Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

By providing the body with essential nutrients, colostrum plays an immune and immunostimulating function. Colostrum quality depends on multiple factors, including microbial presence. This study aimed to explore the effect of non-aureus staphylococci on colostrum quality. Physical and chemical properties, fatty acid profile of cow colostrum were determined. In our study, we identified three non- aureus staphylococci species in the colostrum: S. sciuri, S. xylosus and S. warneri. The percentage of dry matter in staphylococci positive and negative colostrum samples did not differ significantly. Contents of fat, protein, and lactose in the colostrum were similar. The content of butyric (С4:0) and capric (С10:0) acids was significantly higher in the colostrum fat from samples positive for non- aureus staphylococci. Total bacterial count was lower in non- aureus staphylococci positive samples, while pH increased. The percentage of β-casein was lower in colostrum with a positive culture for non- aureus staphylococci.
Go to article

Authors and Affiliations

A. Pikhtirova
1
E. Pecka-Kiełb
2
A. Zachwieja
3
J. Bujok
2
F. Zigo
4

  1. Sumy State University, Department of Public Health, Rymskogo-Korsakova 2, Sumy 40007, Ukraine
  2. Wroclaw University of Environmental and Life Sciences, Department of Biostructure and Animal Physiology, Norwida 31, Wroclaw 50-375, Poland
  3. Wroclaw University of Environmental and Life Sciences, Department of Cattle Breeding and Milk Production, Chełmońskiego 38c, Wroclaw 51-630, Poland
  4. University of Veterinary Medicine and Pharmacy, Department of Animal Breeding, Komenskeho 73, Kosice 041 81, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to identify bacterial pathogens in milk samples from dairy cows with subclinical and clinical mastitis as well as to assess the concentrations of oxidant-antioxidant parameters [malondialdehyde (MDA), reduced glutathione (GSH), and total GSH levels] in both blood and milk samples. From a total of 200 dairy cows in 8 farms, 800 quarter milk samples obtained from each udder were tested in the laboratory for the presence of udder pathogens. Cultivated bacteria causing intramammary infection from milk samples were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). In addition, from tested animals 60 cows were selected includıng 20 healthy cows that were CMT negative, 20 cows with subclinical mastitis (SM), and 20 cows with clinical mastitis (CM) for detection of MDA, GSH, and total GSH levels in blood and milk samples. Three hundred and eighty (47.5%; 380/800), 300 (37.5%; 300/800), and 120 (15%; 120/800) of milk samples, respectively were CMT positive or SM and CM, and those positives were cows from different farms. We observed that 87.4% (332/380), 25.3% (76/300), and 34.2% (41/120) of cows with CMT positive, CMT negative, and CM had bacterial growth. The most predominantly identified bacteria were Staphylococcus chromogenes (18.7%) obtained mainly from SM and Staphylococcus aureus (16.7%) as the most frequent cause of CM. According to our results, dairy cows with CM had the highest MDA levels, the lowest GSH, and total GSH levels in both blood and milk samples however, high MDA levels and low GSH levels in milk samples with SM were observed. Based on our results, lipid oxidant MDA and antioxidant GSH could be excellent biomarkers of cow’s milk for developing inflammation of the mammary gland. In addition, there was no link between nutrition and MDA and GSH levels.
Go to article

