Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Bridge crane is exposed to dynamic loads during its non-stationary operations (acceleration and braking). Analyzing these operations, one can determine unknown impacts on the dynamic behavior of bridge crane. These impacts are taken into consideration using selected coefficients inside the dynamic model. Dynamic modelling of a bridge crane in vertical plane is performed in the operation of the hoist mechanism. The dynamic model is obtained using data from a real bridge crane system. Two cases have been analyzed: acceleration of a load freely suspended on the rope when it is lifted and acceleration of a load during the lowering process. Physical quantities that are most important for this research are the values of stress and deformation of main girders. Size of deformation at the middle point of the main crane girder is monitored and analyzed for the above-mentioned two cases. Using the values of maximum deformation, one also obtains maximum stress values in the supporting construction of the crane.
Go to article

Bibliography

[1] Q. Yang, X. Li, H. Cai, Y-M. Hsu, J. Lee, C. Hung Yang, Z. Li Li, and M. Yi Li. Fault prognosis of industrial robots in dynamic working regimes: Find degradation in variations. Measurement, 173:108545, 2021. doi: 10.1016/j.measurement.2020.108545.
[2] S. Wang, Z. Ren, G. Jin, and H. Chen. Modeling and analysis of offshore crane retrofitted with cable-driven inverted tetrahedron mechanism. IEEE Access, 9:86132–86143, 2021. doi: 10.1109/access.2021.3063792.
[3] Q. Jiao, B. Li, Y. Qin, F. Wang, J. Gu, J. Wang, and C. Mi, Research on dynamic characteristics of lifting rope-breaking for the nuclear power crane. Journal of Failure Analysis and Prevention, 21:1220–1230, 2021. doi: 10.1007/s11668-021-01154-2.
[4] D. Cekus, P. Kwiatoń, and T. Geisler. The dynamic analysis of load motion during the interaction of wind pressure. Meccanica, 56:785–796, 2021. doi: 10.1007/s11012-020-01234-x.
[5] J. Yuan, C. Schwingshackl, C. Wong, and L. Salles. On an improved adaptive reduced-order model for the computation of steady-state vibrations in large-scale non-conservative systems with friction joints. Nonlinear Dynamics, 103:3283–3300, 2021. doi: 10.1007/s11071-020-05890-2.
[6] H. Zhu, J. Li, W. Tian, S. Weng, Y. Peng, Z. Zhang, and Z. Chen. An enhanced substructure-based response sensitivity method for finite element model updating of large-scale structures. Mechanical Systems and Signal Processing, 154:107359, 2021. doi: 10.1016/j.ymssp.2020.107359.
[7] I. Golvin and S. Palis. Robust control for active damping of elastic gantry crane vibrations. Mechanical Systems and Signal Processing, 121:264–278, 2019. doi: 0.1016/j.ymssp.2018.11.005.
[8] L. Sowa, W. Piekarska, T. Skrzypczak, and P. Kwiatoń. The effect of restraints type on the generated stresses in gantry crane beam. MATEC Web Conferences, 157:02046, 2018. doi: 10.1051/matecconf/201815702046.
[9] Y.A. Onur and H. Gelen. Design and deflection evaluation of a portal crane subjected to traction load. Materials Testing, 62(11):1131–1137, 2020. doi: 10.3139/120.111597.
[10] Y.A. Onur and H. Gelen. Investigation on endurance evaluation of a portal crane: experimental, theoretical and finite element analysis. Materials Testing, 62(4):357–364. 2020. doi: 10.3139/120.111491.
[11] A. Komarov, A. Grachev, A. Gabriel, and N. Mokhova. Simulation of the misalignment process of an overhead crane in Matlab/Simulink. E3S Web Conferences, 304:02008, 2021. doi: 10.1051/e3sconf/202130402008.
[12] A. Cibicik, E. Pedersen, and O. Egeland. Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders. Mechanism and Machine Theory, 143:103616, 2020. doi: 10.1016/j.mechmachtheory.2019.103616.
[13] D. Cekus and P. Kwiatoń. Effect of the rope system deformation on the working cycle of the mobile crane during interaction of wind pressure. Mechanism and Machine Theory, 153:104011, 2020. doi: 10.1016/j.mechmachtheory.2020.104011.
[14] D. Ostric, N. Zrnic, and A. Brkic. A modeling of bridge cranes for research of dynamic phenomena during their movement. Tehnika – Mašinstvo, 51(3-4):1–6, 1996.
[15] T. Wang, N. Tan, X. Zhang, G. Li, S. Su, J. Zhou, J. Qiu, Z, Wu, Y. Zhai, and R. Donida Labati. A time-varying sliding mode control method for distributed-mass double pendulum bridge crane with variable parameters. IEEE Access, 9:75981–75992, 2021. doi: 10.1109/access.2021.3079303.
[16] M.S. Komarov. Dynamics of load-carrying machines. Madagiz, Moscow, 1962. (in Russian).
[17] S. Dedijer. Dynamic coefficients in operation of bridge cranes of small and medium load capacity. D.Sc. Thesis, Faculty of Mechanical Engineering, Belgrade, Jugoslavia, 1970.
[18] D. Scap. Dynamic loads of the bridge crane when lifting loads. Tehnika - Strojarstvo, 24(6):307–315, 1982.
[19] H.A. Lobov. Dynamics of load-carrying cranes. Mechanical Engineering, Moscow, Russia, 1987. (in Russian).
[20] D. Ostric, A. Brkic, and N. Zrnic. The analysis of influence of swing of the cargo and rigidity of driving shafts of mechanism for moving to the dynamic behaviour of the bridge crane. Proceedings of IX IFToMM Congress, Milano, 1995.
[21] D. Ostric, A. Brkic, and N. Zrnic. The analysis of bridge cranes dynamic behaviour during the work of hoisting mechanism. Proceedings of XIV IcoMHaW, Faculty of Mechanical Engineering, Belgrade, 1996.
[22] M. Delić, M. Čolić, E. Mešić, and N. Pervan. Analytical calculation and FEM analysis main girder double girder bridge crane. TEM Journal, 6(1):48–52, 2017. doi: 10.18421/TEM61-07.
[23] M. Delić, N. Pervan, M. Čolić, and E. Mešić. Theoretical and experimental analysis of the main girder double girder bridge cranes. International Journal of Advanced and Applied Sciences, 6(4):75–80, 2019. doi: 10.21833/ijaas.2019.04.009.
[24] H. A. Hobov. Calculation of dynamic loads of bridge cranes when lifting a load. Bulletin of Mechanical Engineering, 5:37–41, 1977. (in Russian).
[25] D. Ostric, A. Brkic, and N. Zrnic. Influence of driving-shaf to dynamic behavior of the bridge crane in horizontal plane, modeled with several concentrated masses during the acceleration. FME Transactions, 2: 25–30, 1993.
[26] S.G. Kelly. Mechanical Vibrations – Theory and Applications, Global Engineering, Stamford, USA, 2012.
Go to article

