Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the method of magnetron sputtering for the deposition of conductive emitter coatings in semiconductor structures. The layers were applied to a silicon substrate. For optical investigations, borosilicate glasses were used. The obtained layers were subjected to both optical and electrical characterisation, as well as structural investigations. The layers on silicon substrates were tested with the four-point probe to find the dependence of resistivity on the layer thickness. The analysis of the elemental composition of the layer was conducted using a scanning electron microscope equipped with an EDS system. The morphology of the layers was examined with the atomic force microscope (AFM) of the scanning electron microscope (SEM) and the structures with the use of X-ray diffraction (XRD). The thickness of the manufactured layers was estimated by ellipsometry. The composition was controlled by selecting the target and the conditions of the application, i.e. the composition of the plasma atmosphere and the power of the magnetrons. Based on the obtained results, this article aims to investigate the influence of the manufacturing method and the selected process parameter on the optical properties of thin films, which should be characterised by the highest possible value of the transmission coefficient (>85–90%) and high electrical conductivity.
Go to article

Bibliography

  1.  L. Żukowska, J. Mikuła, M. Staszuk, and M. Musztyfaga-Staszuk, “Structure And Properties Of PVD Coatings Deposited On Cermets,” Arch. Metall. Mater., vol. 60, no. 2, pp. 727–733, 2015, doi: 10.1515/amm-2015-0198.
  2.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al-RE alloys substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. 137549, 2021 (in print), doi: 10.24425/bpasts.2021.137549.
  3.  Y.-S. Cho, M. Han, and S. H. Woo, “Electrospinning of Antimony Doped Tin Oxide Nanoparticle Dispersion for Transparent and Conductive Films,” Arch. Metall. Mater., vol. 65, no. 4, pp.  1345–1350, 2020, doi: 10.24425/amm.2020.133697.
  4.  R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D.S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2%) and electrical resistance,” Nat. Commun., vol. 7, pp. 13771, 2016, doi: 10.1038/ncomms13771.
  5.  M. Kuc et al., “ ITO layer as an optical confinement for nitride edge-emitting lasers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, 2020, doi: 10.24425/bpasts.2020.131834.
  6.  Y. Cui and C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, vol. 291, pp. 851–853, 2001, doi: 10.1126/science.291.5505.851.
  7.  J. Kryłow, J. Oleński, Z. Sawicki, and A. Tumański, “Doping of semiconductors, Technological processes in semiconductor electronics,” Scientific and Technical Publishing House, Warsaw 1980 [in Polish].
  8.  Ş. Ţălu, S. Kulesza, M. Bramowicz, K. Stępień and D. Dastan, “Analysis of the Surface Microtexture of Sputtered Indium Tin Oxide Thin Films,” Arch. Metall. Mater., vol. 66, no. 2, pp.  443–450, 2021, doi: 10.24425/amm.2021.135877.
  9.  Y.S. Hsu and S.K. Gandhi, “The Effect of Phosphorus Doping on Tin Oxide Films Made by the Oxidation of Phosphine and Tetramethyltin II. Electrical Properties J. Electrochem. Soc. II,” Sol. State Sci. Technol., vol. 127, p. 1592, 1980.
  10.  T. Nakahara and H. Koda, Chemical Sensor Technology. Ed., N. Emazoe,” Elsevier, New York, 1991, vol. 3, p. 19.
  11.  S.-J. Hong, S.-H. Song, B.J. Kim, J.-Y. Lee, and Y.-S Kim, “ITO Nanoparticles Reused from ITO Scraps and Their Applications to Sputtering Target for Transparent Conductive Electrode Layer,” Nano Converg., vol. 4, no 23, p. 23, 2017.
  12.  Q. Li, E. Gao, and A.X. Wang, “Ultra-Compact and Broadband Electro-Absorption Modulator Using an Epsilon-near-Zero Conductive Oxide,” Photonics Res., vol. 6, no. 4, pp. 277–281, 2018, doi: 10.1364/PRJ.6.000277.
  13.  K. Ellmer, “Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes,” Nat. Photonics, vol. 6, pp. 809–817, 2012, doi: 10.1038/nphoton.2012.282.
  14.  Q. Li et al., “3D ITO-Nanowire Networks as Transparent Electrode for All-Terrain Substrate,” Sci. Rep., vol.  9, no. 4983, 2019.
  15.  C. Guillén and J. Herrero, “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates,” Thin Solid Films, 480–481, pp. 129–132, 2005, doi: 10.1016/j.tsf.2004.11.040.
  16.  C. Guillén and J. Herrero, “Polycrystalline growth and recrystallisation process in sputtering ITO thin films,” Thin Solid Films, vol. 510, pp. 260–264, 2006.
  17.  H. Morikawa and M. Fujita, “Crystallisation and electrical property change on the annealing of amorphous indium-oxide and indium tin oxide films,” Thin Solid Films, vol. 359, pp. 61–67, 2000.
  18.  F. Kurdesau, G. Khripunov, A.F da Cunha, M Kaelin, and A.N Tiwari, “Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature,” J. Non-Crystall. Solids, vol. 352, pp. 1466–1470, 2006, doi: 10.1016/j.jnoncrysol.2005.11.088.
  19.  C.L. Tien, H.Y. Lin, C.K. Chang, and C.J. Tang, “Effect of Oxygen Flow Rate on the Optical, Electrical, and Mechanical Properties of DC Sputtering ITO Thin Films,” Adv. Condens. Matter Phys., 2019, p. 2647282, 2019.
  20.  J. Txintxurreta, E. G-Berasategui, R. Ortiz, O. Hernández, L. Mendizábal, and J. Barriga, “Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters,” Coatings, vol. 11, p.  92, 2021, doi: 10.3390/coatings11010092.
  21.  R.K. Tyagi, P. Saxena, A. Vashisth, and S. Mehndiratta, “PVD based thin film deposition methods and characterisation/ property of different compositional coatings- a critical analysis,” Materials Today: Proceedings 2nd International Conference, vol.  38, pp. 259–264, 2020.
  22.  P. Sawicka-Chudy et al., “Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices, AIP Advances, vol. 9, p. 055206, 2019, doi: 10.1063/1.5093037.
  23.  B. Wicher et al., “Structure and Electrical Resistivity Dependence of Molybdenum Thin Films Deposited by DC Modulated Pulsed Magnetron Sputtering,” Arch. Metall. Mater., vol. 63, no. 3, pp. 1339–1344, 2018, doi: 10.24425/123809.
  24.  L.J. Meng, E. Liang, J. Gao, V. Teixeira, and M.P. dos Santos, “Study of indium tin oxide thin films deposited on acrylics substrates by ion beam assisted deposition technique,” J. Nanosci. Nanotechnol., vol. 9, pp. 4151–4155, 2009, doi: 10.1166/jnn.2009.m24.
  25.  J.C. Manifacier, M. De Murcia, J.P. Fillard, and E. Vicario, “Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure,” Thin Solid Films, vol. 41, pp. 127–144, 1977.
  26.  M. Iftikhar, I.M. Ali, and M.A. Al-Jenabi, “Structural and Optical Properties of In2O3 and Indium Tin Oxide Thin Films,” J. Unive. Anbar Pure Sci., vol. 11, no.1, pp.  39–46, 2017.
  27.  H. Kim et al., “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” J. Appl. Phys., vol. 86, pp. 6451–6461, 1999, doi: 10.1063/1.371708.
  28.  N. Nosidlak, “Application of polymer systems as materials in photovoltaic cells and electroluminescent diodes”. PhD Thesis, Krakow 2013.
  29.  L.F.J. Piper et al., “In2O3 is found about 2.8 eV below the Fermi level,” Appl. Phys. Lett., vol. 94, p. 022105, 2009.
Go to article