Bibliography


Abdel-Hamied E, Mahmoud MM (2020) Antioxidants profile, oxidative stress status, leukogram and selected biochemical indicators in dairy cows affected with mastitis. J Anim Health Product 8: 183-188.
Amer S, Gálvez FL, Fukuda Y, Tada C, Jimenez, IL, Valle WF, Nakai Y (2018) Prevalence and etiology of mastitis in dairy cattle in El Oro Province, Ecuador. J Vet Med Sci 80: 861-868.
Andrei S, Matei S, Fit N, Cernea C, Ciupe S, Bogdan S, Groza IS (2011) Glutathione peroxidase activity and its relationship with somatic cell count, number of colony forming units and protein content in subclinical mastitis cow’s milk. Romanian Biotechnological Letters 16: 6209-6217.
Bexiga R, Rato MG, Lemsaddek A, Semedo-Lemsaddek T, Carneiro C, Pereira H, Mellor DJ, Ellis KA, Vilela CL (2014) Dynamics of bovine intramammary infections due to coagulase-negative staphylococci on four farms. J Dairy Res 81: 208-214.
Cameron M, Perry J, Middleton JR, Chaffer M, Lewis J, Keefe GP (2018) Short communication: Evaluation of MALDI-TOF mass spectrometry and a custom reference spectra expanded database for the identification of bovine-associated coagulase-negative staphylococci. J Dairy Sci 101: 590-595.
Carvalho-Sombra TC, Fernandes DD, Bezerra BM, Nunes-Pinheiro DC (2021) Systemic inflammatory biomarkers and somatic cell count in dairy cows with subclinical mastitis. Vet Anim Sci 11: 100165.
Castillo C, Hernández J, Valverde I, Pereira V, Sotillo J, López Alonso ML, Benedito JL (2006) Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80: 133-139.
Chakraborty S, Dhama K, Tiwari R, Yatoo MI, Khurana SK, Khandia R (2019) Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population – a review. Vet Q 39: 76-94.
Celi P (2011) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol 33: 233-240.
Condas LA, De Buck J, Nobrega DB, Carson DA, Roy JP, Keefe GP, DeVries TJ, Middleton JR, Dufour S, Barkema HW (2017) Distribution of nonaureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J Dairy Sci 100: 5613-5627.
De Visscher A, Piepers S, Haesebrouck F, De Vliegher S (2016) Teat apex colonization with coagulase-negative Staphylococcus species before parturition: distribution and species-specific risk factors. J. Dairy Sci 99: 1427-1439.
Dubois D, Grare M, Prere MF, Segonds C, Marty N, Oswald E (2012) Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 50: 2568-2576.
Dufour S, Munoz M (2018) Milk bacteriological analysis using MALDI-TOF technology. Carol Hulland, University of Wisconsin-Madison, Version. pp 1-5; available on: https://www.nmconline.org/wp-content/uploads/2018/04/4.20-p.m.-04.17.18-Edited-MALDI_ToF-Factsheet-13-04-2018.pdf.
Garcia AB, Shalloo L (2015) Invited review: the economic impact and control of paratuberculosis in cattle. J Dairy Sci 98: 5019-5039.
Goff JP, Horst RL (1997) Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 80: 1260-1268.
Huijps K, Lam TJ, Hogeveen H (2008) Costs of mastitis: facts and perception. J Dairy Res 75:113-120.
Jackson P, Cockcroft P (2002) Clinical examination of farm animals. Blackwell Science Ltd Oxford, UK, ISBN 0-632-05706-8, pp 154-166.
Kassim A, Pflüger V, Premji Z, Daubenberger C, Revathi G (2017) Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol 17: 128.
Kaya E, Yılmaz S, Ceribasi S (2019) Protective role of pro polis on low and high dose furan-induced hepatotoxicity and oxidative stress in rats. J Vet Res 63: 423-431.
