Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

S304H steel is used in the construction of pressure components of boilers with supercritical operating parameters. The paper presents the results of research on the microstructure following ageing for 30,000 hours at 650 and 700°C. Microstructure examination was performed using scanning and transmission electron microscopy. The precipitates were identified using transmission electron microscopy. The paper analyses the precipitation process and its dynamics depending on the temperature and ageing time in detail. MX carbonitrides and the ε_Cu phase were proved to be the most stable phase, regardless of the test temperature. It was also showed that the M₂₃C₆ carbide precipitates in the tested steel and the intermetallic sigma phase (σ) may play a significant role in the loss of durability of the tested steel. This is related to their significant increase due to the influence of elevated temperature, and their coagulation and coalescence dynamics strongly depend on the ageing/operating temperature level. The qualitative and quantitative identification of the secondary phase precipitation processes described in the study is important in the analysis of the loss of durability of the tested steel under creep conditions.
Go to article

Bibliography

  1.  “Poland’s Energy Policy PEP2040”, [Online]. Available: https://www.gov.pl/web/klimat/polityka-energetyczna-polski, [Accessed: 1. Mar. 2021].
  2.  M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 721‒731, 2020, doi: 10.24425/bpasts.2020.133125.
  3.  G. Golański, A. Zieliński, and A. Zielińska-Lipiec, “Degradation of microstructure and mechanical properties in martensitic cast steel after ageing,” Materialwiss. Werkst., vol. 46, no. 3, pp. 248–255, 2015, doi: 10.1002/mawe.201400325.
  4.  J. Horváth, J. Janovec, and M. Junek, “The Changes in Mechanical Properties of Austenitic Creep Resistant Steels SUPER 304H and HR3C Caused by Medium-Term Isothermal Ageing,” Sol. St. Phen., vol. 258, pp. 639‒642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
  5.  A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mat. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
  6.  G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat- Resistant Austenitic Stainless Steel,” Materials, vol.  13, no. 6, p. 1297, 2020, doi: 10.3390%2Fma13061297.
  7.  A.F. Padilha and P.R. Rios, “Decomposition of Austenite in Austenitic Stainless Steels,” ISIJ Intern., vol. 42, no. 4, pp.  325–327, 2002, doi: 10.2355/isijinternational.42.325.
  8.  R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, “A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance,” Mater. Res., vol. 10, no. 4, pp. 453–460, 2007, doi: 10.1590/ s1516-14392007000400021.
  9.  X. Xie, Y. Wu, C. Chi, and M. Zhang, “Superalloys for Advanced Ultra-Super-Critical Fossil Power Plant Application,” Superalloys, 2015, doi: 10.5772/61139.
  10.  A. Zieliński, G. Golański, M. Kierat, M. Sroka, A. Merda, and K. Sówka, “Microstructure of HR6W Alloy at Elevated Temperature after Prolonged Ageing in Air Atmosphere,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 253–256, 2020, doi: 10.12693/aphyspola.138.253.
  11.  M. Sroka, A. Zieliński, A. Śliwa, M. Nabiałek, Z. Kania-Pifczyk, and I. Vasková, “The Effect of Long-Term Ageing on the Degradation of the Microstructure the Inconel 740h Alloy,” Acta Phys. Pol. A, vol. 137, no. 3, pp. 355–360, 2020, doi: 10.12693/aphyspola.137.355.
  12.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi:10.3390/ma11112130.
