Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

S304H steel is used in the construction of pressure components of boilers with supercritical operating parameters. The paper presents the results of research on the microstructure following ageing for 30,000 hours at 650 and 700°C. Microstructure examination was performed using scanning and transmission electron microscopy. The precipitates were identified using transmission electron microscopy. The paper analyses the precipitation process and its dynamics depending on the temperature and ageing time in detail. MX carbonitrides and the ε_Cu phase were proved to be the most stable phase, regardless of the test temperature. It was also showed that the M₂₃C₆ carbide precipitates in the tested steel and the intermetallic sigma phase (σ) may play a significant role in the loss of durability of the tested steel. This is related to their significant increase due to the influence of elevated temperature, and their coagulation and coalescence dynamics strongly depend on the ageing/operating temperature level. The qualitative and quantitative identification of the secondary phase precipitation processes described in the study is important in the analysis of the loss of durability of the tested steel under creep conditions.
Go to article

Bibliography

  1.  “Poland’s Energy Policy PEP2040”, [Online]. Available: https://www.gov.pl/web/klimat/polityka-energetyczna-polski, [Accessed: 1. Mar. 2021].
  2.  M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 721‒731, 2020, doi: 10.24425/bpasts.2020.133125.
  3.  G. Golański, A. Zieliński, and A. Zielińska-Lipiec, “Degradation of microstructure and mechanical properties in martensitic cast steel after ageing,” Materialwiss. Werkst., vol. 46, no. 3, pp. 248–255, 2015, doi: 10.1002/mawe.201400325.
  4.  J. Horváth, J. Janovec, and M. Junek, “The Changes in Mechanical Properties of Austenitic Creep Resistant Steels SUPER 304H and HR3C Caused by Medium-Term Isothermal Ageing,” Sol. St. Phen., vol. 258, pp. 639‒642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
  5.  A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mat. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
  6.  G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat- Resistant Austenitic Stainless Steel,” Materials, vol.  13, no. 6, p. 1297, 2020, doi: 10.3390%2Fma13061297.
  7.  A.F. Padilha and P.R. Rios, “Decomposition of Austenite in Austenitic Stainless Steels,” ISIJ Intern., vol. 42, no. 4, pp.  325–327, 2002, doi: 10.2355/isijinternational.42.325.
  8.  R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, “A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance,” Mater. Res., vol. 10, no. 4, pp. 453–460, 2007, doi: 10.1590/ s1516-14392007000400021.
  9.  X. Xie, Y. Wu, C. Chi, and M. Zhang, “Superalloys for Advanced Ultra-Super-Critical Fossil Power Plant Application,” Superalloys, 2015, doi: 10.5772/61139.
  10.  A. Zieliński, G. Golański, M. Kierat, M. Sroka, A. Merda, and K. Sówka, “Microstructure of HR6W Alloy at Elevated Temperature after Prolonged Ageing in Air Atmosphere,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 253–256, 2020, doi: 10.12693/aphyspola.138.253.
  11.  M. Sroka, A. Zieliński, A. Śliwa, M. Nabiałek, Z. Kania-Pifczyk, and I. Vasková, “The Effect of Long-Term Ageing on the Degradation of the Microstructure the Inconel 740h Alloy,” Acta Phys. Pol. A, vol. 137, no. 3, pp. 355–360, 2020, doi: 10.12693/aphyspola.137.355.
  12.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi:10.3390/ma11112130.
  13.  A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater. vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017- 0305.
  14.  M. Sroka, A. Zieliński, A. Hernas, Z. Kania, R. Rozmus, T. Tański, and A. Śliwa, “The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy,” Metalurgija, vol. 56, no. 3‒4, pp. 333‒336, 2017.
  15.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The Influence of the Temperature and Ageing Time on the NiCr23Co12Mo Alloy Microstructure,” Rev. Chim-Bucharest., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
  16.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 913‒921, doi: 10.24425/bpasts.2020.134184.
  17.  A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech- Lond., vol. 32, no. 18, pp. 1899‒1910, 2016, doi: 10.1080/02670836.2016.1150242.
  18.  T. Tokairin et al., “Investigation on long-term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C,” Mat. Sci. Eng. A-Struct., vol. 565, pp. 285–291, 2013, doi: 10.1016/j.msea.2012.12.019.
  19.  G. Golański, C. Kolan, A. Zieliński, and P. Urbańczyk, Degradation process of heat–resistant austenitic stainless steel, Energetics, vol. 11, pp. 727‒730, 2017 [in polish].
  20.  M. Igarashi, Alloy design philosophy of creep – resistant steels In: Abe F., Kern T.U., Viswanathan R. (ED.), Creep resistant steels. Cambridge: Woodhead Publishing, 2008.
  21.  C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu, and X. Xie, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, no. 3, pp. 175–185, 2012., doi: 10.1016/j.pnsc.2012.05.002.
  22.  H. Yu and Ch. Chi, “Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat – resistant steel at early aging state”, Chin. J. Mater. Res., vol. 29, pp. 195‒200, 2015.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Robert Wersta
2
Marek Sroka
3
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland
  2. Office of Technical Inspection, Regional Branch Office based in Wrocław, ul. Grabiszyńska 51, 53-503 Wrocław, Poland
  3. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44 100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper shows the degradation process of the modern austenitic Super 304H (X10CrNiCuNb18-9-3) steel which was subjected to long-term aging for up to 50,000 h at 650 and 700°C. The investigations include microstructure examination (SEM), identification and analysis of the precipitation process, and mechanical properties tests. The Super 304H steel has a structure characteristic of austenitic steels with visible annealing twins and single primary NbX precipitates. Long-term aging in the steel leads to numerous precipitation processes of M23C6, MX carbides, σ phase, Z phase, and -Cu phase. Precipitation processes lead to a decrease in plastic properties and impact energy as well as alloy over aging. Yield strength and tensile strength values after 50,000 h of aging were similar to those as delivered. The yield and tensile strength value strongly depend on the applied aging temperature.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Marek Sroka
2
ORCID: ORCID
Hanna Purzyńska
1
Frantisek Novy
3

