15] Klonowicz P., Witanowski Ł., Suchocki T., Jedrzejewski Ł., Lampart P.: Selection of optimum degree of partial admission in a laboratory organic vapour microturbine. Energ. Convers. Manage. 202(2019), 112189.
[16] Witanowski Ł., Klonowicz P., Lampart P., Suchocki T., Jedrzejewski Ł., Zaniewski D., Klimaszewski P.: Optimization of an axial turbine for a small scale ORC waste heat recovery system. Energy 205(2020), 118059.
[17] Zaniewski D., Klimaszewski P., Witanowski Ł., Jedrzejewski Ł., Klonowicz P., Lampart P.: Comparison of an impulse and a reaction turbine stage for an ORC power plant. Arch. Thermodyn. 40(2019), 3, 137–157
[18] Touil K., Ghenaiet A.: Characterization of vane-blade interactions in two-stage axial turbine. Energy 172(2019), 1291–1311.
[19] Zhang L.Y., He L., Stuer H.: A numerical investigation of rotating instability in steam turbine last stage. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Vancouver, June 6–10, 2011, GT2011-46073, 1657–1666.
[20] Butterweck A., Głuch J.: Neural network simulator’s application to reference performance determination of turbine blading in the heat-flow diagnostics. In: Intelligent Systems in Technica and Medical Diagnostics (J. Korbicz, M. Kowal, Eds.), Advances in Intelligent Systems and Computing, Vol. 230. Springer, Berlin Heidelberg 2014, 137–147.
[21] Głuch J. Drosinska-Komor M.: Neural Modelling of Steam Turbine Control Stage. In: Advances in Diagnostics of Processes and Systems (J. Korbicz, K. Patan, M. Luzar, Eds.), Studies in Systems, Decision and Control, Vol. 313. Springer, 2021, 117–128.
[22] Głuch J., Krzyzanowski J.: Application of preprocessed classifier type neural network for searching of faulty components of power cycles in case of incomplete measurement data. In: Power for Land, Sea, and Air, Proceed. ASME Turbo Expo, Amsterdam, June 3–6, 2002, GT2002-30028, 83–91.
[23] Badur J., Kornet D., Sławinski D., Ziółkowski P.: Analysis of unsteady flow forces acting on the thermowell in a steam turbine control stage. J. Phys.: Conf. Ser. 760(2016), 012001.
[24] Klimaszewski P., Zaniewski D., Witanowski Ł., Suchocki T., Klonowicz P., Lampart P.: A case study of working fluid selection for a small-scale waste heat recovery ORC system. Arch. Thermodyn. 40(2019), 3, 159–180.
[25] Ziółkowski P., Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure – Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.
[26] Głuch S., Piwowarski M.: Enhanced master cycle – significant improvement of steam rankine cycle. In: Proc. 25th Int. Conf. Engineering Mechanics 2019, Vol. 25 (I. Zolotarev, V. Radolf, Eds.), Svratk,13–16 May, 2019, 125–128.
[27] Kowalczyk T., Badur J., Ziółkowski P.: Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluidflow machinery main dimensions, and partial loads. Energy 206(2020), 118072.
[28] Perycz S.: Steam and Gas Turbines. Wyd. Polit. Gdanskiej, Gdansk 1988 (in Polish).
[29] https://www.ansys.com/products/fluids/ansys-cfx (accessed 15 Jan. 2021).
[30] Menter F.R., Kuntz M., Langtry R.: Ten years of industrial experience with the SST turbulence model. In: Proc. 4th Int. Symp.on Turbulence, Heat and Mass Transfer (K. Hajalic, Y. Nagano, M. Tummers, Eds.). Begell House, West Redding 2003, 625–632.
[31] Lemmon E. W., Huber M. L. & McLinden M.O.: NIST Standard Reference Database 23. In: Reference Fluid Thermodynamic and Transport Properties- REFPROP, Version 8.0, User’s Guide, Standard Reference Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg 2010.
[32] Wilcox D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada 1998.
[33] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P.J., Stajnke M., Badur J.: Thermal-FSI modelling of flow and heat transfer in a heat exchanger based on minichannels. J. Power Technol. 97(2017), 5, 373–381.
[34] Badur J., Charun H.: Selected problems of heat exchange modelling in pipe channels with ball turbulisers. Arch. Thermodyn. 28(2007), 3, 65–87.
Go to article

Authors and Affiliations

Stanisław Jerzy Głuch
1
Paweł Ziółkowski
1
Łukasz Witanowski
2
Janusz Badur
2

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Building, Narutowicza 11/12, 80-233 Gdansk, Poland
  2. Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the considered work is to adjust mathematical modeling for mass transfer, to specific conditions resulting from presence of chemical surface reactions in the flow of the mixture consisting of helium and methanol. The thermocatalytic devices used for decomposition of organic compounds incorporate microchannels coupled at the ends and heated to 500 ◦C at the walls regions. The experiment data were compared with computational fluid dynamics results to calibrate the constants of the model’s user defined functions. These extensions allow to transform the calculations mechanisms and algorithms of commercial codes adapting them for the microflows cases and increased chemical reactions rate on the interphase between fluid and solid, specific for catalytic reactions. Results obtained on the way of numerical calculations have been calibrated and compared with the experimental data to receive satisfactory compliance. The model has been verified and the performance of the thermocatalytic reactor with microchannels under hydrogen production regime has been investigated.