  13.  A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater. vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017- 0305.
  14.  M. Sroka, A. Zieliński, A. Hernas, Z. Kania, R. Rozmus, T. Tański, and A. Śliwa, “The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy,” Metalurgija, vol. 56, no. 3‒4, pp. 333‒336, 2017.
  15.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The Influence of the Temperature and Ageing Time on the NiCr23Co12Mo Alloy Microstructure,” Rev. Chim-Bucharest., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
  16.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 913‒921, doi: 10.24425/bpasts.2020.134184.
  17.  A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech- Lond., vol. 32, no. 18, pp. 1899‒1910, 2016, doi: 10.1080/02670836.2016.1150242.
  18.  T. Tokairin et al., “Investigation on long-term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C,” Mat. Sci. Eng. A-Struct., vol. 565, pp. 285–291, 2013, doi: 10.1016/j.msea.2012.12.019.
  19.  G. Golański, C. Kolan, A. Zieliński, and P. Urbańczyk, Degradation process of heat–resistant austenitic stainless steel, Energetics, vol. 11, pp. 727‒730, 2017 [in polish].
  20.  M. Igarashi, Alloy design philosophy of creep – resistant steels In: Abe F., Kern T.U., Viswanathan R. (ED.), Creep resistant steels. Cambridge: Woodhead Publishing, 2008.
  21.  C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu, and X. Xie, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, no. 3, pp. 175–185, 2012., doi: 10.1016/j.pnsc.2012.05.002.
  22.  H. Yu and Ch. Chi, “Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat – resistant steel at early aging state”, Chin. J. Mater. Res., vol. 29, pp. 195‒200, 2015.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Robert Wersta
2
Marek Sroka
3
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland
  2. Office of Technical Inspection, Regional Branch Office based in Wrocław, ul. Grabiszyńska 51, 53-503 Wrocław, Poland
  3. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44 100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Polyester coatings are among the most commonly used types of powder paints and present a wide range of applications. Apart from its decorative values, polyester coating successfully prevents the substrate from environmental deterioration. This work investigates the cavitation erosion (CE) resistance of three commercial polyester coatings electrostatic spray onto AW-6060 aluminium alloy substrate. Effect of coatings repainting (single- and double-layer deposits) and effect of surface finish (matt, silk gloss and structural) on resistance to cavitation were comparatively studied. The following research methods were used: CE testing using ASTM G32 procedure, 3D profilometry evaluation, light optical microscopy, scanning electron microscopy (SEM), optical profilometry and FTIR spectroscopy. Electrostatic spray coatings present higher CE resistance than aluminium alloy. The matt finish double-layer (M2) and single-layer silk gloss finish (S1) are the most resistant to CE. The structural paint showed the lowest resistance to cavitation wear which derives from the rougher surface finish. The CE mechanism of polyester coatings relies on the material brittle-ductile behaviour, cracks formation, lateral net-cracking growth and removal of chunk coating material and craters’ growth. Repainting does not harm the properties of the coatings. Therefore, it can be utilised to regenerate or smother the polyester coating finish along with improvement of their CE resistance.
Go to article