Kırkan S, Parın U, Tanır T, Yuksel HT (2018) Identification of the Staphylococcus species which cause cattle mastitis using MALDI-TOF MS. Appr Poult Dairy & Vet Sci 4: 317-323.
Ma J-Q, Liu C-M, Qin Z-H, Jiang J-H, Sun Y-Z (2011) Ganoderma applanatum terpenes protect mouse liver against benzo(α)pyren-induced oxidative stress and inflamma tion. Environ Toxicol Pharm 31: 460-468.
Mahapatra A, Panigrahi S, Patra RC, Rout M, Ganguly S (2018) A study on bovine mastitis related oxidative stress along with therapeutic regimen. Int J Curr Microbiol Appl Sci 7: 247-256.
Malinowski E, Lassa H, Kłossowska A, Smulski S, Markiewicz H, Kaczmarowski M (2006) Etiological agents of dairy cows’ mastitis in western part of Poland. Pol J Vet Sci 9: 191-194.
Mørk T, Jørgensen HJ, Sunde M, Kvitle B, Sviland S, Waage S, Tollersrud T (2012) Persistence of staphylococcal species and genotypes in the bovine udder. Vet Microbiol 159: 171-180.
Mpatswenumugabo JP, Bebora LC, Gitao GC, Mobegi VA, Iraguha B, Kamana O, Shumbusho B (2017) Prevalence of subclinical mastitis and distribution of pathogens in dairy farms of Rubavu and Nyabihu Districts, Rwanda. J Vet Med 2017: 8456713.
Ndahetuye JB, Persson Y, Nyman A-K, Tukei M, Ongol MP, Båge R (2019) Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Trop Anim Health Prod 51: 2037-2044.
Oliveira L, Hulland C, Ruegg PL (2013) Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J Dairy Sci 96: 7538-7549.
Ozbey G, Otlu B, Yakupogullari Y, Celik B, Tanriverdi ES, Kelestemur N, Safak T, Risvanli A, Persad A, Sproston E (2022) Investigation of bacterial pathogens in milk from mastitic dairy cattle by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Thai J Vet Med 52: 63-73.
Pascu C, Herman V, Iancu I, Costinar L (2022) Etiology of mastitis and antimicrobial resistance in dairy cattle farms in the Western Part of Romania. Antibiotics (Basel) 11: 57.
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Farsani SF, Ebrahimie E (2018) Integration of machine learning and meta-analysisidentifies the transcriptomic bio-signature of mastitis disease in cattle. PloS One 22: 13 e0191227.
Sharma N, Jeong DK (2013) Stem cell research: a novel boulevard towards improved bovine mastitis management. Int J Biol Sci 9: 818-829.
Sharma N, Singh NK, Singh OP, Pandey V, Verma PK (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian-AJAS 24: 479-484.
Sharma L, Verma AK, Rahal A, Kumar A, Nigam R (2016) Relationship between serum biomarkers and oxidative stress in dairy cattle and buffaloes with clinical and sub clinical mastitis. Biotechnology 15: 96-100.
Shell WS, Sayed ML, El-Gedawy AA, El Sadek GM, Samy AA, Ali AMM (2017) Identification of Staphylococcus aureus causing bovine mastitis using MALDI -TOF fingerprinting. Int J Dairy Sci 12: 105-113.
Simsek H, Aksakal M (2005) The effect of vitamin E on lipid peroxidation and some antioxidants in blood and milk of cows with subclinical mastitis. Ankara Üniv Vet Fak Derg 52: 71-76.
Simsek H, Aksakal M (2006) The effect of vitamin E on levels of vitamin A, beta carotene, glutahione peroxidase and reduced glutathione in plasma and vitamin A in milk in cows with subclinical mastitis. F.Ü. Sağlık Bil. Dergisi 20: 199-203.
Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI -TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front Microbiol 6: 791.
Supré K, Haesebrouck F, Zadoks RN, Vaneechoutte M, Piepers S, De Vliegher S (2011) Some coagulase-negative Staphylococcus species affect udder health more than others. J Dairy Sci 94: 2329-2340.