Authors and Affiliations

Małgorzata Musztyfaga-Staszuk
1
Dušan Pudiš
2
Robert Socha
3
Katarzyna Gawlińska-Nęcek
4
Piotr Panek
4

  1. Silesian University of Technology, Welding Department, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Faculty of Faculty of Electrical Engineering and Information Technology, Department of Physics, Zilina, Slovakia
  3. Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
  4. Institute of Metallurgy and Materials Science PAS, ul. Reymonta 25, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Coagulation is a process during which a flocculent suspension may sediment. It is characterized by its polydisperse structure. There are three main fractions of sedimentation particles after coagulation: spherical, non-spherical and porous agglomerates. Each of the fractions sediments in a different manner, for different forces act on them, due to interactions between the particles, inhibition or entrainment of neighboring particles. The existing sedimentation models of polydisperse suspension do not consider the flocculation process, i.e. the change of one particle into another during sedimentation, resulting from their agglomeration. The presented model considers the shape of particles and flocculation, which is a new approach to the description of the mathematical process of sedimentation. The velocity of sedimentation depends on the concentration of particles of a given fraction in a specific time step. Following the time step, the heights of individual fractions are calculated. Subsequently, new concentration values of individual fractions are determined for the correspondingly reduced volume of occurrence of a given fraction in the volume analyzed, taking particle flocculation into consideration. The new concentration values obtained in this way allow to recalculate the total sedimentation rates for the next time step. Subsequent iterations allow for numerical simulation of the sedimentation process.
Go to article