Authors and Affiliations

Mirsad Čolić
1
Nedim Pervan
1
ORCID: ORCID
Muamer Delić
1
ORCID: ORCID
Adis J. Muminović
1
ORCID: ORCID
Senad Odžak
2
ORCID: ORCID
Vahidin Hadžiabdić
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
  2. Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
Download PDF Download RIS Download Bibtex

Abstract

Biogas, a renewable fuel, has low operational stability range in burners due to its inherent carbon-dioxide content. In cross-flow configuration, biogas is injected from a horizontal injector and air is supplied in an orthogonal direction to the fuel flow. To increase the stable operating regime, backward facing steps are used. Systematic numerical simulations of these flames are reported here. The comprehensive numerical model incorporates a chemical kinetic mechanism having 25 species and 121 elementary reactions, multicomponent diffusion, variable thermo-physical properties, and optically thin approximation based volumetric radiation model. The model is able to predict different stable flame types formed behind the step under different air and fuel flow rates, comparable to experimental predictions. Predicted flow, species, and temperature fields in the flames within the stable operating regime, revealing their anchoring positions relative to the rear face of the backward facing step, which are difficult to be measured experimentally, have been presented in detail. Resultant flow field behind a backward facing step under chemically reactive condition is compared against the flow fields under isothermal and non-reactive conditions to reveal the significant change the chemical reaction produces. Effects of step height and step location relative to the fuel injector are also presented.
Go to article

