Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Production processes of hot forging most often look similar [1-3]. Forging in several operations, usually in three or four. Most often the first operation is upsetting or flattening (sometimes rolling). The last operation is finishing forging. This applies to the production of steel forgings for the automotive, agricultural and other similar industries. Typical production proceeds as follows: the forgings are cleaned (shot-blasted) and then heat treatment is performed. It can be normalization, hardening and tempering, etc. After the heat treatment, forgings are checked and subjected to strength and microscopic tests, hardness tests, impact tests. The type of tests depends on the recipient. The process described in the work takes place in three operations. The heat treatment used so far is hardening and tempering. An attempt was made to change the heat treatment technology for a selected product made of 42CrMo4 steel (1.7225) (4140). An isothermal annealing test was carried out at different temperatures and for different times. The possibility of using heat from the forging process in heat treatment processes for the described product has been confirmed.

Go to article

Authors and Affiliations

M. Zwierzchowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a description of the phenomena occurring on the surface of the forging dies. A detailed analysis was made of 24 pre-forging dies due to the most intensive wear in this operation. To compare the results, new tools were also analysed. The research described in the study showed that the most dangerous factor for the hot forging process analysed is thermal-mechanical fatigue, which causes small cracks, which in turn quickly leads to the formation of a crack network on the entire contact surface of the tool with forged material. The second phenomenon is the tempering of the surface of the material for a long-term temperature effect. The presence of hard iron oxides in the form of scale from forging material is the accompanying phenomenon that intensifies the processes of tool wear. The paper presents the results of the analysis of the presence of residual magnetic field for forging tools and the results of laboratory tests of wear processes of tool steels for hot work in the presence of a magnetic field and in the presence of scale.

Go to article

Authors and Affiliations

M. Zwierzchowski
Download PDF Download RIS Download Bibtex

Abstract

In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Marciniak
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the multi-operation hot die forging process, performed on a press, of producing a lever forging used in the motorcycles of a renowned producer by means of numerical simulations. The investigations were carried out in order to improve (perfect) the currently applied production technology, mainly due to the presence of forging defects during the industrial production process. The defects result mainly from the complicated shape of the forging (bent main axis, deep and thin protrusions, high surface diversity in the cross section along the length of the detail), which, during the filling of the die by the deformed material, causes the presence of laps, wraps and underfills on the forging. Through the determination of the key parameters/quantities during the forging process, which are difficult to establish directly during the industrial process or experimentally, a detailed and complex analysis was performed with the use of FEM as well as through microstructure examinations. The results of the performed numerical modelling made it possible to determine: the manner of the material flow and the correctness of the impression filling, as well as the distributions of temperature fields and plastic deformations in the forging, and also to detect the forging defects often observed in the industrial process. On this basis, changes into the process were introduced, making it possible to improve the currently realized technology and obtain forgings of the proper quality as well as shape and dimensions.

Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Rychlik
Z. Gronostajski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the paper, verification of welding process parameters of overlap joints of aluminium alloys EN AW-6082 and EN AW-7075, determined on the grounds of a numerical FEM model and a mathematical model, is presented. A model was prepared in order to determine the range of process parameters, for that the risk of hot crack occurrence during welding the material with limited weldability (EN AW-7075) would be minimum and the joints will meet the quality criteria. Results of metallographic and mechanical examinations of overlap welded joints are presented. Indicated are different destruction mechanisms of overlap and butt joints, as well as significant differences in their tensile strength: 110 to 135 MPa for overlap joints and 258 MPa on average for butt joints.

Go to article

Authors and Affiliations

T. Wojdat
ORCID: ORCID
P. Kustroń
K. Jaśkiewicz
M. Zwierzchowski
A. Margielewska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a prototype semi-industrial cooling line developed by the authors, which makes it possible to design a thermal treatment of forgings with the use of the forging heat, together with exemplary test results for forgings forked type. The proposed method of heat treatment dedicated to these forgings was described and compared to traditionally used heat treatment method in chamber furnaces. Next, the original research stand was presented, which performs mechanical fatigue test on final products – forked-type forgings. Forgings after heat treatment and cooling on the prototype line were tested on this stand in condition of cyclically variable mechanical loads in order to resistance to mechanical fatigue was analyzed and the influence of performed exemplary heat treatment on mechanical properties. The presented preliminary investigations performed on the designed combined research standing, consisting of: the prototype controlled cooling line, as well as mechanical fatigue stand point to the possibility of implementing thermal treatment with the use of the heat generated during the forging process and determining its impact on the mechanical properties of forgings.

Go to article

Authors and Affiliations

Z. Gronostajski
ORCID: ORCID
M. Hawryluk
P. Jabłoński
M. Zwierzchowski
A. Barelkowski
P. Widomski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The study presents a durability analysis of dies used in the first operation of producing a valve-type forging from high nickel steel assigned to be applied in motor truck engines. The analyzed process of producing exhaust valves is realized in the forward extrusion technology and next through forging in closed dies. It is difficult to master, mainly due to the increased adhesion of the charge material (high nickel steel) to the tool’s substrate. The mean durability of tools made of tool steel W360, subjected to thermal treatment and nitriding, equals about 1000 forgings. In order to perform a thorough analysis, complex investigations were carried out, which included: a macroscopic analysis combined with laser scanning, numerical modelling by FEM, microstructural tests on a scanning electron microscopy and light microscopy (metallographic), as well as hardness tests. The preliminary results showed the presence of traces of abrasive wear, fatigue cracks as well as traces of adhesive wear and plastic deformation on the surface of the dies. Also, the effect of the forging material being stuck to the tool surface was observed, caused by the excessive friction in the forging’s contact with the tool and the presence of intermetallic phases in the nickel-chromium steel. The obtained results demonstrated numerous tool cracks, excessive friction, especially in the area of sectional reduction, as well as sticking of the forging material, which, with insufficient control of the tribological conditions, may be the cause of premature wear of the dies.

Go to article

Authors and Affiliations

M. Hawryluk
Z. Gronostajski
M. Kaszuba
J. Krawczyk
P. Widomski
J. Ziemba
M. Zwierzchowski
J. Janik

This page uses 'cookies'. Learn more