Bibliography

  1.  Z. Su et al., “Coagulation of Surface water: Observations of the significance of biopolymers,” Water Res., vol. 126, pp. 144–152, 2017, doi: 10.1016/j.watres.2017.09.022.
  2.  L. Postolachi et al., “Improvement of coagulation process for the Prut River water treatment using aluminum sulphate,” Chem. J. Mold., vol. 10, no. 1, pp. 25–32, 2015, doi: 10.3923/jest.2017.268.275.
  3.  D. Mroczko and I. Zimoch, “Coagulation of pollutions occurring in surface waters during time of dynamic water flow,” Ecol. Eng., vol. 19, no. 2, pp. 15–22, 2018, doi: 10.12911/22998993/118273.
  4.  S. Janiszewska, “Comparison of coagulation methods and electrocoagulation in purification model gray water,” Eko-Dok, vol. 26, pp. 223– 229, 2012.
  5.  I. Krupińska and A. Konkol, “The influence of selected technological parameters on the course and effectiveness of coagulation in graund water treatment”, Uniwersytet Zielonogórski, Zeszyty Naukowe, Environmental Egineering, vol. 37, no. 157, pp. 36–52, 2015.
  6.  T.E. Dutkiewicz, Fizykochemia powierzchni, Wydawnictwa Naukowo-Techniczne, Warsaw, 1998.
  7.  R. Wardzyńska, L. Smoczyński, R. Wolicki, B. Załęska-Chróst, and Z. Bukowski, “Computer simulation of flocculation and chemical coagulation,” Ecol. Chem. Eng., vol. 17, no. 12, pp.  1663–1672, 2010.
  8.  B. Joon Lee and F. Molz, “Numerical simulation of turbulenceinduced flocculation and sedimentation in a flocculent-aided sediment retention pond,” Environ. Eng. Res., vol. 19, no. 2, pp. 165–174, 2014, doi: 10.4491/eer.2014.19.2.165.
  9.  M.A. Goula, M. Kostoglou, D.T. Karapantsios, and I.A. Zoubolis, “A CFD methodology for the design of sedimentation tanks in potable water treatment, Case study: The influence of a feed flow control baffle,” Chem. Eng. J., vol. 140, pp. 110–121, 2008, doi: 10.1016/j. cej.2007.09.022.
  10.  L.A. Kowal and M. Świderska-Bróż, Water Treatment, Polish Scientific Publishers PWN, Warsaw–Wroclaw, 2000.
  11.  P.W. Atkins, Physical chemistry, Polish Scientific Publishers PWN, Warsaw, 2007.
  12.  W.T. Hermann, Physical chemistry, Wydawnictwo lekarskie PZWL, Warsaw, 2007.
  13.  S. Berres, R. Bürger, and M.E. Tory, “Applications of polydisperse sedimentation models,” Chem. Eng. J., vol. 111, no.  2–3, pp. 105–117, 2005.
  14.  R. Błażejewski, Sedimentation of solid particles. Fundamentals of theory with examples of applications, Polish Scientific Publishers PWN, Warsaw, 2015.
  15.  J. Bandrowski, H. Merta, and J. Zioło, Sedimentation of suspensions. Rules and design, Silesian University of Technology Publisher, Gliwice, 1995.
  16.  M. Dziubiński and J. Prywer, Mechanics of two-phase fluids, WNT publisher, Warsaw, 2018.
  17.  Z. Orzechowski, J. Prywer, and R. Zarzycki, Fluid mechanics in engineering and environmental protection, Scientific and Technical Publishers, Warsaw 2009.
  18.  K.D. Basson, S. Berres, and R. Bürger, “On models of polydisperse sedimentation with particle-size-specific hindered-settling factors,”Appl. Math. Modell., vol. 33, no. 4, pp. 1815–1835, 2009, doi: 10.1016/j.apm.2008.03.021.
  19.  M. Bargieł, A.R. Ford, and M.E. Tory, “Simulation of sedimentation of polydisperse suspensions: A particle-based Approach,” AIChE J., vol. 51, no. 9, pp. 2457–2468, 2005.
  20.  S.P. Antal, R.T. Lahey, and L.E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, vol. 17, pp. 635, 1991, doi: 10.1016/0301-9322(91)90029-3.
  21.  J.F. Richardson and W.N. Zaki, “Sedimentation and Fluidization. Part 1,” Trans. Inst. Chem. Eng., vol. 32, pp. 35–53, 1954.
  22.  J.F. Richardson, J.H. Harker, and J.R. Backhurst, Chemical engineering, vol.2 – Particle Technology and Separtion Processes, Butterworth- Heinemann, 2002.
  23.  J. Garside and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., vol. 16, pp. 206–214, 1977, doi: 10.1021/i260062a008.
  24.  J. Happel and N. Epstein, “Viscous flow in multiparticle systems: cubical assemblage of uniform spheres,” Ind. Eng.Chem., vol. 46, pp. 1187–1194, 1954.
  25.  F. Barnea and J. Mizrahi, “A generalized approach of fluid dynamics of particulate system. Part I. General correlation for fluidization and sedimentation in solid multiparticle systems,” J. Fluid Mech., vol. 52, no. 2, pp. 245–268, 1973.
  26.  E. Barnea and J. Mizrahi, “A generalized approach to the fluid dynamics of particulate systems: General correlation for fluidization and sedimentation in solid multiparticle systems,” The Chem. Eng. J., vol. 5, no. 2, pp. 171–189, 1973, doi: 10.1016/0300-9467(73)80008-5.
  27.  P.M. Biesheuvel, H. Verweij and V. Breedveld, “Evaluation of instability criterion for bidisperse sedimentation,” AIChE J., vol. 47, no. 1, pp. 45–52, 2001, doi: 10.1002/aic.690470107.
  28.  V.S. Patwardhan and C. Tien, “Sedimentation and fluidization in solid-liquid systems: A simple approach,” AIChE J., vol. 31, no. 1, pp. 146–149, Jan. 1985, doi: 10.1002/aic.690310117.
  29.  M. Syamlal and T.J. O’Brien, “Simulation of granular layer inversion in liquid fluidized beds,” Int. J. Multiphase Flow, vol. 14, no. 4, pp. 473–481, 1988, doi: 10.1016/0301-9322(88)90023-7.
  30.  T.N. Smith, “The differential sedimentation of particles of two different spacies,” Inst. Chem. Eng. Trans., vol. 43, pp. T69–T73, 1965.
  31.  P. Krishnamoorthy, “Sedimentation model and analysis for differential settling of two-particle-size suspensions in the Stokes region,” Int. J. Sediment Res., vol. 25, no. 2, pp. 119–133, 2010, doi: 10.1016/S1001-6279(10)60032-7.
  32.  J. Bandrowski, H. Merta and J. Zioło, Sedimentation of suspensions, principles and design, Silesian University of Technology Publisher, Gliwice, 1995.
