Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Go to article

Bibliography

  1.  K. Talbot, P. Duley, and M. Hyatt, “Specific emitter identification and verification,” Technol. Rev. J., vol.  Spring/Summer, pp. 113‒133, 2003.
  2.  G. Baldini, G. Steri, and R. Giuliani, “Identification of wireless devices from their physical layer radio-frequency fingerprints,” in Encyclopedia of Information Science and Technology, 4th Ed., 2018, ch. 533, pp. 6136‒6146.
  3.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, no. 1, pp. 34–41, 2016, doi: 10.1109/cjece.2015.2496143.
  4.  Y. Pan, H. Peng, T. Li, and W. Wang, “High-fidelity symbol synchronization for specific emitter identification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 15‒17 March 2019, pp.  393‒398, doi: 10.1109/ITNEC.2019.8729181.
  5.  S. Ching-Sung and L. Chin-Teng, “A vector neural network for emitter identification,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1120–1127, 2002, doi: 10.1109/TAP.2002.801387.
  6.  R. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance,” in 2009 IEEE International Conference on Communications, 14‒18 June 2009, pp. 1‒5, doi: 10.1109/ICC.2009.5199451.
  7.  O. Ureten and N. Serinken, “Bayesian detection of Wi-Fi transmitter RF fingerprints,” Electron. Lett., vol. 41, no. 6, pp.  373–374, 2005, doi: 10.1049/el:20057769.
  8.  J. Hall, M. Barbeau, and E. Kranakis, “Radio frequency fingerprinting for intrusion detection in wireless networks,” IEEE Trans. Dependable Secure Comput., vol. 12, pp. 1–35, 2005.
  9.  S. Guo, S. Akhtar, and A. Mella, “A Method for Radar Model Identification using Time-domain Transient Signals,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1‒1, 2021, doi: 10.1109/TAES.2021.3074129.
  10.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert–Huang transform-based time–frequency–energy distribution features,” IET Commun., vol. 8, no. 13, 2404–2412, 2014.
  11.  U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 581–591, 2019, doi: 10.1109/ tifs.2018.2855665.
  12.  L. Li, H. B. Ji, and L. Jiang, “Quadratic time-frequency analysis and sequential recognition for specific emitter identification,” IET Signal Proc., vol. 5, pp. 568–574, 2011, doi: 10.1049/iet-spr.2010.0070.
  13.  J. Zhang, F. Wang, Z. Zhong, and O. Dobre, “Novel Hilbert Spectrum-Based Specific Emitter Identification for Single-Hop and Relaying Scenarios,” in 2015 IEEE Global Communications Conference (GLOBECOM), 6–10 Dec. 2015 2015, pp. 1–6, doi: 10.1109/ GLOCOM.2015.7417299.
  14.  Z. Tang and S. Li, “Steady Signal-Based Fractal Method of Specific Communications Emitter Sources Identification,” in Wireless Communications, Networking and Applications, Q.-A. Zeng, Ed., Springer India, New Delhi, 2016, pp. 809–819, doi: 10.1007/978-81- 322-2580-5_73.
  15.  F. Zhuo, Y. Huang, and J. Chen, “Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance,” Procedia Comput. Sci., vol. 107, pp. 472–477, 2017, doi: 10.1016/j.procs.2017.03.092.
  16.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, pp. 34–41, 2016, doi: 10.1109/CJECE.2015.2496143.
  17.  M. Liu and J.F. Doherty, “Specific emitter identification using nonlinear device estimation,” in 2008 IEEE Sarnoff Symposium, 28‒30 April 2008, pp. 1–5, doi: 10.1109/SARNOF.2008.4520119.
  18.  M. Liu and J.F. Doherty, “Nonlinearity estimation for specific emitter identification in multipath channels,” IEEE Trans. Inf. Forensics Secur., vol. 6, no. 3, pp. 1076–1085, 2011, doi: 10.1109/TIFS.2011.2134848.
  19.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 2, pp. 391–396, 2015, doi: 10.1515/bpasts-2015-0044.
  20.  Y. Zhao, L. Wu, J. Zhang, and Y. Li, “Specific emitter identification using geometric features of frequency drift curve,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 99–108, 2018, doi: 10.24425/119063.
  21.  Ł. Rybak and J. Dudczyk, “A geometrical divide of data particle in gravitational classification of moons and circles data sets,” Entropy, vol. 22, p. 16, 2020, doi: 10.3390/e22101088.
  22.  J. Han, T. Zhang, D. Ren, and X. Zheng, “Mechanism analysis and feature extraction algorithm of communication emitter fingerprint,” AEU Int. J. Electron. Commun., vol. 106, 2019, doi: 10.1016/j.aeue.2019.04.020.
  23.  M.K.M. Fadul, D.R. Reising, and M. Sartipi, “Identification of OFDM-based radios under rayleigh fading using RF-DNA and deep learning,” IEEE Access, vol. 9, pp. 17100–17113, 2021, doi: 10.1109/ACCESS.2021.3053491.
  24.  J. Dudczyk, “A method of feature selection in the aspect of specific identification of radar signals,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, pp. 113–119, 2017, doi: 10.1515/bpasts-2017-0014.
  25.  K. Sa, D. Lang, C. Wang, and Y. Bai, “Specific emitter identification techniques for the internet of things,” IEEE Access, vol. 8, pp. 1644– 1652, 2020, doi: 10.1109/ACCESS.2019.2962626.
  26.  Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter identification based on deep residual networks,” IEEE Access, vol. 7, pp. 54425–54434, 2019, doi: 10.1109/ACCESS.2019.2913759.
  27.  L.J. Wong, W.C. Headley, S. Andrews, R.M. Gerdes, and A.J. Michaels, “Clustering learned CNN features from raw I/Q data for emitter identification,” in MILCOM 2018 – 2018 IEEE Military Communications Conference (MILCOM), 29–31 Oct. 2018, pp. 26–33, doi: 10.1109/MILCOM.2018.8599847.
  28.  M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for automatic cognitive radio waveform recognition,” IEEE Access, vol. 5, pp. 11074–11082, 2017, doi: 10.1109/ACCESS.2017.2716191.
  29.  N.E. West and T.O. Shea, “Deep architectures for modulation recognition,” in 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 6‒9 March 2017, pp.  1‒6, doi: 10.1109/DySPAN.2017.7920754.
  30.  Q. Wu et al., “Deep learning based RF fingerprinting for device identification and wireless security,” Electron. Lett., vol. 54, pp. 1405–1407, 2018, doi: 10.1049/el.2018.6404.
  31.  L. Ding, W. Shilian, F. Wang, and W. Zhang, “Specific emitter identification via convolutional neural networks,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2591–2594, 2018, doi: 10.1109/LCOMM.2018.2871465.
  32.  G. Baldini, C. Gentile, R. Giuliani, and G. Steri, “A comparison of techniques for radiometric identification based on deep convolutional neural networks,” Electron. Lett., vol. 55, pp. 90–92, 2018, doi: 10.1049/el.2018.6229.
  33.  K. Huang, J. Yang, H. Liu, and P. Hu, “Deep adversarial neural network for specific emitter identification under varying frequency,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136716, 2021, doi: 10.24425/bpasts.2021.136737.
  34.  B. Wu, S. Yuan, P. Li, Z. Jing, S. Huang, and Y. Zhao, “Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism,” Sensors, vol. 20, p.  6350, 2020, doi: 10.3390/s20216350.
  35.  T.J. Shea and N. West, “Radio Machine Learning Dataset Generation with GNU Radio,” Proceedings of the GNU Radio Conference, vol 1, no.1, 2016. [Online]. Available: https://pubs.gnuradio.org/index.php/grcon/article/view/11.
  36.  T.J. O’Shea, T. Roy, and T.C. Clancy, “Over-the-Air deep learning based radio signal classification,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 168‒179, 2018, doi: 10.1109/JSTSP.2018.2797022.
  37.  A. Hirose and S. Yoshida, “Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence,” IEEE Trans. Neural Networks, vol. 23, pp.  541–551, 2012, doi: 10.1109/TNNLS.2012.2183613.
  38.  C. Trabelsi et al., “Deep complex networks,” presented at the ICLR 2018, 2018.
  39.  Y. Ying and J. Li, “Radio frequency fingerprint identification based on deep complex residual network,” IEEE Access, vol. 8, pp. 204417– 204424, 2020, doi: 10.1109/ACCESS.2020.3037206.
  40.  S. Woo, J. Park, J.-Y. Lee, and I.S. Kweon, “CBAM: Convolutional Block Attention Module,” in Computer Vision – ECCV 2018, Cham, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., Springer International Publishing, 2018, pp. 3–19.
Go to article

