Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called “green gap”. This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

Go to article

Authors and Affiliations

Q. Zhou
M. Xu
H. Wang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

Go to article

Authors and Affiliations

M. Hosseinnezhad
S. Rouhani
Download PDF Download RIS Download Bibtex

Abstract

In this paper an analysis of the surface properties of (Ti,Pd,Eu)Ox thin films prepared by magnetron sputtering has been described. In particular, the results of composition and structure investigations were studied in relation to the surface state and optical properties. It was found that (Ti,Pd,Eu)Ox film was nanocrystalline and had a rutile structure. The average crystallites size was equal to 7.8 nm. Films were homogeneous and had densely packed grains. Investigation of the surface properties by XPS showed that titanium was present at 4+ state (in the TiO2form), palladium occurred as PdO2(also at 4+ state), while europium was in Eu2O3form (at 3+ state). In comparison with the unmodiffied TiO2, the coating with Pd and Eu additives had a rather high transparency (approx. 47%) in the visible light range, its optical absorption edge was shifted towards into the longer wavelengths (from 345 nm to 452 nm), and the width of optical energy gap Egopt was nearly twice lower (1.82 eV). Besides, the resistivity of (Ti,Pd,Eu)Ox at room temperature was 1×103 Wcm. In the case of the film as-deposited on Si substrate (p-type) the generation of photocurrent as a response to light beam excitation (λexc = 527 nm) was observed.

Go to article

Authors and Affiliations

D. Wojcieszak
D. Kaczmarek
J. Domaradzki
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For themost promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

Go to article

Authors and Affiliations

K. Znajdek
Maciej Sibiński
ORCID: ORCID
A. Strąkowska
Z. Lisik
Download PDF Download RIS Download Bibtex

Abstract

Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards (110). The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

Go to article

Authors and Affiliations

D. Benyahia
Łukasz Kubiszyn
ORCID: ORCID
Krystian Michalczewski
ORCID: ORCID
A. Kębłowski
Piotr Martyniuk
ORCID: ORCID
J. Piotrowski
A. Rogalski

This page uses 'cookies'. Learn more