Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Magnesium alloys have recently become increasingly popular in many sectors of the industry due to their unique properties, such as low density, high specific strength, vibration damping ability along with their recyclability and excellent machinability. Nowadays, thin films have been attracting more attention in applications that improve mechanical and corrosion properties. The following alloys were used for the coated Mg-Al-RE and the ultra-light magnesium-lithium alloy of the Mg-Li-Al-RE type. A single layer of TiO2 was deposited using the atomic layer deposition ALD method. Multiple layers of the Ti/TiO₂ and Ti/TiO₂/Ti/TiO₂ type were obtained by the MS-PVD magnetron sputtering technique. Samples were investigated by scanning and a transmission electron microscope (SEM, TEM) and their morphology was studied by an atomic forces microscope (AFM). Further examinations, including electrochemical corrosion, roughness and tribology, were also carried out. As a result of the research, it was found that the best electrochemical properties are exhibited by single TiO2 layers obtained by the ALD method. Moreover, it was found that the Ti/TiO₂/Ti/TiO₂ double film has better properties than the Ti/TiO₂ film.
Go to article

Bibliography

  1.  K.-J. Huang, L. Yan, C.-S. Wang, C.-S. Xie, and C.-R. Zhou, “Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy”, Trans. Nonferrous Met. Soc. China, vol. 20, no. 7, pp. 1351‒1355, 2010, doi: 10.1016/S1003-6326(09)60303-4.
  2.  J. Song, J. She, D. Chen, and F. Pan, “Latest research advances on magnesium and magnesium alloys worldwide”, J. Magnes. Alloy., vol. 8, no. 1, pp. 1‒41, 2020, doi: 10.1016/j.jma.2020.02.003.
  3.  M. Król, P. Snopiński, M. Pagáč, J. Hajnyš, and J. Petrů, “Hot Deformation Treatment of Grain-Modified Mg-Li Alloy”, Materials, vol. 13, pp. 4557‒4570, 2020, doi: 10.3390/ma13204557.
  4.  M. Król, “Magnesium–lithium alloys with TiB and Sr additions”, J. Therm. Anal. Calorim., vol 138, pp. 4237‒4245, 2019, doi: 10.1007/ s10973-019-08341-2.
  5.  F. Liu, Z. Sun, and Y. Ji, “Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing” J. Mater. Res. Technol-JMRT, vol. 11, pp. 1019‒1030, 2021, doi: 10.1016/j.jmrt.2021.01.071.
  6.  H. Yu, W. Li, Y. Tan, and Y. Tan, “The Effect of Annealing on the Microstructure and Properties of Ultralow-Temperature Rolled Mg– 2Y–0.6Nd–0.6Zr Alloy”, Metals, vol. 11, no 2, pp. 315‒331, 2021, doi: 10.3390/met11020315.
  7.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp119‒124, 2020, doi: 10.24425/bpasts.2020.131841.
  8.  L. Zhu and G. Song, “Improved corrosion resistance of AZ91D magnesium alloy by an aluminum-alloyed coating” Surf. Coat. Technol., vol. 200, No. 8, pp. 2834‒2840, 2006.
  9.  J.D. Majumdar, R. Galun, B.L. Mordike, and I. Manna, “Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy”, Mater. Sci. Eng. A, vol. 361, no.  1‒2, pp. 119‒129, 2003.
  10.  A. Woźniak, W. Walke, A. Jakóbik-Kolon, B. Ziębowicz, Z. Brytan, and M. Adamiak “The Influence of ZnO Oxide Layer on the Physicochemical Behavior of Ti6Al4V Titanium Alloy” Materials, vol. 14, p. 230, 2021, doi: 10.3390/ma14010230.
  11.  F. Vargas, H. Ageorges, P. Fournier, P. Fauchais, and M.E. López, “Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying”, Surf. Coat. Technol., vol. 205, pp. 1132‒1136, 2010, doi: 10.1016/j.surfcoat.2010.07.061.
  12.  H. Hu, X. Nie, and Y. Ma, “Corrosion and Surface Treatment of Magnesium Alloys”, in Magnesium alloys properties in solid and liquid states, vol. 3, pp. 67‒108, 2013, doi: 10.1155/2013/532896.
  13.  K.J. Singh, M. Sahni, and M. Rajoriya, “Study of Structural, Optical and Semiconducting Properties of TiO2 Thin Film deposited by RF Magnetron Sputtering”, Mater. Today: Proc., vol.  12, no. 3, pp. 565‒572, 2019.
  14.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151‒156, 2018, doi: 10.24425/119069.
  15.  Y. Zhao, Z. Zhang, L. Shi, F. Zhang, S. Li, and R. Zeng, “Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys”, Mater. Lett., vol. 237, pp. 14‒18, 2019.
  16.  K. Trembecka-Wojciga, R. Major, J.M. Lackner, F. Bruckert, E. Jasek, and B. Major, “Biomechanical properties of the thin PVD coatings defined by red blood cells”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 697‒705, 2015, doi: 10.1515/bpasts-2015-0081.
  17.  A. Kania, W. Pilarczyk, and M.M. Szindler, “Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel”, Thin Solid Films, vol. 701, pp. 252‒259, 2020, doi: 10.1016/j.tsf.2020.137945.
  18.  P. Pansila, N. Witit-anunb, and S. Chaiyakun, “Influence of sputtering power on structure and photocatalyst properties of DC magnetron sputtered TiO2 thin film”, Procedia Eng., vol. 32, pp. 862‒867, 2012.
  19.  M. Basiaga, W. Walke, M. Staszuk, W. Kajzer, A. Kajzer, and K. Nowińska, “Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents”, Arch. Civ. Mech. Eng., vol. 17, pp. 32‒42, 2017, doi: 10.1016/j.acme.2016.08.001.
  20.  L. Velardi, L. Scrimieri, L. Maruccio, V. Nassisi, A. Serra, D Manno, L. Calcagnile, and G. Quarta, “Synthesis and doping of TiO2 thin films via a new type of laser plasma source”, Vacuum, vol. 184, p. 109890, 2021, doi: 10.1016/j.vacuum.2020.109890.
  21.  A. Kozlovskiy, I. Shlimas, K. Dukenbayevc, and M. Zdorovets, “Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering”, Vacuum, vol.  164, pp. 224‒232, 2019, doi: 10.1016/j.vacuum.2019.03.026.
  22.  M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion”, Prog. Mater. Sci., vol. 89, pp. 92‒193, 2017, doi: 10.1016/j. pmatsci.2017.04.011.
  23.  W. Zhang, W. Liu, B. Li, and G. Mai, “Characterization and Tribological Investigation of Sol-Gel Titania and Doped Titania Thin Films”, J. Am. Ceram. Soc., vol. 85, no. 7, pp.  1770‒1776, 2002, doi: 10.1111/j.1151-2916.2002.tb00351.x.
Go to article

Authors and Affiliations

Marcin Staszuk
1
ORCID: ORCID
Łukasz Reimann
1
Aleksandra Ściślak
1
Justyna Jaworska
1
Mirosława Pawlyta
1
Tomasz Mikuszewski
2
Dariusz Kuc
2
Tomasz Tański
1
ORCID: ORCID
Antonín Kříž
3

  1. Silesian University of Technology, Faculty of Mechanical Engineering, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  2. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, Katowice, Poland
  3. University of West Bohemia, Faculty of Mechanical Engineering, Univerzitni 22 St., 30614 Plzen, Czech Republic

This page uses 'cookies'. Learn more