  33.  J.F. Richardson and F.A. Shabi, “The determination of concentration distribution on sedimenting suspension using radioactive solids,” Transactions of the Institution of Chemical Engineers, vol. 38, pp. 33–41, 1960.
  34.  T.N. Smith, “The differential sedimentation of particles of various species,” Transactions of the Institution of Chemical Engineers, vol. 45, pp. T311–T313, 1967.
  35.  B. Xue and Y. Sun, “Modeling of sedimentation of polydisperse spherical beads with a broad size distribution,” Chem. Eng. Sci., vol. 58, pp. 1531–1543, 2003, doi: 10.1016/S0009-2509(02)00656-5.
  36.  Y. Zimmels, “Theory of hindered sedimentation of polydisperse mixtures,” AIChE J., vol. 29, no. 4, pp. 669–676, 1983, doi: 10.1002/ AIC.690290423.
  37.  J. Happel, “Viscus flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles,” AIChE J., vol. 4, no. 2, pp. 197–201, 1958.
  38.  S.F. Chien, “Settling Velocity of Irregularly Shaped Particles, Society of Petroleum Engineers,” SPE Drill. Complet., vol. 4, no. 04, pp. 281–289, 1994, doi: 10.2118/26121-PA.
  39.  G.H. Ganser, “A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles,” Powder Technol., vol. 77, no.  2, pp. 143–152, 1993, doi: 10.1016/0032-5910(93)80051-B.
  40.  A. Haider and O. Levenspiel, “Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles,” Powder Technol., vol. 58, no. 1, pp. 63–70, 1989, doi: 10.1016/0032-5910(89)80008-7.
  41.  L. Rosendahl, “Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow,” Appl. Math. Modell., vol. 24, no. 1, pp. 11‒25, 2000, doi: 10.1016/S0307-904X(99)00023-2.
  42.  M. Zastawny, G. Mallouppas, F. Zhao, and B. van Wachem, “Derivation of drag and lift force and torque coefficients for nonspherical particles in flows,” Int. J. Multiphase Flow, vol. 39, pp 227‒239, 2012, doi: 10.1016/j.ijmultiphaseflow.2011.09.004.
  43.  A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-spherical particles,” Powder Technol., vol. 184, no. 3, pp. 361–365, June 2008, doi: 10.1016/j.powtec.2007.08.021.
  44.  R. Barati, S.A. Neyshabouri, and G. Ahmadi, “Issues in Eulerian– Lagrangian modeling of sediment transport under saltation regime,” Int. J. Sediment Res., vol. 33, no. 4, pp. 441–461, 2018, doi: 10.1016/j.ijsrc.2018.04.003.
  45.  B. Oesterle and B. Dinh, ”Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers,” Exp. Fluids, vol. 25, no.1, pp. 16–22, 1998, doi: 10.1007/s003480050203.
  46.  I. Mema, V.V. Mahajan, B W. Fitzgerald, and J.T. Padding, “Effect of lift force and hydrodynamic torque on fluidisation of nonspherical particles,” Chem. Eng. Sci., vol. 195, no. 23, pp. 642– 656, 2019, doi: 10.1016/j.ces.2018.10.009.
  47.  S.K.P. Sanjeevi, J.A.M. Kuipers, and J.T. Padding, “Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers,” Int. J. Multiphase Flow, vol.  106, pp. 325–337, 2018, doi: 10.1016/j.ijmultiphaseflow.2018.05.011.
  48.  S.F. Hoerner, Fluid-dynamic drag, Published by the Autor, 1965.
  49.  R. Ouchene, M. Khalij, B. Arcen, and A. Tanière, “A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers,” Powder Technol., vol. 303, pp. 33–43, 2016, doi: 10.1016/j.powtec.2016.07.067.
  50.  M. Leva, M. Weintraub, M. Grummer, M. Pollchik, and H.H. Storsh, “Fluid flow through packed and fluidized systems,” Bull. U. S. Min. Bur., vol. 504, 1951.
  51.  V. Saritha, N. Srinivas, and N.V. Srikanth Vuppala, “Analysis and optimization of coagulation and ?occulation process,” Appl. Water Sci., vol. 7, pp. 451–460, 2017, doi: 10.1007/s13201-014-0262-y.
  52.  M. Smoluchowski, “Versuch einer mathematischen theorie der koagulationskinetic,” Kolloider Lsungen Zeitschrift für Physikalische Chemie, vol. 92, pp. 129–168, 1917.
  53.  H. Müller, “Zur allgemeinen teorie der raschen koagulation,” Kolloidbeihefte, vol. 27, pp. 223‒250, 1928.
  54.  F.S. Torrealba, A Continuous mathematical model of the one-dimensional sedimentation process of flocculated sediment particles, University of Kentucky Doctoral Dissertations, 2010.
  55.  D. Miedzińska, T. Niezgoda, E. Małek, and Z. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 499–505, doi: 10.2478/bpasts-2013-0049.
Go to article

Authors and Affiliations

Mariusz Rząsa
1
ORCID: ORCID
Ewelina Łukasiewicz
2
ORCID: ORCID

  1. Department of Computer Science, Opole University of Technology, ul. Oleska 48, 45-052 Opole, Poland
  2. Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. St. Mikołajczyka 5, 45-271 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study proposes a new integrated analytical-field design method for multi-disc magnetorheological (MR) clutches. This method includes two stages, an analytical stage (composed of 36 algebraic formulas) and a field stage based on the finite element method (FEM). The design procedure is presented systematically, step-by-step, and the results of the consecutive steps of the design calculations are depicted graphically against the background of the entire considered clutch. The essential advantage of the integrated method with this two-stage structure is the relatively high accuracy of the first analytical stage of the design procedure and the rapid convergence of the second field stage employing the FEM. The essence of the new method is the introduction of a yoke factor kY (the concept of which is based on the theory of induction machines) that determines the ratio of the total magnetomotive force required to magnetise the entire magnetic circuit of the clutch to the magnetomotive force required to magnetise the movement region. The final value, the yoke factor kY is determined using loop calculations. The simplicity of the developed design method predisposes its use in optimisation calculations. The proposed method can also be adapted to other MR devices analysed in shear mode.
Go to article

