Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this article, the issue of mining impact on road pavements and subgrade is presented, taking into account the interaction between geosynthetic reinforcement and unbound aggregate layers. Underground mining extraction causes continuous and discontinuous deformations of the pavement subgrade. Structural deformations in the form of ruts are associated with the compaction of granular layers under cyclic loading induced by heavy vehicles. Horizontal tensile strains cause the loosening of the subgrade and base layers. The granular layers under cyclic loading are additionally compacted and the depth of ruts increases. Moreover, tensile strains can cause discontinuous deformations that affect the pavement in the form of cracks and crevices. Discontinuous deformations also affect the pavement in the fault zones during the impact of mining extraction. The use of geosynthetic reinforcement enables the mitigation of the adverse effects of horizontal tensile strains. Horizontal compressive strains can cause surface wrinkling and bumps. Subsidence causes significant changes in the longitudinal and transverse inclination of road surface. Both examples of the laboratory test results of the impact of subgrade horizontal strains on reinforced aggregate layers and the selected example of the impact of mining deformation on road subgrade are presented in this article. The examples show the beneficial impact of the use of geosynthetic reinforcement to stabilize unbound aggregate layers in mining areas.

Go to article

Authors and Affiliations

Magdalena Zięba
ORCID: ORCID
Piotr Kalisz
Marcin Grygierek
Download PDF Download RIS Download Bibtex

Abstract

Titania dioxide (TiO2) layers were synthesized via the acid-catalysed sol-gel route using titania (IV) ethoxide, and then annealed at temperatures varying in the range of 150–700 °C. The research concerned the effect of annealing temperature on the structure of TiO2 layers, their surface morphology, and their optical properties. Further, X-ray diffractometry, and Raman spectroscopy were used to determine the structure of TiO2 layers. Scanning electron and atomic force microscopy were used to study the surface morphology of TiO2 layers. Transmittance, reflectance, absorption edge, and optical homogeneity were investigated by UV-VIS spectrophotometry, while the refractive index and thicknesses of TiO2 layers were measured using a monochromatic ellipsometer. Chromatic dispersion characteristics of the complex refractive index were determined using spectroscopic ellipsometry. Structural studies have shown that the TiO2 layers annealed at temperatures up to 300 °C are amorphous, while those annealed at temperatures exceeding 300 °C are polycrystalline containing only anatase nanocrystals with sizes increasing from 6 to 20 nm with the increase of the annealing temperature. Investigations on the surface morphology of TiO2 layers have shown that the surface roughness increases with the increase in annealing temperature. Spectrophotometric investigations have shown that TiO2 layers are homogeneous and the width of the indirect optical band gap varies with annealing temperature from 3.53 eV to 3.73 eV.

Go to article

Authors and Affiliations

Magdalena Zięba
1
ORCID: ORCID
Cuma Tyszkiewicz
1
ORCID: ORCID
Ewa Gondek
2
ORCID: ORCID
Katarzyna Wojtasik
2
ORCID: ORCID
Jacek Nizioł
3
ORCID: ORCID
Dominik Dorosz
4
ORCID: ORCID
Bartłomiej Starzyk
4
ORCID: ORCID
Patryk Szymczak
4
ORCID: ORCID
Wojciech Pakieła
5
ORCID: ORCID
Roman Rogoziński
1
ORCID: ORCID
Paweł Karasiński
1
ORCID: ORCID

  1. Department of Optoelectronics. Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
  2. Department of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
  3. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  4. Faculty of Materials Science and Ceramics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  5. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more