Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Studies of background donor concentration (BDC) in HgCdTe samples grown with different types of technology were performed with the use of ion milling as a means of eliminating the compensating acceptors. In bulk crystals, films grown with liquid phase epitaxy and films fabricated with molecular beam epitaxy (MBE) on Si substrates, BDC of the order of ~1014 cm-3 was revealed. Films grown with metal−organic chemical vapour deposition and with MBE on GaAs substrates showed BDC of the order of ~1015 cm-3. A possibility of assessing the BDC in acceptor (arsenic)−doped HgCdTe was demon− strated. In general, the studies showed the effectiveness of ion milling as a method of reducing electrical compensation in n−type MCT and as an excellent tool for assisting evaluation of BDC.

Go to article

Authors and Affiliations

I.I. Izhnin
K.D. Mynbaev
A.V. Voitsekhovsky
A.G. Korotaev
O.I. Fitsych
M. Pociask-Bialy
S.A. Dvoretsky
Download PDF Download RIS Download Bibtex

Abstract

Novel FTIR spectrometer for the monitoring of atmosphere is presented. Its design stands out by a compact form allowing the measures in two IR spectral bands 3-5 and 8-12 μm simultaneously. The spectrometer is composed of two Michelson interferometers with the joint sliding mirror. The paper contains the detailed description of the optics and electronics units, preliminary results of the measurement of biological aerosols and calibration methods.

Go to article

Authors and Affiliations

L. Wawrzyniuk
R. Jóźwicki
G. Szymański
M. Rataj
M. Błęcka
A. Cichocki
R. Pietrzak
Download PDF Download RIS Download Bibtex

Abstract

A high performance distributed sensor system with multi-intrusions simultaneous detection capability based on phase sensitive OTDR (Φ−OTDR) has been proposed and demonstrated. To improve system performance, three aspects have been investigated. Firstly, a model of one−dimensional impulse response of backscattered light and a Monte Carlo method have been used to study how the laser line width affects the system performance. Theoretical and experimental results show that the performances of the system, especially the signal−noise−ratio (SNR), decrease with the broadening of laser linewidth. Secondly, a temperature−compensated fibre Bragg grating with a 3 dB linewidth of 0.05 nm and a wavelength stability of 0.1 pm has been applied as an optical filter for effective denoising. Thirdly, a novel interrogation method for multi−intrusions simultaneous detection is proposed and applied in data denoising and processing. Consequently, benefiting from the three−in−one improvement, a high performance Φ−OTDR has been realized and four simultaneous applied intrusions have been detected and located at the same time along a 14 km sensing fibre with a spatial resolution of 6 m and a high SNR of 16 dB. To the best of our knowledge, this is the most multifunctional Φ−OTDR up to now and it can be used for perimeter and/or pipeline intrusion real−time monitoring.

Go to article

Authors and Affiliations

Y. Zhan
Q. Yu
K. Wang
F. Yang
Y. Kong
X. Zhao
Download PDF Download RIS Download Bibtex

Abstract

The present article investigates theoretically the refection and transmission through a lossless dielectric slab embedded between two semi−infinite left−handed materials (LHMs) in which the electric permittivity and magnetic permeability are simultaneously negative. The LHM is assumed to be dispersive according to Lorentz as well as Drude medium model. The reflection and transmission coefficients are studied with the angle of incidence, frequency and slab thickness. The effect of the damping frequency is also investigated. It is found that the damping frequency has an insignificant effect on reflected, transmitted and loss powers. Band pass filter is one of the possible applications of the proposed structure.

Go to article

Authors and Affiliations

S.A. Taya
D.M. El-Amassi
Download PDF Download RIS Download Bibtex

Abstract

A variety of optoelectronic devices (rangefinders, velocity meters, terrestrial scanners, lidars, free space optics communication systems and others) based on semiconductor laser technology feature low−quality and highly asymmetric beams. It results from optical characteristics of the applied high−peak−power pulsed laser sources, which in most cases are composed of several laser chips, each containing one or a few active lasers. Such sources cannot be considered as coherent, so the resultant beam is formed by the superposition of many optically uncorrelated sub-sources. Far−field distribution of laser spots in such devices corresponds to the shape of laser emitting area, which instead of desired symmetry shows layout composed of one or several discrete lines or rectangles. In some applications, especially if small targets are concerned, it may be crucial to provide more symmetrical and uniform laser beam cross−section. In the paper, the novel strategy of such correction, combining coherent and incoherent approaches, is presented. All aspects of technological implementations are discussed covering general theoretical treatment of the problem, diffractive optical element (DOE) design in the form of computer generated hologram (CGH), its fabrication and testing in case of selected laser module beam correction.

Go to article

Authors and Affiliations

J. Wojtanowski
M. Traczyk
Z. Mierczyk
M. Zygmunt
B. Przybyszewski

This page uses 'cookies'. Learn more