Suriyasathaporn W, Chewonarin T, Vinitketkumnuen U (2012) Differences in severity of mastitis and the pathogens causing various oxidative product levels. Adv Biosci Biotechnol 3: 454-458.
Sztachańska M, Barański W, Janowski T, Pogorzelska J, Zduńczyk S (2016) Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol J Vet Sci 19: 119-124.
Taponen S, Liski E, Heikkilä A-M, Pyörälä S (2017) Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J Dairy Sci 100: 493-503.
Turk R, Koledic M, Macesic N, Benic M, Dobranic V, Duricic D, Cvetnič L, Samardzija M (2017) The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows. Mljekarstvo 67: 91-101.
Ustuner MA, Kaman D, Colakoglu N (2017) Effects of benfotiamine and coenzyme Q10 on kidney damage induced gentamicin. Tissue Cell 49: 691-696.
Vanderhaeghen W, Vandendriessche, S, Crombé F, Nemeghaire S, Dispas M, Denis O, Hermans K, Haesebrouck F, Butaye P (2013) Characterization of methicillin-resistant non-Staphylococcus aureus staphylococci carriage isolates from different bovine populations. J Antimicrob Chemother 68: 300-307.
Vasiľ M, Zigo F, Farkašová Z, Pecka-Kielb E, Bujok J, Illek J (2022) Comparison of effect of parenteral and oral supplementation of Selenium and vitamin E on selected antioxidant parameters and udder health of dairy cows. Pol J Vet Sci 25: 155-164.
Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R (2009) Mastitis detection: Current trends and future perspectives. Trends Biotechnol 27: 486-493.
Waller KP (2000) Mammary gland immunology around parturition. Influence of stress, nutrition and genetics. Adv Exp Med Biol 480: 231-245.
Webster J (2020) Understanding the dairy cows. 3rd ed. Oxford, UK: Wiley Blackwell, p 258.
Zajac P, Tomaska M, Murarova A, Capla J, Curlej J (2012) Quality and safety of raw cow’s milk in Slovakia in 2011. Potravinarstvo Slovak J Food Sci 6: 64-73.
Zeryehun T, Abera G (2017) Prevalence and bacterial Isolates of mastitis in dairy farms in selected districts of Eastern Harrarghe Zone, Eastern Ethiopia. J Vet Med 2017: 6498618.
Zigo F, Elecko J, Vasil M, Ondrasovicova S, Farkasova Z, Malova J, Takac L, Zigova M, Bujok J, Pecka-Kielb E, Timkovicova-Lackova P (2019a) The occurrence of mastitis and its effect on the milk malondialdehyde concentrations and blood enzymatic antioxidants in dairy cows. Vet Med 64: 423-432.
Zigo F, Elečko J, Farkašová Z, Zigová M, Vasil M, Ondrašovičová S, Kudelkova L (2019b) Preventive methods in reduction of mastitis pathogens in dairy cows. J Microbiol Biotechnol Food Sci 9: 121-126.
Zigo F, Elečko J, Vasil’ M, Farkasová Z, Zigová M, Takáč L, Takáčová J, Bujok J, Kielb E (2019c) Assessment of lipid peroxidation in dairy cows with subclinical and clinical mastitis. Potravinarstvo Slovak J Food Sci 13: 244-250.
Zigo F, Elecko J, Vasil M, Farkasova Z, Zigova M, Takac L, Takacova J (2019d) Etiology of mastitis in herds of dairy cows and ewes situated in marginal parts of Slovakia. EC Vet Sci 4: 72-80.
Zigo F, Farkašová Z, Výrostková J, Regecová I, Ondrašovičová S, Vargová M, Sasáková N, Pecka -Kielb E, Bursová Š, Kiss DS (2022) Dairy cows’ udder pathogens and occurrence of virulence factors in staphylococci. Animals (Basel) 12: 470.
Zigo F, Vasil’ M, Ondrašovičová S, Výrostková J, Bujok J, Pecka-Kielb E (2021) Maintaining optimal mammary gland health and prevention of mastitis. Front Vet Sci 8: 607311.
Go to article