  1. Łukasiewicz Research Network – Upper Silesian Institute of Technology, K. Miarki 12-14, 44-100 Gliwice, Poland
  2. Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44 100 Gliwice, Poland
  3. Department of Materials Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Due to the large amount of binder and low water-cement ratio, high-performance cement composites have high compressive strength and a dense hardened cement paste microstructure. External curing is insufficient, as it cannot reach the interior parts of the structure, which allows autogenous shrinkage to occur in the inside. Lack of prevention of autogenous shrinkage and high restraint causes structural microcracks around rigid components (aggregate, rebars). Consequently, this phenomenon leads to the propagation of internal microcracks to the surface and reduced concrete durability. One way to minimize autogenous shrinkage is internal curing. The use of soaked lightweight aggregate to minimize the risk of cracking is not always sufficient. Sorption and desorption kinetics of fine and coarse fly ash aggregate were tested and evaluated. The correlation between the development of linear autogenous shrinkage and the tensile stresses in the restrained ring test is assessed in this paper. A series of linear specimens, with cross-section and length custom designed to match the geometry of the concrete ring, were tested and analyzed. Determination of the maximum tensile stresses caused by the restrained autogenous shrinkage in the restrained ring test, together with the approximation of the tensile strength development of the cement composites were used to evaluate the cracking risk development versus time. The high-performance concretes and mortars produced with mineral aggregates and lightweight aggregates soaked with water were tested. The use of soaked granulated fly ash coarse lightweight aggregate in cementitious composites minimized both the autogenous shrinkage and cracking risk.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Anton K. Schindler
2
ORCID: ORCID
Maria Kaszyńska
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Civil Engineering and Environmental, al. Piastów 50a, 70-311 Szczecin, Poland
  2. Department of Civil and Environmental Engineering, Auburn University, 237 Harbert Center, Alabama 36849, Auburn, USA
Download PDF Download RIS Download Bibtex