Bibliography

  1.  A. Kausar, “Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers,” J. Plast. Film Sheeting, vol. 35, no. 1, pp. 22–44, Jan. 2019, doi: 10.1177/8756087918783827.
  2.  A. Krzyzak, E. Kosicka, and R. Szczepaniak, “Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites,” Materials, vol. 13, no. 24, Art. no. 5735, Jan. 2020, doi: 10.3390/ma13245735.
  3.  A. Kausar, “High performance epoxy/polyester-based nanocomposite coatings for multipurpose applications: A review,” J. Plast. Film Sheeting, vol. 36, no. 4, pp. 391–408, Oct. 2020, doi: 10.1177/8756087920910481.
  4.  M. Winnicki, T. Piwowarczyk, and A. Małachowska, “General description of cold sprayed coatings formation and of their properties,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 3, pp. 301–310, Jun. 2018.
  5.  L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska, and S. Kozerski, “Review of Functionally Graded Thermal Sprayed Coatings,” Appl. Sci., vol. 10, no. 15, Art. no. 5153, Jan. 2020, doi: 10.3390/app10155153.
  6.  R. Kosydar et al., “Boron nitride/titanium nitride laminar lubricating coating deposited by pulsed laser ablation on polymer surface,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 3, pp. 217–221, 2008.
  7.  T. Burakowski and T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies. Boca Raton, Fla: CRC Press, 1998.
  8.  T. Hejwowski, Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne (Modern wear and erosion resitant thermally deposited coatings). Lublin, Poland: Politechnika Lubelska (Lublin University of Technology), 2013. [Online]. Available: http://bc.pollub. pl/dlibra/docmetadata?id=4059.
  9.  Z.W. Wicks. Jr, F.N. Jones, S.P. Pappas, and D.A. Wicks, Organic Coatings: Science and Technology. John Wiley & Sons, 2007.
  10.  S. Biggs, C.A. Lukey, G.M. Spinks, and S.-T. Yau, “An atomic force microscopy study of weathering of polyester/melamine paint surfaces,” Prog. Org. Coat., vol. 42, no. 1, pp. 49–58, Jun. 2001, doi: 10.1016/S0300-9440(01)00147-3.
  11.  M. Oleksy et al., “Kompozycje modyfikowanych farb proszkowych. Cz. 1. Hybrydowe kompozycje poliestrowych farb proszkowych,” Polimery, vol. 63, no. 11– 12, pp. 762‒771, 2018, doi: 10.14314/polimery.2018.11.4.
  12.  M. Fernández-Álvarez, F. Velasco, and A. Bautista, “Effect on wear resistance of nanoparticles addition to a powder polyester coating through ball milling,” J. Coat. Technol. Res., vol. 15, no. 4, pp. 771–779, Jul. 2018, doi: 10.1007/s11998-018-0106-z.
  13.  M. Zouari, M. Kharrat, and M. Dammak, “Wear and friction analysis of polyester coatings with solid lubricant,” Surf. Coat. Technol., vol. 204, no. 16, pp. 2593–2599, May 2010, doi: 10.1016/j.surfcoat.2010.02.001.
  14.  I. Stojanović, V. Šimunović, V. Alar, and F. Kapor, “Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media,” Coatings, vol. 8, no. 3, Art. no. 98, Mar. 2018, doi: 10.3390/coatings8030098.
  15.  K.V.S.N. Raju and D.K. Chattopadhyay, “Polyester coatings for corrosion protection,” in High-Performance Organic Coatings, A.S. Khanna, Ed. Woodhead Publishing, 2008, pp. 165–200. doi: 10.1533/9781845694739.2.165.
  16.  M. Szala and E. Kot, “Influence of repainting on the mechanical properties, surface topography and microstructure of polyester powder coatings,” Adv. Sci. Technol. Res. J., vol. 11, no. 2, pp. 159–165, Jun. 2017, doi: 10.12913/22998624/69680.
  17.  M. Walczak, D. Pieniak, and M. Zwierzchowski, “The tribological characteristics of SiC particle reinforced aluminium composites,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 116–123, Jan. 2015, doi: 10.1016/j.acme.2014.05.003.
  18.  M. Szala, L. Łatka, M.Walczak, and M.Winnicki, “Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/ Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass,” Metals, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/met10070856.
  19.  V. Caccese, K.H. Light, and K.A. Berube, “Cavitation erosion resistance of various material systems,” Ships Offshore Struct., vol. 1, no. 4, pp. 309–322, Apr. 2006, doi: 10.1533/saos.2006.0136.
  20.  T. Deplancke, O. Lame, J.-Y. Cavaille, M. Fivel, M. Riondet, and J.-P. Franc, “Outstanding cavitation erosion resistance of Ultra High Molecular Weight Polyethylene (UHMWPE) coatings,” Wear, vol. 328–329, pp. 301–308, Apr. 2015, doi: 10.1016/j.wear.2015.01.077.