Bibliography

[1] D. Andriani, A. Wresta, T.D. Atmaja, and A. Saepudin. A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Applied Biochemistry and Biotechnology, 172(4):1909–1928, 2014. doi: 10.1007/s12010-013-0652-x.
[2] I.U. Khan, Mohd H.D. Othman, H. Hashim, T. Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, and I. Wan Azelee. Biogas as a renewable energy fuel – A review of biogas upgrading utilization and storage. Energy Conversion and Management, 150:277–294, 2017. doi: 10.1016/j.enconman.2017.08.035.
[3] S. Rasi, A. Veijanen, and J. Rintala. Trace compounds of biogas from different biogas production plants. Energy, 32(8):1375–1380, 2007. doi: 10.1016/j.energy.2006.10.018.
[4] E. Ryckebosh, M. Drouillon, and H. Vervaeren. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5):1633–1645, 2011. doi: 10.1016/j.biombioe.2011.02.033.
[5] R.J. Spiegel, and J.L. Preston. Test results for fuel cell operation on anaerobic digester gas. Journal of Power Sources, 86(1-2):283–288, 2000. doi: 10.1016/S0378-7753(99)00461-9.
[6] H.-C. Shin, J.-W. Park, K. Park, and H.-C. Song. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environmental Pollution, 119(2):227–236, 2002. doi: 10.1016/s0269-7491(01)00331-1.
[7] R.J. Spiegel and J.L. Preston. Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Management, 23(8):709–717, 2003. doi: 10.1016/S0956-053X(02)00165-4.
[8] A. Lock, S.K. Aggarwal, I.K. Puri, and U. Hegde. Suppression of fuel and air stream diluted methane-air partially premixed flames in normal and microgravity. Fire Safety Journal, 43(1):24–35, 2008. doi: 10.1016/j.firesaf.2007.02.004.
[9] T. Leung and I. Wierzba. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. International Journal of Hydrogen Energy, 33(14):3856–3862, 2008. doi: 10.1016/j.ijhydene.2008.04.030.
[10] A.M. Briones, S.K. Aggarwal, and V. Katta. A numerical investigation of flame liftoff, stabilization, and blowout. Physics of Fluids, 18(4):043603, 2006. doi: 10.1063/1.2191851.
[11] C.-E. Lee and C.-H. Hwang. An experimental study on the flame stability of LFG and LFG-mixed fuels. Fuel, 86(5-6):649–655, 2007. doi: 10.1016/j.fuel.2006.08.033.
[12] L. Xiang, H. Chu, F. Ren, and M. Gu. Numerical analysis of the effect of CO 2 on combustion characteristics of laminar premixed methane/air flames. Journal of the Energy Institute, 92(5):1487–1501, 2019. doi: 10.1016/j.joei.2018.06.018.
[13] N. Hinton and R. Stone. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel, 116:743–750, 2014. doi: 10.1016/j.fuel.2013.08.069.
[14] S. Jahangirian, A. Engeda, and I.S. Wichman. Thermal and chemical structure of biogas counterflow diffusion flames. Energy and Fuels, 23(11):5312–5321, 2009. doi: 10.1021/ef9002044.
[15] A. Mameri and F. Tabet. Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. International Journal of Hydrogen Energy, 41(3):2011–2022, 2016. doi: 10.1016/j.ijhydene.2015.11.035.
[16] J.I. Erete, K.J. Hughes, L. Ma, M. Fairweather, M. Pourkashanian, and A. Williams. Effect of CO 2 dilution on the structure and emissions from turbulent, non-premixed methane-air jet flames. Journal of the Energy Institute, 90(2):191–200, 2017. doi: 10.1016/j.joei.2016.02.004.
[17] M.R.J. Charest, Ö.L. Gülder, and C.P.T. Groth. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combustion and Flame, 161(10):2678–2691, 2014. doi: 10.1016/j.combustflame.2014.04.012.
[18] H.M. Nicholson and J.P. Field. Some experimental techniques for the investigation of the mechanism of the flame stabilization in the wakes of bluff bodies. Symposium on Combustion and Flame, and Explosion Phenomena, 3(1):44–68, 1948. doi: 10.1016/S1062-2896(49)0008-0.