Bibliography

  1.  P. Martynowicz, “Study of vibration control using laboratory test rig of wind turbine tower-nacelle system with mr damper based tuned vibration absorber,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 2, pp. 347–359, 2016.
  2.  J. Snamina and B. Sapiński, “Energy balance in self-powered mr damper-based vibration reduction system,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 1, pp. 75–80, 2011, doi: 10.2478/v10175-011-0011-4.
  3.  J.L.U. Lee, A.K. Saha et al., “Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems,” Sci. World J., 2013, doi: 10.1155/2013/894016.
  4.  A. Pręgowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid,” J. Theor. Appl. Mech., vol. 51, no. 4, pp. 979–992, 2013.
  5.  J. Gołdasz and B. Sapiński, Insight into Magnetorheological Shock Absorbers, ser. EBL-Schweitzer. Springer International Publishing, 2014. [Online]. Available: https://books.google.pl/books?id=CbXzBQAAQBAJ.
  6.  W. East, J. Turcotte, J.-S. Plante, and G. Julio, “Experimental assessment of a linear actuator driven by magnetorheological clutches for automotive active suspensions,” J. Intell. Mater. Syst. Struct., vol. 32, no. 9, p. 955–970, 2021, doi: 10.1177/1045389X21991237.
  7.  E.J. Park, L. Falcao, and A. Suleman, “Multidisciplinary design optimization of an automotive magnetorheological brake design,” Comput. Struct., vol. 28, pp. 207–216, 2008, doi: 10.1016/j.compstruc.2007.01.035.
  8.  C. Rossa, A. Jaegy, A. Micaelli, and J. Lozada, “Development of a multilayered wide-ranged torque magnetorheological brake,” Smart Mater. Struct., vol. 23, no. 2, p. 025028, Jan 2014, doi: 10.1088/0964-1726/23/2/025028.
  9.  C. Rossa, A. Jaegy, J. Lozada, and A. Micaelli, “Design considerations for magnetorheological brakes,” IEEE/ASME Trans. Mechatron., vol. 19, no. 5, pp. 1669–1680, 2014, doi: 10.1109/TMECH.2013.2291966.
  10.  J.W. Sohn, J. Jeon, Q.H. Nguyen, and S.-B. Choi, “Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation,” Smart Mater. Struct., vol.  24, no. 8, p. 085009, Jul 2015, doi: 10.1088/0964-1726/24/8/085009.
  11.  S. Li, W. Meng, and Y. Wang, “Numerical and experimental studies on a novel magneto-rheological fluid brake based on fluid–solid coupling,” Sci. Prog., vol. 103, no. 1, p. 0036850419879000, 2020, doi: 10.1177/0036850419879000.
  12.  K. Kluszczyński and Z. Pilch, “Mr multi disc clutches – construction, parameters and field model,” in 2019 20th International Conference on Research and Education in Mechatronics (REM), May 2019, pp. 1–6, doi: 10.1109/REM.2019.8744131.
  13.  H. Böse, T. Gerlach, and J. Ehrlich, “Magnetorheological torque transmission devices with permanent magnets,” J. Phys. Conf. Ser., vol. 412, p. 012050, Feb 2013, doi: 10.1088/1742-6596/412/1/012050.
  14.  F. Bucchi, P. Forte, F. Frendo, A. Musolino, and R. Rizzo, “A fail-safe magnetorheological clutch excited by permanent magnets for the disengagement of automotive auxiliaries,” J. Intell. Mater. Syst. Struct., vol. 25, no. 16, pp. 2102–2114, 2014, doi: 10.1177/1045389X13517313.
  15.  Z. Li, X. Zhang, K. Guo, M. Ahmadian, and Y. Liu, “A novel squeeze mode based magnetorheological valve: design, test and evaluation,” Smart Mater. Struct., vol. 25, no. 12, p. 127003, Nov 2016, doi: 10.1088/0964-1726/25/12/127003.
  16.  Z. Pilch and J. Domin, “Conception of the throttle-return valve for the magnetorheological fluid,” Arch. Electr. Eng., vol. 67, no. 1, 2018, doi: 10.24425/118990.
  17.  B. Horváth and I. Szalai, “Nonlinear magnetic properties of magnetic fluids for automotive applications,” Hung. J. Ind. Chem., vol. 48, no. 1, p. 61–65, Jul 2020, doi: 10.33927/hjic-2020-09.
  18.  P. Kowol and Z. Pilch, “Analysis of the magnetorheological clutch working at full slip state,” Electr. Rev., vol. R. 91, no. 6, pp. 108–111, 2015.
  19.  G. Chen, Y. Lou, and T. Shang, “Mathematic modeling and optimal design of a magneto-rheological clutch for the compliant actuator in physical robot interactions,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3625–3632, 2019, doi: 10.1109/LRA.2019.2928766.
  20.  R. Rizzo, “An innovative multi-gap clutch based on magnetorheological fluids and electrodynamic effects: magnetic design and experimental characterization,” Smart Mater. Struct., vol. 26, no.  1, p. 015007, Dec 2016, doi: 10.1088/0964-1726/26/1/015007.
  21.  Q.H. Nguyen and S.B. Choi, “Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume,” Smart Mater. Struct., vol. 21, no. 1, p.  015012, Dec 2011, doi: 10.1088/0964-1726/21/1/015012.
  22.  W. Burlikowski and K. Kluszczyński, “Comparison of different mathematical models of an electromechanical actuator,” in 2012 9th France- Japan 7th Europe-Asia Congress on Mechatronics (MECATRONICS)/13th Int’l Workshop on Research and Education in Mechatronics (REM), 2012, pp. 403–408.
  23.  P.-B. Nguyen and S.-B. Choi, “A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake,” Smart Mater. Struct., vol.  20, no. 12, p. 125003, Nov 2011, doi: 10.1088/0964-1726/20/12/125003.
  24.  T. Wolnik, “Alternate computational method for induction disk motor based on 2d fem model of cylindrical motor,” Arch. Electr. Eng., vol. 69, no. 2020, pp. 233–244, 2020, doi: 10.24425/aee.2020.131770.
  25.  P. Kowol, “Application of magnetic field model for design procedure of magnetorheological rotary-linear brake,” Electr. Rev., vol. 81, no. 12, pp. 22–24, 2005.
  26.  M. Kciuk, K. Chwastek, K. Kluszczyński, and J. Szczygłowski, “A study on hysteresis behaviour of sma linear actuators based on unipolar sigmoid and hyperbolic tangent functions,” Sens. Actuators, A, vol.  243, pp. 52–58, 2016, doi: 10.1016/j.sna.2016.02.012.
  27.  M. Kciuk, W. Kuchcik, Z. Pilch, and W. Klein, “A novel sma drive based on the Graham Clock escapement and resistance feedback,” Sens. Actuators, A, vol. 285, pp. 406–413, 2019, doi: 10.1016/j.sna.2018.11.044.
  28.  B.W. Inc., “bearing-sizes.” [Online]. Available: https://www.bearingworks.com/bearing-sizes/.
  29.  LORD-CORPORATION, “Mrf-140cgmrfluid.” [Online]. Available: https://lordfulfillment.com/pdf/44/DS7012_MRF-140CGMRFluid. pdf.
  30.  A. Suite. [Online]. Available: http://www.agros2d.org/.
  31.  V. Hegde and G. Maruthi, “Experimental investigation on detection of air gap eccentricity in induction motors by current and vibration signature analysis using non-invasive sensors,” Energy Procedia, vol. 14, pp. 1047–1052, 2012, 2011 2nd International Conference on Advances in Energy Engineering (ICAEE).
  32.  X. Hu, Y. Li, and L. Luo, “The influence of air gap thickness between the stator and rotor on nuclear main pump,” Energy Procedia– Proceedings of the 9th International Conference on Applied Energy, vol. 142, pp. 259–264, 2017, doi: 10.1016/j.egypro.2017.12.041.
  33.  M.N. Benallal, M.A. Vaganov, D.S. Pantouhov, E. Ailam, and K. Hamouda, “Optimal value of air gap induction in an induction motor,” in The XIX International Conference on Electrical Machines – ICEM 2010, 2010, pp. 1–4, doi: 10.1109/ICELMACH.2010.5608185.
  34.  K. Kluszczyński and Z. Pilch, “Basic features of mr clutches – resulting from different number of discs,” in 2019 15th Selected Issues of Electrical Engineering and Electronics (WZEE), December 2019, pp. 1–4, doi: 10.1109/WZEE48932.2019.8979786.
  35.  J.H. Kuhlmann, Design of electrical apparatus. New York, J. Wiley and Sons; London, Chapman and Hall, 1954.
  36.  ASTM International, “Standard specification for standard nominal diameters and cross-sectional areas of AWG sizes of solid round wires used as electrical conductors,” 2014. [Online]. Available: http://www.astm.org/Standards/B258.htm.
  37.  J. Bajkowski, “Operational characteristics of rotating magnetoreological clutches and brakes,” J. Mach. Constr. Maint., vol. 106, no. 3/2017, pp. 7–12, 2017.
Go to article