Bibliography

  1.  S. Luhar, T.W. Cheng, D. Nicolaides, I. Luhar, D. Panias, and K. Sakkas, “Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review,” Constr. Build. Mater., vol. 222, pp. 673–687, 2019.
  2.  K. Zulkifly et al., “Elevated-Temperature Performance, Combustibility and Fire Propagation Index of Fly Ash-Metakaolin Blend Ge- opolymers with Addition of Monoaluminium Phosphate (MAP) and Aluminum Dihydrogen Triphosphate (ATP),” Materials, vol.  14, p. 1973, 2020.
  3.  S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, and M. Hakimi, “Enhanced glass forming ability, mechanical, and magnetic properties of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass with minor addition of Cu,” J. Non-Cryst. Solids, vol. 497, pp. 40–47, 2018.
  4.  J. Zhou, W. Yang, C. Yuan, B. Sun, and B. Shen, “Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties,” J. Alloys Compd., vol. 742, pp. 318‒324, 2018.
  5.  M. Nabiałek et al., “Relationship between the shape of X-ray diffraction patterns and magnetic properties of bulk amorphous alloys Fe65Nb5Y5+xHf5–xB20 (where: 0, 1, 2, 3, 4, 5),” J. Alloys Compd., vol. 820, p. 153420, 2020.
  6.  S. Chen et al., “Elevated-temperature tensile deformation and fracture behavior of particle-reinforced PM 8009Al matrix composite,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138846, 2021, doi: 10.24425/bpasts.2021.138846.
  7.  S. Berdowska, J. Berdowski, and F. Aubry, “The relationship between the structural anisotropy of the PFA polymer/compressed expanded graphite-matrix composites and acoustic emission characteristics,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138235, 2021, doi: 10.24425/bpasts.2021.138235.
  8.  M. Mikuśkiewicz, “Silicon nitride/carbon nanotube composites: preparation and characterization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138234, 2021, doi: 10.24425/bpasts.2021.138234.
  9.  L. Sozańska-Jędrasik, W. Borek, and J. Mazurkiewicz, “Mechanisms of plastic deformation in light high-manganese steel of TRIPLEX type,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137412, 2021, doi: 10.24425/bpasts.2021.137412.
  10.  A. Zieliński, R. Wersta, and M. Sroka, “Analysis of the precipitation process of secondary phases after long-term ageing of S304H steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137520, 2021, doi: 10.24425/bpasts.2021.137520.
  11.  K. Pawlik, “Structure and properties of suction-cast Pr-(Fe, Co)-(Zr, Nb)-B rod magnets,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  69, no. 5, p. e138971, 2021, doi: 10.24425/bpasts.2021.138971.
  12.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with rare-earth element addition by means of mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
  13.  B. Hrapkowicz, S. Lesz, M. Kremzer, M. Karolus, and W. Pakieła, “Mechanical alloying of Mg-Zn-Ca-Er alloy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137587, 2021, doi: 10.24425/bpasts.2021.137587.
  14.  A.M. Țițu, A.B. Pop, M. Nabiałek, C.C. Dragomir, and A.V. Sandu, “Experimental modeling of the milling process of aluminum alloys used in the aerospace industry,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138565, 2021, doi: 10.24425/bpasts.2021.138565.
  15.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al- RE alloy substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137549, 2021, doi: 10.24425/bpasts.2021.137549.
  16.  R. Szklarek et al., “High temperature resistance of silicide-coated niobium,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137416, 2021, doi: 10.24425/bpasts.2021.137416.
  17.  T. Tański, W. Smok, and W. Matysiak, “Characterization of morphology and optical properties of SnO2 nanowires prepared by electrospinning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e 137507, 2021, doi: 10.24425/bpasts.2021.137507.
Go to article

Authors and Affiliations

Bogusław Major
1
ORCID: ORCID
Andrei Victor Sandu
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
Marcin Nabiałek
4
ORCID: ORCID
Tomasz Tański
5
ORCID: ORCID
Adam Zieliński
6
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science Polish Academy of Science, ul. Reymonta 25, 30-059 Kraków, Poland
  2. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, 71 D. Mangeron Blvd., 700050 Iasi, Romania
  3. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  4. Institute of Physics, Czestochowa University of Technology, ul. Dabrowskiego 69, 42-201 Czestochowa, Poland
  5. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
  6. Sieć Badawcza Łukasiewicz – Instytut Metalurgii Żelaza im. Stanisława Staszica, (Łukasiewicz Research Network – Institute for Ferrous Metallurgy), ul. K. Miarki 12-14, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more