Authors and Affiliations

G. Ozbey
1
Z. Cambay
1
S. Yilmaz
2
O. Aytekin
1
F. Zigo
3
M. Ozçelik
1
B. Otlu
4

  1. Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Rectorate Campus, 23119, Elazig, Turkey
  2. Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Rectorate Campus, 23119, Elazig, Turkey
  3. Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04001, Slovakia
  4. Department of Medical Microbiology, Faculty of Medicine, Inonu University, Main Campus, 44280, Battalgazi, Malatya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine prevalence of undesirable bacteria and their antimicrobial profile in samples obtained from a productive farm situated in border region Slanské vrchy (Slovakia), involved in keeping sheep and goats for the purpose of processing raw milk to special products (cheeses). Genus and species identification was carried out by PCR method and MALDI –TOF MS. Isolates thus identified were detected for antimicrobial resistance using the Agar Dilution Method.
Bacteria of Staphylococcus spp. exhibited the highest resistance to penicillin (98% isolates). Isolates from the family Enterobacteriacae showed the highest resistance to azithromycin (90%). At the same time, in isolates of Enterococcus spp. we detected high resistance to linezolid (100%). Our investigation showed that all tested strains were resistant to more than one antibiotic used in this study.
Go to article

Authors and Affiliations

J. Výrostková
1
I. Regecová
1
E. Dudriková
1
J. Maľová
1
F. Zigo
M. Kováčová
J. Illek

  1. Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare the effect of parenteral and oral supplementation of Selenium (Se) and vitamin E (VTE) on selected antioxidant parameters in blood and colostrum as well as their effect on the incidence of mastitis in dairy cows during the final phase of gravidity (6 weeks) and first two weeks after calving. For the practical part of the study 36 dairy cows of Slovak pied breed in the second to fourth lactation-gestation cycle were selected. The animals weredivided into three groups: the control (C) and two experimental groups (D1 and D2). The selected groups were treated as follows: in group D1 products containing Se (Selevit inj.) and vitamin E (Erevit sol. inj.) were administered intramuscularly twice, six and three weeks prior to parturition; in group D2 a vitamin-minerals supplement in the form of sodium selenite (Na2SeO3) and dl-α-tocopherol acetate were supplemented orally for six weeks calving. The blood samples were collected from the vena jugularis in dairy cows approximately 42 days before calving (control sampling), on parturition day, and the 14th day after calving. Higher concentrations of Se and VTE were found in the blood plasma samples of both experimental groups collected on the day of parturition. In addition, the orally supplemented group (D2) showed higher Se and α-tocopherol concentrations in blood plasma on the14th day after calving as well a reduction of occurrence of mastitis by about 25 % compared to the control group. The relationship between inflammatory response and oxidative stress was also confirmed. The concentrations of milk malondialdehyde indicating lipid peroxidation during mastitis were significantly higher in milk samples from infected cows than in milk samples from healthy animals in each monitored group. In order to prevent oxidative stress and moderate inflammatory response in dairy cows it is very important to optimally balance their nutritive needs with an appropriate ratio of Se and VTE supplements. Therefore we still recommend supplementation of the cows’ postpartum dietwith 0.5 mg of Se/kg dry matter (DM) and 102 mg of dl-α-tocopherol acetate/kg DM to stabilize their optimal blood levels, stimulate the activity of glutathione peroxidase and reduce the incidence of mastitis.
Go to article

