Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Boiling produces vapor with a phase change by absorbing a consistent amount of heat. Experimentation and modeling can help us better understand this phenomenon. The present study is focused on the heat transfer during the nucleate pool boiling of refrigerant R141b on the surface of a horizontal copper tube. The results of the experiment were compared with four correlations drawn from the literature, and the critical heat flux was examined for different pressures and also compared with the predicted values. Simulating boiling with two-phase models allowed us to infer the plot of the temperature distribution around the tube and compared it to results from other work.
Go to article

Bibliography

[1] V.K. Dhir. Nucleate and transition boiling heat transfer under pool and external flow conditions. International Journal of Heat and Fluid Flow, 12(4):290–314, 1991. doi: 10.1016/0142-727X(91)90018-Q.
[2] I.L. Pioro, W. Rohsenow, and S.S. Doerffer. Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface. International Journal of Heat and Mass Transfer, 47(23):5033–5044, 2004. doi: 10.1016/j.ijheatmasstransfer.2004.06.019.
[3] T. Baki and A. Aris. Etude expérimentale du transfert de chaleur lors de l’ébullition en vase du R141b. (Experimental study of heat transfer during the pool boiling of R141b). Communication Science & Technology, No. 11, July 2012 COST (in French).
[4] T. Baki, A. Aris, and A. Guessab. Impact du diamètre extérieur d’un tube horizontal lors de l’ébullition en vase. (Impact of the outside diameter of a horizontal tube during pool boiling). In 12th Mechanical Congress, 21-24 April 2015, Casablanca, Marocco (in French).
[5] T. Baki, A. Aris, and M. Tebbal. Proposal for a correlation raising the impact of the external diameter of a horizontal tube during pool boiling. International Journal of Thermal Sciences, 84:293–299, 2014. doi: 10.1016/j.ijthermalsci.2014.05.023.
[6] T. Baki. Etude expérimentale et simulation de l’ébullition à l’extérieur d’un tube horizontal. (Experimental study and simulation of boiling outside a horizontal tube). Ph.D. Thesis, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), Oran, Algeria. (in French).
[7] T. Baki. Ebullition à l’Extérieur d’un Tube Horizontal, Comparaison de Corrélations. (Boiling outside a horizontal tube, comparison of correlations). In National Congress on Energies and Materials (CNEM), December 17-18, 2018, Naâma Algeria (in French).
[8] T. Baki. Ebullition à l’extérieur d’un Tube Horizontal à des Pressions sous Atmosphérique, Comparaison de Corrélations. (Boiling outside a horizontal tube under atmospheric pressures, comparison of correlations). In: 1st International Symposium on Materials, Energy and Environment – MEE'2020, January 20-21, 2020, El Oued, Algeria (in French).
[9] T. Baki. Survey on the nucleate pool boiling of hydrogen and its limits. Journal of Mechanical and Energy Engineering, 4(2):157–166, 2020. doi: 10.30464/jmee.2020.4.2.157.
[10] S. Deb, S. Pal, D.Ch. Das, M. Das, A.K. Das, and R. Das. Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b. Heat and Mass Transfer, 56(12):3273–3287, 2020. doi: 10.1007/s00231-020-02922-w.
[11] O. Khliyeva, V. Zhelezny, T. Lukianova, N. Lukianov, Yu. Semenyuk, A.L.N. Moreira, S.M.S. Murshed, E. Palomo del Barrio, and A. Nikulin. A new approach for predicting the pool boiling heat transfer coefficient of refrigerant R141b and its mixtures with surfactant and nanoparticles using experimental data. Journal of Thermal Analysis and Calorimetry, 142(6):2327–2339, 2020. doi: 10.1007/s10973-020-09479-0.
[12] M.Y. Abdullah, Prabowo, and B. Sudarmanta. Analysis degrees superheating refrigerant R141b on evaporator. Heat and Mass Transfer, 1–13, 2020. doi: 10.1007/s00231-020-02963-1.
[13] T. Li, X. Wu, and Q. Ma. Pool boiling heat transfer of R141b on surfaces covered copper foam with circular-shaped channels. Experimental Thermal and Fluid Science, 105:136–143, 2019. doi: 10.1016/j.expthermflusci.2019.03.015.
[14] W.M. Rohsenow. A method of correlating heat transfer data for surface boiling of liquids. Technical Report No. 5.MIT, USA, 1952.
[15] D.A. Labuntsov. Heat transfer problems with nucleate boiling of liquids. Thermal Engineering, 19(9):21–28, 1973.
[16] M.G. Cooper. Saturation nucleate pool boiling – a simple correlation. In: H.C. Simpson et al. (eds.), First U.K. National Conference on Heat Transfer, The Institution of Chemical Engineers Symposium Series, Volume 2.86, pages 785–793, Pergamon, 1984. doi: 10.1016/B978-0-85295-175-0.50013-8.
[17] K. Cornwall and J.G. Einarsson. Peripheral variation of heat transfer under pool boiling on tubes. International Journal of Heat and Fluid Flow, 4(3):141–144, 1983. doi: 10.1016/0142-727X(83)90059-0.
[18] P.R. Dominiczak and J.T. Cieśliński. Circumferential temperature distribution during nucleate pool boiling outside smooth and modified horizontal tubes. Experimental Thermal and Fluid Science, 33(1):173–177, 2008. doi: 10.1016/j.expthermflusci.2008.07.007.
[19] K. Fukuda and A. Sakurai. Effects of diameters and surface conditions of horizontal test cylinders on subcooled pool boiling CHFs with two mechanisms depending on subcooling and pressure. In: 12th International Heat Transfer Conference, Grenoble, France, August 18–23, 2002. doi: 10.1615/IHTC12.4530.
[20] S.G. Kandlikar. Critical heat flux in subcooled flow boiling – An assessment of current understanding and future directions for research. Multiphase Science and Technology, 13(3):207–232, 2001. doi: 10.1615/MultScienTechn.v13.i3-4.40.
[21] S.S. Kutateladze. On the transition to film boiling under natural convection. Kotloturbostroenie, 3:152–158, 1948.
[22] W.M. Rohsenow, J.P. Hartnett, and Y.I. Cho (eds). Handbook of Heat Transfer, 3 edition, Mc Graw-Hill, 1998.
Go to article

Authors and Affiliations

Touhami Baki
1
ORCID: ORCID
Abdelkader Aris
2
Mohamed Tebbal
1

  1. Faculty of Mechanics, Gaseous Fuels and Environment Laboratory, University of Sciences andTechnology of Oran Mohamed Boudiaf (USTO-MB), El Mnaouer, Oran, Algeria.
  2. ENP. Oran, Laboratoire de Recherche en Technologie de Fabrication Mécanique, Algeria

This page uses 'cookies'. Learn more