  21.  N. Qiu, L. Wang, S. Wu, and D.S. Likhachev, “Research on cavitation erosion and wear resistance performance of coatings,” Eng. Fail. Anal., vol. 55, pp. 208–223, Sep. 2015, doi: 10.1016/j.engfailanal.2015.06.003.
  22.  S. Chi, J. Park, and M. Shon, “Study on cavitation erosion resistance and surface topologies of various coating materials used in shipbuilding industry,” J. Ind. Eng. Chem., vol. 26, pp. 384–389, Jun. 2015, doi: 10.1016/j.jiec.2014.12.013.
  23.  G.L. García et al., “Cavitation resistance of epoxybased multilayer coatings: Surface damage and crack growth kinetics during the incubation stage,” Wear, vol. 316, no. 1–2, pp. 124–132, Aug. 2014, doi: 10.1016/j.wear.2014.04.007.
  24.  M. Hibi, K. Inaba, K. Takahashi, K. Kishimoto, and K. Hayabusa, “Effect of Tensile Stress on Cavitation Erosion and Damage of Polymer,” J. Phys. Conf. Ser., vol. 656, no. 1, p. 012049, Nov. 2015, doi: 10.1088/1742-6596/656/1/012049.
  25.  G. Taillon, S. Saito, K. Miyagawa, and C. Kawakita, “Cavitation erosion resistance of high-strength fiber reinforced composite material,” IOP Conf. Ser. Earth Environ. Sci., vol. 240, no. 6, p. 062056, Mar. 2019, doi: 10.1088/1755-1315/240/6/062056.
  26.  N. Sheppard, “The Historical Development of Experimental Techniques in Vibrational Spectroscopy,” in Handbook of Vibrational Spectroscopy, American Cancer Society, 2006. doi: 10.1002/0470027320.s0101.
  27.  R.M. Silverstein et al., Spectrometric Identification of Organic Compounds, 8th Edition, 8th edition. Wiley, 2014.
  28.  W. Macek et al., “Profile and Areal Surface Parameters for Fatigue Fracture Characterisation,” Materials, vol. 13, no. 17, Art. no. 3691, 2020, doi: 10.3390/ma13173691.
  29.  “ISO 4287:1997. Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters,” International Organization for Standardization, Geneva, Switzerland, Norma, 1997.
  30.  A. Skoczylas, “Influence of Centrifugal Shot Peening Parameters on the Impact Force and Surface Roughness of EN-AW2024 Aluminum Alloy Elements,” Adv. Sci. Technol. Res. J., vol. 15, no. 1, pp. 71–78, Mar. 2021, doi: 10.12913/22998624/130511.
  31.  “ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus,” ASTM International: West Conshohocken, Philadelphia, PA, USA, 2010.
  32.  M. Szala, M. Walczak, L. Łatka, K. Gancarczyk, and D. Özkan, “Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying,” Adv. Mater. Sci., vol. 20, no. 2, pp. 26–38, Jun. 2020, doi: 10.2478/adms-2020-0008.
  33.  J. Steller, A. Krella, J. Koronowicz, and W. Janicki, “Towards quantitative assessment of material resistance to cavitation erosion,” Wear, vol. 258, no. 1, pp. 604–613, Jan. 2005, doi: 10.1016/j.wear.2004.02.015.
  34.  J. Steller, “International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation,” Wear, vol. 233–235, pp. 51–64, Dec. 1999, doi: 10.1016/S0043-1648(99)00195-7.
  35.  B. Dybowski, M. Szala, T. J. Hejwowski, and A. Kiełbus, “Microstructural phenomena occurring during early stages of cavitation erosion of Al-Si aluminium casting alloys,” Solid State Phenom., vol. 227, pp. 255–258, 2015, doi: 10.4028/www.scientific.net/SSP.227.255.
  36.  J. Zhao, Z. Jiang, J. Zhu, J. Zhang, and Y. Li, “Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the DistilledWater,” Metals, vol. 10, no. 12, Art. no. 1631, Dec. 2020, doi: 10.3390/met10121631.
  37.  J. Lin, Z. Wang, J. Cheng, M. Kang, X. Fu, and S. Hong, “Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc- Sprayed Fe-Based Amorphous/Nanocrystalline Coatings,” Coatings, vol. 7, no. 11, Art. no. 2000, Nov. 2017, doi: 10.3390/coatings7110200.
  38.  M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki, and M. Michalak, “Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3‒13 wt% TiO2 Coatings,” Processes, vol. 8, no. 12, Art. no. 1544, Dec. 2020, doi: 10.3390/pr8121544.
  39.  J.C. Lindon, Encyclopedia of Spectroscopy and Spectrometry – 3rd Edition. 2010. [Online]. Available: https://www.elsevier.com/books/ encyclopedia-of-spectro scopy-and-spectrometry/lindon/978-0-12-803224-4 (Accessed: Feb. 24, 2021).
  40.  J.I. Haleem, “A Review of: Handbook of Near-Infrared Analysis,” Instrum. Sci. Technol., vol. 22, no. 3, pp. 283–285, Aug. 1994, doi: 10.1080/10739149408000456.
  41. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, 2004, doi: 10.1002/0470011149.ch3.
Go to article