Go to article

Authors and Affiliations

Janusz Badur
Michał Stajnke
Paweł Ziółkowski
Paweł Jóźwik
Zbigniew Bojar
Piotr Józef Ziółkowski
Download PDF Download RIS Download Bibtex

Abstract

The article deals with a current state-of-art of fluid solid interaction (FSI) – the new branch of continuum physics. Fluid-solid interaction is a new quality of modeling physical processes of continuum mechanics, it can be described as the interaction of various (so far treated separately from the point of view of mathematical modeling) physical phenomena occurring in continuous media systems. The most correct is the simultaneous application of the laws of the given physical disciplines, which implies that fluid solid interaction is a subset of multi-physical applications where the interactions between these subsets are exchanged on the surface in interconnected systems. Our purpose is to extend the fluid solid interaction aplications into new phenomena what follow from the industrial needs and inovative thechnologies. Selecting the various approaches, we prefer the arbitraty lagrangean-eulerian description within the bulk of fluid/solid domain and a new sort of advanced boundary condition on a surface of common contact.
Go to article

Bibliography

[1] Badur J., Ziółkowski P., Zakrzewski W., Sławinski D., Kornet S., Kowalczyk T., Hernet T., Piotrowski R., Felincjancik J., Ziółkowski P.J.: An advanced thermal-FSI approach to flow heating/coolin. J. Phys. Conf. Ser. 530(2014), 340–370.
[2] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P., Stajnke M., Badur J.: Thermal-FSI modeling of flow and heat transfer in a heat exchanger based on minichanels. J. Power Technol. 97(2017), 5, 373–381.
[3] Zienkiewicz O.C., Taylor R.L.: The Finite Element Method: Vol. 1 (5th Edn.). Butterworth-Heinemann, Oxford, 2000.
[4] Schäfer M., Sieber G., Sieber R., Teschauer I.: Coupled fluid-solid problems: Examples and reliable numerical simulation. In: Trends in Computational Structural Mechanics (W.A. Wall, Ed.), CIMNE, Barcelona 2001, 654–692.
[5] Axisa F.: Modelling of Mechanical Systems – Fluid-Structure Interaction. Elsevier, Berlin 2007.
[6] Bazilevs Y., Takizawa K., Tezduyar T.E.: Computational Fluid-Structure Interaction: Methods and Applications. John Wiley & Sons, 2013.
[7] Benson D.J., Souli M.: Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation. Springer-Verlag, 2010.
[8] Bodnar T., Galdi G.P., Necasova S.: Fluid-Structure Interaction and Biomedical Applications. Springer-Verlag, 2014.
[9] Peric D., Dettmer W.G.: A computational strategy for interaction of fluid flow with spatial structures. In: Proc. 5th Int. Conf. on Computational of Shell and Spatial Structures, IASS-IACM, Bochum, 2005.
[10] Ziółkowski P.J., Ochrymiuk T., Eremyev V.: Cont. Mech. Termodyn. 33(2021), 2301–2314.
[11] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Meth. for Heat Fluid Fl. 28(2018), 454–480.
[12] Ziółkowski P, Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure-Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.
[13] Badur J., Ziółkowski P., Kornet S., Kowalczyk T., Banas K., Bryk M., Ziółkowski P.J., Stajnke M.: Enhanced energy conversion as a result of fluid-solid interaction in micro-and nanoscale. J. Theor. Appl. Mech. 56(2018), 1, 329–332.
[14] Kowalczyk T, Badur J., Bryk M.: Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energ. Convers. Manage. 198(2019), 203–224.
[15] Badur J., Bryk M.: Accelerated start-up of the steam turbine by means of controlled cooling steam injection. Energy 184(2019), 334–356.
[16] Bryk M., Kowalczyk T., Ziółkowski P., Badur J.: The thermal effort during marine steam turbine flooding with water. AIP Conf. Proc. 2077(2019), 1, 020009.
[17] Kraszewski B., Bzymek G., Ziółkowski P., Badur J.: Extremal thermal loading of a bifurcation pipe. AIP Conf. Proc. 2077(2019), 1, 020030.
[18] Dudda W., Banaszkiewicz M., Ziółkowski P.J.: Validation plastic model with hardening of St12t. AIP Conf. Proc. 2077(2019), 020016.