Bibliography

Andrei S, Matei S, Fit N, Cernea C, Ciupe S, Bogdan S, Groza IS (2011) Glutathione peroxidase activity and its relationship with somatic cell count, number of colony forming units and protein content in subclinical mastitis cow’s milk. Rom Biotechnol Letters 16: 6209-6217.
Andrei S, Matei S, Rugina D, Bogdan L, Stefanut C (2016) Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J Anim Sci 61: 407-413.
AOAC, Associatition of Official Analytical Chemists Interntional (2001) Official methods of analysis. 17th ed., Horwitz W. (ed): AOAC Inc., Arlington, USA, ISBN 0-935584-42-0.
Bouwstra RJ, Nielen M, Stegeman JA, Dobbelaar P, Newbold JR, Jansen EHJM, Van Werven T (2010) Vitamin E supplementation during the dry period in dairy cattle. Part 1: Adverse effect on incidence of mastitis postpartum in a double-blind randomized field trial. J Dairy Sci 93: 5684-5695.
Bujňák L, Maskaľová I, Vajda V (2011) Determination of buffering capacity of selected fermented feedstuffs and the effect of dietary acid-base status on ruminal fluid pH. Acta Vet Brno 80: 269-273.
Castillo C, Hernandez J, Valverde I, Pereira V, Sotillo J, Alonso M, Benedito JL (2006) Plasma malondialdehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80: 133-139.
Cohen RD, King BD, Guenther C, Janzen ED (1991) Effect of pre-partum parenteral supplementation of pregnant beef cows with selenium/vitamin E on cow and calf plasma selenium and productivity. Can Vet J 32: 113-115.
Grešáková L, Čobanová K, Faix S (2013) Selenium retention in lambs fed diets supplemented with selenium from inorganic sources. Small Rumin Res 111: 76-82.
Hawari AD, Al-Dabbas F (2008) Prevalence and distribution of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Jordan. Am J Anim Vet Sci 3: 36-39.
Hess D, Keller HE, Oberlin B, Bonfanti R, Schüep W (1991) Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid chromatography on reversed phase. Int J Vitam Nutri Res 61: 232-238. https://pubmed.ncbi.nlm. nih.gov/1794952/
Hoque MN, Das ZC, Rahman AN, Hoque MM (2016) Effect of administration of vitamin E, selenium and antimicrobial therapy on incidence of mastitis, productive and reproductive performances in dairy cows. International J Vet Sci Med 4: 63-70.
Jackson P, Cockcroft P (2002) Clinical examination of farm animals. Blackwell Science Ltd Oxford, UK, ISBN 0-632-05706-8, pp 154-166.
Kafilzadeh F, Kheirmanesh H, ShabankarehHK, Targhibi MR, Maleki E, Ebrahimi M, Meng GY, (2014) Comparing the effect of oral supplementation of vitamin E, injective vitamin E and selenium or both during late pregnancy on production and reproductive performance and immune function of dairy cows and calves. Scientific World Journal, 2014, Article ID 1658415.
Khatti A, Mehrotra S, Patel PK, Singh G., Maurya VP, Mahla AS, Chaudhari RK, Das GK, Singh M., Sarkar M., Kumar Z, Krysznaswamy HN (2017) Supplementation of vitamin E, selenium and increased energy allowance mitigates the transition stress and improves postpartum reproductive performance in the crossbred cow. Theriogenology 104: 142-148.
Kommisrud E, Österas O, Vatn T (2005) Blood Selenium associated with health and fertility in Norvegian dairy herds. Acta Vet Scand 46: 229-240.
Liu F, Cottrell JJ, Furness JB,Rivera RL, Kelly FW, Wijesiriwardana U, Pustovit RV, Fothergill LJ, Bravo DM, Celi P, Leury BJ, Gabler MK, Dunshea FR (2016) Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol. 101: 801-810.
Meglia GE, Jensen SK, Lauridsen C, Waller KP (2006) a-Tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. J Dairy Res 73: 227-234.
Mehdi Y, Dufrasne I (2016) Selenium in Cattle: A Review. Molecules 21: 545.
National Mastitis Council (2001) National Mastitis Council Recommended Mastitis Control Program.
Nutrient requirements of dairy cattle, NRC (2001) National Academy Press, Washington, DC, USA, 7th ed. O’Rourke D (2009) Nutrition and udder health in dairy cows: a review. Irish Vet J 62 (Suppl 4): 15-20.
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erytrocyte glutathione peroxidase. Journal Lab Clin Med 70: 158-169.
Pavlata L, Illek J, Pechova A, Matejiček M (2002) Selenium Status of Cattle in the Czech Republic, Acta Vet. Brno 71: 3-8.
Pavlata L, Prasek J, Filipek A, Pechova A, (2004a) Influence of parenteral administration of selenium and vitamin E during pregnancy on selected metabolic parameters and colostrum quality in dairy cows at parturition. Vet Med Czech 49: 149-155.
Pavlata L, Podhorsky A, Pechova A, Dvorak R (2004b) Incidence of hypovitaminosis E in calves and therapeutic remedy by selenium-vitamin supplementation. Acta Vet. Brno 74: 209-216.
Pechova A, Pavlata L, Illek J (2005) Blood and tissue selenium determination by hydride generation atomic absorption spectrophotometry. Acta Vet. Brno 74: 483-490.
Waller PK, Hallen SC, Emanuelson U, Jensen SK (2007) Supplementation of RRR-alpha-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. J Dairy Sci 90: 3640-3646.
Scholz H, Stober M (2002) Enzootic myodystrophia in preruminant calves. Inter Med and Sur in Cattle (in German). Parey Buchverlag, Berlin 1000-1004.
Sharma N, Singh NK, Singh OP, Pandey V, Verma PK (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Austr J Anim Sci 24: 479-484.
Smith KL, Hogan JS, Weiss WP (1997) Dietary vitamin E and selenium affect mastitis and milk quality. J Anim. Sci 75: 1659-1665.
Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J Sci 176: 70-76.
Turk R, Koledic M, Macesic N, Benic M, Dobranic V, Duricic D, Urbani A, Mestric ZF, Soggiu A, Bonizzi L, Roncada P (2017) The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows. Mljekarstvo 67: 91-101.
Zigo F, Vasil’ M, Ondrašovičová, S, Výrostková J, Bujok J, Pecka-Kielb E (2021) Maintaining optimal mammary gland health and prevention of mastitis. Front. Vet. Sci. 8: 607311.
Go to article

Authors and Affiliations

M. Vasiľ
1
F. Zigo
1
Z. Farkašová
1
E. Pecka-Kielb
2
J. Bujok
2
J. Illek
3

  1. Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, Košice, 04001, Slovakia
  2. Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
  3. Large Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic

This page uses 'cookies'. Learn more