Authors and Affiliations

Mirosław Szala
1
ORCID: ORCID
Aleksander Świetlicki
2
Weronika Sofińska-Chmiel
3

  1. Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  3. Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Appropriate modeling of unsteady aerodynamic characteristics is required for the study of aircraft dynamics and stability analysis, especially at higher angles of attack. The article presents an example of using artificial neural networks to model such characteristics. The effectiveness of this approach was demonstrated on the example of a strake-wing micro aerial vehicle. The neural model of unsteady aerodynamic characteristics was identified from the dynamic test cycles conducted in a water tunnel. The aerodynamic coefficients were modeled as a function of the flow parameters. The article presents neural models of longitudinal aerodynamic coefficients: lift and pitching moment as functions of angles of attack and reduced frequency. The modeled and trained aerodynamic coefficients show good consistency. This method manifests great potential in the construction of aerodynamic models for flight simulation purposes
Go to article

Bibliography

  1.  C. Galiński and R. Żbikowski, “Some problems of micro air vehicles development,” Bull. Polish Acad. Sci. Tech. Sci., vol. 55, no. 1, pp. 91–98, 2007.
  2.  K. Sibilski, M. Nowakowski, D. Rykaczewski, P. Szczepaniak, A. Żyluk, A. Sibilska-Mroziewicz, M. Garbowski, and W. Wróblewski, “Identification of fixed-wing micro aerial vehicle aerodynamic derivatives from dynamic water tunnel tests,” Aerospace, vol. 7, no. 8, p. 116, 2020, doi: 10.3390/aerospace7080116.
  3.  K. Sibilski, M. Lasek, A. Sibilska-Mroziewicz, and M. Garbowski, Dynamcs of Flight of Fixed Wings Micro Aerial Vehicles, Publishing House of the Warsaw University of Technology, Warsaw, 2020.
  4.  M. Abdulrahim, S. Watkins, R. Segal, M. Marino, and J. Sheridan, “Dynamic sensitivity to atmospheric turbulence of fixed-wing UAV with varying configuration,” J. Aircaft, vol. 47, no. 6, pp. 1873–1883, 2010, doi: 10.2514/1.46860.
  5.  A.N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,” Dokl. Akad. Nauk SSSR, vol. 114, no. 5, pp. 953–956, 1957, [in Russian].
  6.  W.E. Faller, S.J. Schreck, and H.E. Helin, “Real-time model of three dimensional dynamic reattachment using neural networks,” J. Aircraft, vol. 32, no. 6, pp. 1177–1182, 1995, doi: 10.2514/3.46861.
  7.  W.F. Faller and S.J. Schreck, “Unsteady fluid mechanics applications of neural networks,” J. Aircraft, vol. 34, no. 1, pp. 48–55, 1997, doi: 10.2514/2.2134.
  8.  M. Kerho and B. Kramer, Research water tunnels – specification, Rolling Hills Research Corporation (RHRC), El Segundo, CA, USA, 2003.
  9.  M. Kerho and B. Kramer, Five-component balance and computer-controlled model support system for water tunnel applications, Rolling Hills Research Corporation (RHRC), El Segundo, CA, USA, 2009.
  10.  M. Kerho and B. Kramer, Ultrasonic flowmeter and temperature probe, Rolling Hills Research Corporation (RHRC), El Segundo, CA, USA, 2010.
  11.  P.H. Reisenthel, “Development of nonlinear indicial model using response functions generated by a neural network,” in Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997, p. AIAA 97‒0337, doi: 10.2514/6.1997-337.