Authors and Affiliations

Krzysztof Kluszczyński
1
ORCID: ORCID
Zbigniew Pilch
1

  1. Cracow University of Technology, Faculty of Electrical and Computer Engineering, ul. Warszawska 24, 31-155, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The goal of the research was to analyze the acoustic emission signal recorded during heat treatment. On a special stand, samples prepared from 27MnCrB5-2 steel were tested. The steel samples were heated to 950°C and then cooled continuously in the air. Signals from phase changes occurring during cooling were recorded using the system for registering acoustic emission. As a result of the changes, Widmanstätten ferrite and bainite structures were observed under a scanning microscope. The recorded acoustic emission signal was analyzed and assigned to the appropriate phase transformation with the use of artificial neural networks.
Go to article

Bibliography

  1.  T.Z. Wozniak, K. Rozniatowski, and Z. Ranachowski, “Acoustic emission in bearing steel during isothermal formation of midrib,” Met. Mater. Int., vol. 17, pp. 365–373, 2011, doi: 10.1007/s12540-011-0611-4.
  2.  L. Kyzioł, K. Panasiuk, G. Hajdukiewicz, and K. Dudzik, “Acoustic Emission and K-S Metric Entropy as Methods for Determining Mechanical Properties of Composite Materials”, Sensors, vol. 21, p. 145, 2021, doi: 10.3390/s21010145.
  3.  A. Adamczak-Bugno, G. Swit, and A. Krampikowska, “Application of the Acoustic Emission Method in the Assessment of the Technical Condition of Steel Structures,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 471, no. 3 p. 032041, 2019, doi: 10.1088/1757-899X/471/3/032041.
  4.  A. Krampikowska, and A. Adamczak-Bugno, “Evaluation of destructive processes in FRC composites using time-frequency analysis of AE signals,” MATEC Web Conf., vol. 262, p. 06006, 2019, doi: 10.1051/matecconf/201926206006.
  5.  G. Świt, A. Krampikowska, T. Pała, S. Lipiec, and I. Dzioba, “Using AE Signals to Investigate the Fracture Process in an Al–Ti Laminate,” Materials, vol. 13, p. 2909, 2020, doi: 10.3390/ma13132909.
  6.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, P. Ranachowski, and A. Trafarski, “The application of acoustic emission and artificial neural networks in an analysis of kinetics in the phase transformation of tool steel during austempering,” Arch. Metall. Mater., vol. 62, pp. 603‒609, 2017, doi: 10.1515/amm-2017-0089.
  7.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and G. Domek, “Analysis of acoustic emission signals at austempering of steels using neural networks,” Met. Mater. Int., vol.  23, pp. 426‒433, 2017, doi: 10.1007/s12540-017-6347-z.
  8.  Y. Li et al., “Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel”, Int. J. Miner. Metall. Mater., vol. 21, pp. 1196–1204, 2014, doi: 10.1007/s12613-014-1027-1.
  9.  B.I. Voronenko, “Acoustic emission during phase transformations in alloys,” Met. Sci. Heat Treat., vol. 24, pp. 545‒553, 1982, doi: 10.1007/BF00769364.
  10.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and S. Marciniak, “The use of acoustic emission and neural network in the study of phase transformation below MS,” Materials, vol. 14, no. 3, p. 551, 2021, doi: 10.3390/ma14030551.
  11.  T.Z. Wozniak, K. Różniatowski, and Z. Ranachowski, “Application of acoustic emission to monitor bainitic and martensitic transformation,” Kovove Mater., vol. 49, pp. 319‒331, 2011, doi: 10.4149/km_2011_5_319.
  12.  A. Pawełek, Z. Ranachowski, A. Piątkowski, S. Kúdela, Z. Jasieński, and S. Kúdela, “Acoustic emission and strain mechanisms during compression at elevated temperature of ß phase Mg-Li-Al composites reinforced with ceramic fibres,” Arch. Metall. Mater., vol. 52, pp. 41‒48. 2007.
  13.  Z. Ranachowski, “Acoustic emission in the diagnosis of civil structures,” Roads Bridges, vol. 2, pp. 151‒173, 2012.
  14.  J. Ranachowski, Problemy współczesnej akustyki, Polska Akademia Nauk, IPPT, Warszawa, 1991.
  15.  R. Botten, X. Wu, D. Hu, and M.H. Loretto, “The significance of acoustic emission during stressing of TiAl-based alloys,” Acta Mater., vol. 49, pp. 1687‒1691, 2001, doi: 10.1016/S1359-6454(01)00091-X.
  16.  A. Lambert, X. Garat, T. Sturel, A. F. Gourgues, and A. Gingell, “Aplication of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel,” Scripta Mater., vol. 43, pp. 161‒166, 2000, doi: 10.1016/S1359-6462(00)00386-9.
  17.  K. Panasiuk, L. Kyziol, K. Dudzik, and G. Hajdukiewicz, “Application of the Acoustic Emission Method and Kolmogorov-Sinai Metric Entropy in Determining the Yield Point in Aluminium Alloy,” Materials, vol. 13, p. 1386, 2020, doi: 10.3390/ma13061386.
  18.  A. Pawełek, W.S. Ozgowicz, Z. Ranachowski, and S. Kúdela, “Behaviour of acoustic emission in deformation and microcracking processes of Mg alloys matrix composites subjected to compression tests,” Arch. Curr. Res. Int., vol.8, no. 2, pp. 1‒13, 2017, doi: 10.9734/ ACRI/2017/34598.
  19.  R. Karczewski, A. Zagórski, J. Płowiec, and W. Spychalski, “Charakterystyki sygnałów akustycznych podczas obciążania wybranych stali konstrukcyjnych wykorzystywanych do budowy urządzeń ciśnieniowych,” Weld. Tech. Rev., vol. 83, no. 13, 2011, doi: 10.26628/ wtr.v83i13.417.
  20.  I. Baran, “Non-destructive testing of technical equipment using acoustic emission method,” Nondestr. Testing Diagn., vol. 4, pp. 15‒19, 2019, doi: 10.26357/BNiD.2019.017.
  21.  D. Aggelis, E. Kordatos, and T. Matikas, “Acoustic emission for fatigue damage characterization in metal plates”, Mech. Res. Commun., vol. 38, pp. 106–110, 2011, doi: 10.1016/j.mechrescom.2011.01.011.
  22.  K. Jemielniak, “Some aspects of acoustic emission signal pre-processing,” J. Mater. Process. Tech., vol. 109, pp. 242‒247, 2001, doi: 10.1016/S0924-0136(00)00805-0.
  23.  RILEM Technical Committee (Masayasu Ohtsu), “Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete,” Mater. Struct., vol. 43, pp. 1177–1181, 2010, doi: 10.1617/s11527- 010-9638-0.
  24.  Z. Ranachowski, “The application of a neural network to classify the acoustic emission waveforms emitted by the concrete under thermal stress,” Arch. Acoust., vol. 21, no. 1, pp. 89‒98, 1996.
  25.  H.K.D.H. Bhadeshia, “Phase transformations contributing to the properties of modern steels,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 255–256, 2010, doi: 10.2478/v10175-010-0024-4.
  26.  S.M.C. Van Bohemen, An acoustic emission study of martensitic and bainitic transformations in carbon steel, Delft University Press, 2004.
  27.  A. Pawełek, J. Kuśnierz, J. Bogucka, Z. Jasieński, and Z. Ranachowski, “Acoustic emission and the Portevin-Le Châtelier effect in tensile tested Al alloys before and after processing by accumulative roll bonding,” Arch. Metall. Mater., vol.  54, pp. 83‒88, 2009.
  28.  A. Pawełek et al., “Acoustic emission and the Portevin-Le Chatelier effect in tensile tested Al processed by ARB technique,” Arch. Acoust., vol. 32, no. 4, pp. 955‒962, 2007.
  29.  H.N.G. Wadley and C.B. Scruby, “Cooling rate effects on acoustic emission- microstructure relationships in ferritic steels,” J. Mater. Sci., vol. 26, pp. 5777–5792, 1991, doi: 10.1007/BF01130115.
  30.  C.B. Scruby and H.N.G Wadley, “Tempering Effects on Acoustic Emission Microstructural Relationships in Ferritic Steels,” J. Mater. Sci., vol. 28, pp. 2501–2516, 1993, doi: 10.1007/BF01151686.
  31.  V.V. Roshchupkin et al., “The use of acoustic methods to investigate the dynamics of recrystallization and phase transitions in Armco iron and structural steel,” High Temp., vol.  42, pp. 883–887, 2004, doi: 10.1007/s10740-005-0032-5.
  32.  G.R. Speich and A.J. Schwoeble, “Acoustic Emission During Phase Transformałion in Steel”, in Monitoring Structural Integrity by Acoustic Emission STP571. J. C. Spanner and J.W. McElroy, Eds., ASTM International, USA, 1975, pp. 40‒58.
Go to article

Authors and Affiliations

Andrzej Trafarski
1
Małgorzata Łazarska
1
Zbigniew Ranachowski
2
ORCID: ORCID

  1. Institute of Materials Engineering, Kazimierz Wielki University in Bydgoszcz, ul. J.K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Numerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending its cost function by a relationship directly inspired by the physical formula. This publication explains the concept of Physics-guided neural networks (PGNN), makes an overview of already proposed solutions in the field and describes possibilities of implementing physics-based loss functions for spatial analysis. Our approach shows that the model predictions are not only optimal but also scientifically consistent with domain specific equations. Furthermore, we present two applications of PGNNs and illustrate their advantages in theory by solving Poisson’s and Burger’s partial differential equations. The proposed formulas describe various real-world processes and have numerous applications in the area of applied mathematics. Eventually, the usage of scientific knowledge contained in the tailored cost functions shows that our methods guarantee physics-consistent results as well as better generalizability of the model compared to classical, artificial neural networks.
Go to article