[19] G.C. Williams and C.W. Shipman. Some properties of rod-stabilized flames C homogenous gas mixtures. Symposium (International) on Combustion, 4(1):733-742, 1953. doi: 10.1016/S0082-0784(53)80096-2.
[20] G.C. Williams, P.T. Woo, and C.W. Shipman. Boundary layer effects on stability characteristics of bluff-body flame holders. Symposium (International) on Combustion, 6(1):427–438, 1957. doi: 10.1016/S0082-0784(57)80058-7.
[21] E.E. Zukoski, and F.E. Marble. Experimental concerning the mechanism of flame blowoff from bluff bodies. Proceedings of the Gas Dynamics Symposium on Aerothermochemistry, 205-210, 1956.
[22] E.E. Zukoski. Flame stabilization on bluff bodies at low and intermediate Reynolds numbers. Ph.D Thesis, California Institute of Technology, Pasadena, United States of America, 1954. doi: 10.7907/E9V0-GM76.
[23] T. Maxworthy. On the mechanism of bluff body flame stabilization at low velocities. Combustion and Flame, 6:233–244, 1962. doi: 10.1016/0010-2180(62)90101-3.
[24] S.I. Cheng and A.A. Kovitz. Theory of flame stabilization by a bluff body. Symposium (International) on Combustion, 7(1):681–691, 1958. doi: 10.1016/S0082-0784(58)80109-5.
[25] A.A. Kovitz and H.-M Fu. On bluff body flame stabilization. Applied Scientific Research, 10:315–334, 1961. doi: 10.1007/BF00411927.
[26] C.-H. Chen and J.S. T’ien. Diffusion flame stabilization at the leading edge of fuel plate. Combustion Science and Technology, 50(4-6):283–306, 1986. doi: 10.1080/00102208608923938.
[27] T. Rohmat, H. Katoh, T. Obara, T. Yoshihashi, and S. Ohyagi. Diffusion flame stabilized on a porous plate in a parallel airstream. AIAA Journal, 36(11):1945–1952, 1998. doi: 10.2514/2.300.
[28] E.D. Gopalakrishnan and V. Raghavan. Numerical investigation of laminar diffusion flames established on a horizontal flat plate in a parallel air stream. International Journal of Spray and Combustion Dynamics, 3(2):161–190, 2011. doi: 10.1260/1756-8277.3.2.161.
[29] P.K. Shijin, S. Soma Sundaram, V. Raghavan, and V. Babu. Numerical investigation of laminar cross flow non-premixed flames in the presence of a bluff-body. Combustion Theory and Modelling, 18(6):692–710, 2014. doi: 10.1080/13647830.2014.967725.
[30] P.K. Shijin, V. Raghavan, and V. Babu. Numerical investigation of flame-vortex interactions in cross flow non-premixed flames in the presence of bluff bodies. Combustion Theory and Modelling, 20(4):683–706, 2016. doi: 10.1080/13647830.2016.1168942.
[31] P.K. Shijin, A. Babu, and V. Raghavan. Experimental study of bluff body stabilized laminar reactive boundary layers. International Journal of Heat and Mass Transfer, 102:219–225, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.06.028.
[32] A. Harish, H.R. Rakesh Ranga, A. Babu, and V. Raghavan. Experimental study of the flame characteristics and stability regimes of biogas-air cross flow non-premixed flames. Fuel, 223:334–343, 2018. doi: 10.1016/j.fuel.2018.03.055.
[33] R.A. Barlow, A.N. Karpetis, J.H. Frank, and J.-Y Chen. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 127(3):2102–2118, 2001. doi: 10.1016/S0010-2180(01)00313-3.
[34] T. Hirano and Y. Kanno. Aerodynamics and thermal structures of the laminar boundary layer over a flat plate with a diffusion flame. Symposium (International) on Combustion, 14(1):391–398, 1973. doi: 10.1016/S0082-0784(73)80038-4.
Go to article

Authors and Affiliations

Alagani Harish
1
ORCID: ORCID
Vasudevan Raghavan
1

  1. Indian Institute of Technology Madras, Chennai, India

This page uses 'cookies'. Learn more