[19] Szwaba R., Ochrymiuk T., Lewandowski T., Czerwinska J.: Experimental investigation of microscale effects in perforated plate aerodynamics. J. Fluids Eng. 135(2013), 12.
[20] Badur J., Ziółkowski P., Kowalczyk T., Ziółkowski P.J., Stajnke M., Bryk M., Kraszewski B.: In: Proc. 6th Conf.e on Nano- and Micromechanics, Rzeszów, 3–7 July 2019.
[21] Badur J., Karcz M., Lemanski M., Nastałek L.: Enhancement Transport Phenomena in the Navier-Stokes Shell-like Slip Layer. Computer Model. Eng. Sci. 73(2011), 299–310.
[22] Banas K., Badur J.: Influence of strength differential effect on material effort of a turbine guide vane based on thermoelastoplastic analysis. J. Therm. Stress. 40(2017), 1368–1385.
[23] Kornet S., Badur J.: Infuence of turbulence RANS models on heat transfer coefficients and stress distribution during thermal-FSI analysis of power turbine guide vane of helicopter turbine engine PZL-10W taking into account convergence of heat flux. Prog. Comput. Fluid Dyn. 17(2017), 352–360.
[24] Ziółkowski P., Kowalczyk T., Kornet S., Badur J.: On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat. Energ. Convers. Manage. 146(2017), 158–173.
[25] Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. Arch. Mech. 70(2018), 269–300.
[26] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Phys. Conf. Ser. 530(2014), 1–8.
[27] Czechowicz K, Badur J, Narkiewicz K.: Two-way FSI modelling of blood flow through CCA accounting on-line medical diagnostics in hypertension. J. Phys. Conf. Ser. 530(2014), 1–8.
[28] Badur J., Lemanski M., Kowalczyk T., Ziółkowski P., Kornet P.: Zerodimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 158(2018), 128–138.
[29] Badur J., Ziółkowski P.J., Ziółkowski P.: On the angular velocity slip in nanoflows. Microfluid Nanofluid 19(2015), 191–198.
[30] Badur J., Ziółkowski P., Sławinski D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 142–152.
[31] Felicjancik J., Ziółkowski P., Badur J.: An advanced thermal-FSI approach of an evaporation of air heat pump. Trans. Inst. Fluid-Flow Mach. 129(2015), 111–141.
[32] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3–26.
[33] Badur J., Ziółkowski P., Kornet S., Stajnke M., Bryk M., Banas K., Ziółkowski P.J.: The effort of the steam turbine caused by a flood wave load. AIP Conf. Proc. 1822(2017), 1, 020001.
[34] Badur J., Bryk M., Ziółkowski P., Sławinski D., Ziółkowski P.J., Kornet S., Stajnke M.: On a comparison of Huber–Mises–Hencky with Burzynski- Pecherski equivalent stresses for glass body during nonstationary thermal load. AIP Conf. Proc. 1822(2017), 1, 020002.
[35] Banaszkiewicz M.: On-line monitoring and control of thermal stresses in steam turbine rotors. Appl. Therm. Eng. 94(2016), 763–776
[36] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26(2017), 5, 459–464.
[37] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Therm. Sci. 25(2016), 3, 280– 286.
[38] Ochrymiuk T.: Numerical investigations of the 3D transonic field and heat transfer at the over-tip casing in a HP-turbine stage. Appl. Therm. Eng. 103(2016), 411–418.
[39] Froissart M., Ziolkowski P., Dudda W., Badur J.: Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink. Case Stud. Therm. Eng. 28(2021), 1, 101445101445.
Go to article

Authors and Affiliations

Tomasz Ochrymiuk
1
Mariusz Banaszkiewicz
1 2
Marcin Lemański
1 3
Tomasz Kowalczyk
1
ORCID: ORCID
Paweł Ziółkowski
1 4
Piotr J. Ziółkowski
1
Rafał Hyrzyński
1 5
Michał Stajnke
1
Mateusz Bryk
1
Bartosz Kraszewski
1
Sylwia Kruk-Gotzman
1 6
Marcin Froissart
1
Janusz Badur
1

  1. Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland
  2. General Electric Power, Stoczniowa 2, 82-300 Elblag, Poland
  3. Anwil Grupa Orlen, Torunska 222, 87-800 Włocławek, Poland
  4. Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  5. Energa S.A. Grunwaldzka 472, 80-309 Gdansk, Poland
  6. Agencja Rynku Energii, Bobrowiecka 3, 00-728 Warszawa, Poland

This page uses 'cookies'. Learn more