Bibliography

  1.  R. Vinuesa et al., “The role of artificial intelligence in achieving the Sustainable Development Goals,” Nat. Commun., vol. 11, no. 1, pp. 1‒10, 2020.
  2.  M. Grochowski, A. Kwasigroch, and A. Mikołajczyk, “Selected technical issues of deep neural networks for image classification purposes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 363–376, 2019.
  3.  T. Poggio and Q. Liao, “Theory II: Deep learning and optimization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 775–787, 2018.
  4.  A. Lüdeling, M. Walter, E. Kroymann, and P. Adolphs, “Multilevel error annotation in learner corpora,” Proc. Corpus Linguistics Conf., vol. 1, pp. 14–17, 2005.
  5.  A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” Proc. Int. Interdiscipl. PhD Workshop (IIPhDW), 2018, pp. 117–122.
  6.  A.W. Moore and M.S. Lee, “Efficient algorithms for minimizing cross validation error,” Proc. 11th Int’l Conf. Machine Learning, 1994, pp. 190–198.
  7.  J.M. Benitez, J.L. Castro, and I. Requena, “Are artificial neural networks black boxes?,” IEEE Trans. Neural Networks, vol. 8, pp. 1156– 1164, 1997.
  8.  T. Hagendorff, “The ethics of AI ethics: An evaluation of guidelines,” Minds Mach., vol. 30, pp. 99–120, 2020.
  9.  T. Miller, P. Howe, and L. Sonenberg, “Explainable AI: Beware of inmates running the asylum,” Proc. IJCAI Workshop Explainable AI (XAI), 2017, pp. 36–42.
  10.  A. Rai, “Explainable AI: from black box to glass box,” Journal of the Academy of Marketing Science, vol. 48, pp. 137–141, 2020.
  11.  G. Shortley and G. Weller, “Numerical solution of Laplace’s equation,” J. Appl. Phys., vol. 9, no. 1, pp. 334–336, 1938.
  12.  R.C. Mittal and P. Singhal, “Numerical solution of Burger’s equation,” Commun. Numer. Methods Eng., vol. 9, no. 5, pp. 397–406, 1993.
  13.  R. French, “Subcognition and the limits of the Turing test,” Mind, vol. 99, no. 393, pp. 53–65, 1990.
  14.  J. McCarthy, “What is artificial intelligence?,” 1998.
  15.  I. Rojek, M. Macko, D. Mikołajewski, M. Saga, and T. Burczyński, “Modern methods in the field of machine modelling and simulation as a research and practical issue related to industry 4.0,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136717, 2021.
  16.  A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physicsguided neural networks (PGNN): An application in lake temperature modeling,” 2017, [Online], Available: http://arxiv.orgabs/1710.11431.
  17.  J. Willard et al., “Integrating Physics-Based Modeling with Machine Learning: A Survey,” 2020, [Online], Available: http://arxiv.org/abs/2003.04919.
  18.  X. Jia et al., “Physics guided RNNs for modeling dynamical systems: A case study in simulating lake temperature profiles,” Proc. SIAM Int. Conf. Data Mining, pp.  558–566, 2019.
  19.  A. Daw et al., “Physics-Guided Architecture (PGA) of neural networks for quantifying uncertainty in lake temperature modeling,” Proc. SIAM Int. Conf. Data Mining, pp.  532–540, 2020.
  20.  Y. Yang and P. Perdikaris, “Physics-informed deep generative models,” 2018, [Online], Available: http://arxiv.org/abs/1812. 03511.
  21.  R. Singh, V. Shah, B. Pokuri, and S. Sarkar, “Physics-aware deep generative models for creating synthetic microstructures,” 2018, [Online], Available: http://arxiv.org/abs/1811.09669.
  22.  L. Wang, Q. Zhou, and S. Jin, “Physics-guided deep learning for power system state estimation,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 4, pp. 607–615, 2020.
  23.  N. Muralidhar et al., “Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids,” 2019, [Online], Available: http://arxiv.org/abs/1911.04240.
  24.  J. Park and J. Park, “Physics-induced graph neural network: An application to wind-farm power estimation,” Energy, vol. 187, p. 115883, 2019.
  25.  R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, “Towards physics-informed deep learning for turbulent flow prediction,” Proc. 26th SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2020, pp. 1457–1466.
  26.  T. Yang et al., “Evaluation and machine learning improvement of global hydrological model-based flood simulations,” Environ. Res. Lett., vol. 14, no. 11, p. 114027, 2019.
  27.  Y. Zhang et al., “Pgnn: Physics-guided neural network for fourier ptychographic microscopy,” 2019, [Online], Available: http://arxiv.org/ abs/1909.08869.
  28.  M.G. Poirot et al., “Physics-informed deep learning for dualenergy computed tomography image processing,” Sci. Rep., vol. 9, no. 1, 2019.
  29.  F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, “Physics-informed neural networks for cardiac activation mapping,” Front. Phys., vol. 8, p. 42, 2020.
  30.  M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics informed deep learning (part I): Data-driven solutions of nOnlinear partial dif- ferential equations,” 2017, [Online], Available: http://arxiv.org/abs/1711.10561.
  31.  M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics informed deep learning (part II): Data-driven solutions of nOnlinear partial differential equations,” 2017, [Online], Available: http://arxiv.org/abs/1711.10566.
  32.  Z. Fang and J. Zhan, “A physics-informed neural network framework for PDEs on 3D surfaces: Time independent problems,” IEEE Access, vol. 8, pp. 26328–26335, 2019.
  33.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 225–233, 2020.
  34.  M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportunities and challenges,” Front. Neurosci., vol.  12, pp. 774, 2018.
  35.  Z. Bing et al., “A survey of robotics control based on learninginspired spiking neural networks,” Front. Neurorob., vol. 12, pp. 35, 2018.
  36.  B. Borzyszkowski, “Neuromorphic Computing in High Energy Physics,” 2020, doi: 10.5281/zenodo.3755310.
  37.  J. George, C. Soci, M. Miscuglio, and V. Sorger, “Symmetry perception with spiking neural networks,” Sci. Rep., vol. 11, no.  1. pp. 1–14, 2021.
  38.  K. Janocha and W.M. Czarnecki, “On loss functions for deep neural networks in classification,” 2017, [Online], Available: http://arxiv. org/abs/1702.05659.
  39.  L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade, Berlin, Heidelberg: Springer 2012, pp. 421–436.
  40.  T. Dockhorn, “A discussion on solving partial differential equations using neural networks,” 2019, [Online], Available: https://arxiv.org/abs/1904.07200.
  41.  A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, “Occam’s razor,” Inf. Process. Lett., vol. 24, no. 6, pp.  377–380, 1987.
  42.  A. Marreiros, J. Daunizeau, S. Kiebel, and K. Friston, “Population dynamics: variance and the sigmoid activation function,” Neuroimage, vol. 42, no. 1, pp. 147–157, 2008.
  43.  S.K. Kumar, “On weight initialization in deep neural networks.” 2017, [Online]. Available: http://arxiv.org/abs/1704.08863.
  44.  N. Nawi, M. Ransing, and R. Ransing, “An improved learning algorithm based on the Broyden-fletcher-goldfarb-shanno (BFGS) method for back propagation neural networks,” Proc. 6th Int. Conf. Intell. Syst. Design Appl., 2006, vol. 1, pp. 152–157.
  45.  P. Constantin and C. Foias, “Navier-stokes equations,” Chicago: University of Chicago Press, 1988.
  46.  G.A. Anastassiou, “Multivariate hyperbolic tangent neural network approximation,” Comput. Math. Appl., vol. 61, no. 4, pp. 809–821, 2011.
  47.  B. Hanin and D. Rolnick, “How to start training: The effect of initialization and architecture,” Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 571–581.
  48.  R. Ghanem and P. Spanos, “Stochastic finite elements: a spectral approach,” New York: Springer, 1991.
Go to article

Authors and Affiliations

Bartłomiej Borzyszkowski
1
ORCID: ORCID
Karol Damaszke
1
Jakub Romankiewicz
1
Marcin Świniarski
1
Marek Moszyński
1

  1. Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental verification on using a zero-sum differential game and H control in the problems of tracking and stabilizing motion of a wheeled mobile robot (WMR). It is a new approach to the synthesis of input-output systems based on the theory of dissipative systems in the sense of the possibility of their practical application. This paper expands upon the problem of optimal control of a nonlinear, nonholonomic wheeled mobile robot by including the reduced impact of changing operating condtions and possible disturbances of the robot’s complex motion. The proposed approach is based on the H∞ control theory and the control is generated by the neural approximation solution to the Hamilton-Jacobi-Isaacs equation. Our verification experiments confirm that the H∞ condition is met for reduced impact of disturbances in the task of tracking and stabilizing the robot motion in the form of changing operating conditions and other disturbances, which made it possible to achieve high accuracy of motion.
Go to article