  12.  S. Hitzel and D. Zimper, “Wind tunnel simulation and ‘Real’ flight of advanced combat aircraft: industrial perspective,” J. Aircraft, vol. 55, no. 2, pp. 587–602, 2018, doi: 10.2514/1.C033696.
  13.  D. Rohlf, S. Schmidt, and J. Irving, “Stability and control analysis for an unmanned aircraft configuration using system-identification techniques,” J. Aircraft, vol. 49, no. 6, pp. 1597–1609, 2012, doi: 10.2514/1.C031392.
  14.  D.J. Ignatyev and A.N. Khrabrov, “Neural network modelling of unsteady aerodynamic characteristics at high angles of attack,” Aerospace Sci. Technol., vol. 41, pp. 106–115, 2015, doi: 10.1016/j.ast.2014.12.017.
  15.  D. Ignatyev and A. Khrabrov, “Experimental study and neural network modeling of aerodynamic characteristics of canard aircraft at high angles of attack,” Aerospace, vol. 5, no. 1, p. 26, 2018, doi: 10.3390/aerospace5010026.
  16.  P.C. Murphy, V. Klein, and N.T. Frink, “Nonlinear unsteady aerodynamic modeling using wind-tunnel and computational data,” J. Aircraft, vol. 54, no. 2, pp. 659–683, 2017, doi: 10.2514/1.C033881.
  17.  P. Murphy, V. Klein, and N. Szyba, “Progressive aerodynamic model identification from dynamic water tunnel test of the F-16XL aircraft,” in Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, 2004, Providence, RI, USA, p. AIAA 2004–5727, doi: 10.2514/6.2004-5277.
  18.  B. Paprocki, A. Pregowska, and J. Szczepański, “Optimizing information processing in brain-inspired neural networks,” Bull. Polish Acad. Sci. Tech. Sci., vol. 8, no. 2, pp. 225–233, 2020, doi: 10.24425/bpasts.2020.131844.
  19.  W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115– 133, 1943, doi: 10.1007/BF02478259.
  20.  J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory of neural computation, CRC Press, Taylor & Francis Inc., London – N-York, 1991.
  21.  R.A. Kosiński, Artificial neural networks. non-linear dynamics and chaos, PWN, Warszawa, 2017.
  22.  S. Osowski, Neural networks for information processing, 4th Edition, Publishing House of the Warsaw University of Technology, Warsaw, 2020.
  23.  R. Tadeusiewicz, Neural networks, Akademic Publisching House, Warsaw, 1993.
  24.  K. Diamantaras and S. Kung, Principal component neural networks, theory and application, J. Wiley, New York, 1996.
  25.  R. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., vol. 4, no. 2, pp. 4–22, 1987, doi: 10.1109/ MASSP.1987.1165576.
  26.  K.S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural network”, IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4–27, 1990, doi: 10.1109/72.80202.
  27.  A. Cichocki and R. Unbehauen, “Neural networks for solving systems of linear equations and related problems,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 39, no. 2, pp. 124–138, 1992, doi: 10.1109/81.167018.
  28.  J. Denoeux and R. Lengalle, “Initialising back propagation networks with prototypes,” Neural Networks, vol. 6, no. 3, pp. 351–363, 1993, doi: 10.1016/0893-6080(93)90003-F.
  29.  E. Karnin, “A simple procedure for pruning backpropagation trained neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 239–242, 1990, doi: 10.1109/72.80236.