Bibliography

  1.  B. Kovács, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi, “A novel potential field method for path planning of mobile robots by adapting animal motion attributes,” Rob. Auton. Syst., vol. 82, pp. 24–34, 2016, doi: 10.1016/j.robot.2016.04.007.
  2.  A. Pandey, “Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review,” Int. Robotics Autom. J., vol. 2, no. 3, pp. 96–105, 2017, doi: 10.15406/iratj.2017.02.00023.
  3.  R.C. Arkin, Behavior-based robotics. The MIT Press, 1998.
  4.  M. Szuster and Z. Hendzel, Intelligent Optimal Adaptive Control for Mechatronic Systems. Springer, 2018.
  5.  M.J. Giergiel, Z. Hendzel, and W. Żylski, Modeling and control of mobile wheeled robots. PWN, 2013, [in Polish].
  6.  P. Bozek, Y.L. Karavaev, A.A. Ardentov, and K.S. Yefremov, “Neural network control of a wheeled mobile robot based on optimal tra- jectories,” Int. J. Adv. Rob. Syst., vol. 17, no. 2, pp. 1–10, 2020, doi: 10.1177/1729881420916077.
  7.  P. Gierlak and Z. Hendzel, Control of wheeled and manipulation robots. Publishing House Rzeszow Univ. of Technology, 2011, [in Polish].
  8.  B. Kiumarsi, K.G. Vamvoudakis, H. Modares, and F.L. Lewis, “Optimal and Autonomous Control Using Reinforcement Learning: A Survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062, 2018.
  9.  F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal control. John Wiley & Sons, 2012.
  10.  K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888, 2010.
  11.  F.-Y.Wang, H. Zhang, and D. Liu, “Adaptive Dynamic Programming: An Introduction,” IEEE Comput. Intell. Mag., vol. 4, no.  May, pp. 39–47, 2009.
  12.  A.G. Barto, W. Powell, J. Si, and D.C. Wunsch, Handbook of learning and approximate dynamic programming. Wiley-IEEE Press, 2004.
  13.  D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic Programming with Applications in Optimal Control. Springer, Advances in Industrial Control, 2017.
  14.  A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishing, 2017.
  15.  B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and Control. Springer-Verlag London, 2007.
  16.  A.W. Starr and Y.C. Ho, “Nonzero-sum differential games,” J. Optim. Theory Appl., vol. 3, no. 3, pp. 184–206, 1969.
  17.  M. Abu-Khalaf, J. Huang, and F.L. Lewis, Nonlinear H2 Hinf Constrained Feedbacka Control. Springer-Verlag London, 2006.
  18.  D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm,” Neurocomputing, vol. 110, pp.  92–100, 2013.
  19.  C. Qin, H. Zhang, Y. Wang, and Y. Luo, “Neural network-based online Hinf control for discrete-time affine nonlinear system using adaptive dynamic programming,” Neurocomputing, vol. 198, pp.  91–99, 2016.
  20.  D. Liu, H. Li, and D. Wang, “Hinf control of unknown discretetime nonlinear systems with control constraints using adaptive dynamic programming,” in The 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1–6.
  21.  Z. Hendzel and P. Penar, “Zero-Sum Differential Game in Wheeled Mobile Robot Control,” Int. Conf. Mechatron., vol. 934, pp. 151–161, 2017.
  22.  Z. Hendzel, “Optimality in Control for Wheeled Robot,” Adv Intell. Syst. Comput.: Autom. 2018, vol. 743, pp. 431–440, 2018.
  23.  Y. Fu and T. Chai, “Online solution of two-player zero-sum games for continuous-time nonlinear systems with completely unknown dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2577–2587, 2015.
  24.  K.G. Vamvoudakis and F.L. Lewis, “Online solution of nonlinear two-player zero-sum games using synchronous policy iteration,” Int. Robust. Nonlinear Control, vol. 22, pp. 1460–1483, 2012.
  25.  S. Yasini, A. Karimpour, M.-B. Naghibi Sistani, and H. Modares, “Online concurrent reinforcement learning algorithm to solve two-player zero-sum games for partially unknown nonlinear continuous-time systems,” Int. J. Adapt Control Signal Process., vol. 29, no. 4, pp. 473– 493, 2015.
  26.  B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning for Hinf control design,” IEEE Trans. Cybern., vol. 45, no. 1, pp. 65–76, 2014.
  27.  H.-N. Wu and B. Luo, “Neural Network Based Online Simultaneous Policy Update Algorithm for Solving the HJI Equation in Nonlinear Hinf Control,” IEEE Trans. Neural Netw. Learn. Syst., vol.  23, no. 12, pp. 1884–1895, 2012.
  28.  Y. Zhu, D. Zhao, and X. Li, “Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 714–725, 2016.
  29.  J. Zhao, M. Gan, and C. Zhang, “Event-triggered Hinf optimal control for continuous-time nonlinear systems using neurodynamic pro- gramming,” Neurocomputing, vol. 360, pp. 14–24, 2019.
  30.  B. Dong, T. An, F. Zhou, S. Wang, Y. Jiang, K. Liu, F. Liu, H. Lu, and Y. Li, “Decentralized Robust Optimal Control for Modular Robot Manipulators Based on Zero-Sum Game with ADP,” in International Symposium on Neural Networks. Springer, 2019, pp. 3–14.
  31.  H. Modares, F.L. Lewis, and Z.-P. Jiang, “Hinf Tracking Control of Completely Unknown Continuous-Time Systems via Off-Policy Reinforcement Learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2550–2562, 2015.
  32.  J.C. Willems, “Dissipative Dynamical Systems. Part I: General Theory,” Arch. Ration. Mech. Anal., vol. 45, pp.  321–351, 1972.
  33.  D.J. Hill and P.J. Moylan, “Dissipative Dynamical Systems: Basic Input-Output and State Properties,” J. Franklin Inst., vol. 305, no.  5, pp. 327–357, 1980.
  34.  A.J. van der Schaft, “L2-gain Analysis of Nonlinear Systems and Nonlinear State Feedback Hinf Control,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 770–784, 1992.
  35.  S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnam, Linear Matrix Inequalities in System and Control Theory. SIAM studies in applied mathematics: 15, 1994.
  36.  S. Yasini, M.B.N. Sistani, and A. Karimpour, “Approximate dynamic programming for two-player zero-sum game related to Hinf control of unknown nonlinear continuous-time systems,” Int. J. Control Autom. Syst., vol. 13, no. 1, pp. 99–109, 2014.
  37.  W. Zylski, Kinematics and dynamics of mobile wheeled robots. Publishing House Rzeszow Univ. of Technology, 1996, [in Polish].
  38.  J. Giergiel and W. Żylski, “Description of motion of a mobile robot by Maggie’s equations,” J. Theor. Appl. Mech., vol. 43, no. 3, pp. 511–521, 2005.
  39.  J. Garca De Jaln, A. Callejo, and A.F. Hidalgo, “Efficient solution of Maggi’s equations,” J. Comput. Nonlinear Dyn., vol. 7, no. 2, 2012, doi: 10.1115/1.4005238.
  40.  A. Kurdila, J.G. Papastavridis, and M.P. Kamat, “Role of Maggi’s equations in computational methods for constrained multibody systems,” J. Guidance Control Dyn., vol. 13, no. 1, pp. 113–120, 1990, doi: 10.2514/3.20524.
  41.  DS1103, Hardware Installation and Configuration. dSpace, 2009.
  42.  ActiveMedia, Pioneer 2DX Operation Manual Peterborough, 1999.
Go to article

Authors and Affiliations

Zenon Hendzel
1
ORCID: ORCID
Paweł Penar
1

  1. Department of Applied Mechanics and Robotics, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more