  30.  J. Manerowski and D. Rykaczewski, “Modelling of UAV flight dynamics using perceptron artificial neural networks,” J. Theor. App. Mech., vol. 43, no. 2, pp. 297–307, 2005.
  31.  R. Barron, “Approximation and estimation bounds for artificial neural networks,” Machine Learning, vol. 14, pp. 115–133, 1994, doi: 10.1007/BF00993164.
  32.  J.F. Horn, A.J. Calise, and J.V.R. Prasad, “Flight Envelope Cueing on a Tilt-Rotor Aircraft Using Neural Network Limit Prediction,” J. Amer. Helic. Soc., vol. 46, no. 1, pp. 23–31, 2001, doi: 10.4050/JAHS.46.23.
  33.  T. Cepowski and T. Szelangiewicz, “Application of Artificial Neural Networks to investigations of ship seakeeping ability,” Pol. Marit. Res., vol. 8, no. 3, pp. 11–15, 2001.
  34.  T. Mueller, “Aerodynamic Measurements at Low Reynolds Number for Fixed Wing Micro-Air Vehicles,” in AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications, NATO/VKI, Brussel, Belgium, 1999.
  35.  Dong Sun, Huaiyu Wu, Rong Zhu, and Ling Che Hung, “Development of Micro Air Vehicle Based on Aerodynamic Modeling Analysis in Tunnel Tests,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 2235–2240, doi: 10.1109/ROBOT.2005.1570445.
  36.  R. Randall, S. Shkarayev, G. Abate, and J. Babcock, “Longitudinal aerodynamics of rapidly pitching fixed-wing Micro Air Vehicles,” J. Aircraft, vol. 49, no. 2, pp. 453–471, 2012, doi: 10.2514/1.C031378.
  37.  C. Tongchitpakdee, W. Hlusriyakul, C. Pattanathummasid, and C. Thipyopas, “Aerodynamic investigation and analysis of wingtip thickness’s effect on low aspect ratio wing,” in Proc. International Micro Air Vehicle Conference and Flight Competition (IMAV2013), Toulouse, France, 2013.
  38.  J-M. Moschetta, “The aerodynamics of micro air vehicles: technical challenges and scientific issues,” Int. J. Eng. Sys. Model. Sim., vol. 6, no. 3/4, pp. 134–148, 2014, doi: 10.1504/IJESMS.2014.063122.
  39.  D. Viieru, J. Tang, Y. Lian, H. Liu, and W. Shy, “Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles,” in Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2006, p. AIAA 2006–503, doi: 10.2514/6.2006-503.
  40.  D. Gyllhem, K. Mohseni, and D. Lawrence, “Numerical simulation of flow around the Colorado Micro Aerial Vehicle,” in Proceedings 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Canada, 2005, p. AIAA 2005–4757, doi: 10.2514/6.2005-4757.
  41.  V.V. Golubev and M,R. Visbal, “Modeling MAV response in gusty urban environment,” Int. J. Micro Air Veh., vol. 4, no. 1, pp. 79–92, 2012, doi: 10.1260/1756-8293.4.1.79.
  42.  R. Cory and R. Tedrake, “Experiments in fixed-wing UAV perching,” in Proceedings AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hi, USA, 2008, p. AIAA 2008–7256, doi: 10.2514/6.2008-7256.
  43.  D.V. Uhlig and M.S. Selig, “Stability characteristics of Micro Air Vehicles from experimental measurements,” in Proc. 29th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 2011, p. AIAA 2011–3659. doi: 10.2514/6.2011-3659.
Go to article

Authors and Affiliations

Dariusz Rykaczewski
ORCID: ORCID
Mirosław Nowakowski
ORCID: ORCID
Krzysztof Sibilski
ORCID: ORCID
Wiesław Wróblewski
ORCID: ORCID
Michał Garbowski

This page uses 'cookies'. Learn more