Authors and Affiliations

Lingzhi Qu
1
Junan Yang
1
Keju Huang
1
Hui Liu
1

  1. College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

In the domain of affective computing different emotional expressions play an important role. To convey the emotional state of human emotions, facial expressions or visual cues are used as an important and primary cue. The facial expressions convey humans affective state more convincingly than any other cues. With the advancement in the deep learning techniques, the convolutional neural network (CNN) can be used to automatically extract the features from the visual cues; however variable sized and biased datasets are a vital challenge to be dealt with as far as implementation of deep models is concerned. Also, the dataset used for training the model plays a significant role in the retrieved results. In this paper, we have proposed a multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on the visual cues. We have used a CNN and pre-trained ResNet-50 model for the transfer learning. VGGFace model’s weights are used to initialize weights of ResNet50 for fine-tuning the model. The proposed system shows significant improvement in test accuracy in affective state recognition compared to the singleton CNN model developed from scratch or transfer learned model. The proposed methodology is validated on The Karolinska Directed Emotional Faces (KDEF) dataset with 77.85% accuracy. The obtained results are promising compared to the existing state of the art methods.
Go to article

Bibliography

  1.  W. Łosiak and J. Siedlecka, “Recognition of facial expressions of emotions in schizophrenia,” Pol. Psychol. Bull., vol. 44, no. 2, pp. 232– 238, 2013, doi: 10.2478/ppb-2013-0026.
  2.  I.M. Revina and W.R.S. Emmanuel, “A Survey on human face expression recognition techniques,” J. King Saud Univ. Comput. Inf. Sci., vol. 33, no. 6, pp. 619–628, 2021, doi: 10.1016/j.jksuci.2018.09.002.
  3.  I.J. Goodfellow et al., “Challenges in representation learning: A report on three machine learning contests,” Neural Networks, vol. 64, pp. 59‒63, 2015, doi: 10.1016/j.neunet.2014.09.005.
  4.  M. Mohammadpour, H. Khaliliardali, S.M.R. Hashemi, and M.M. AlyanNezhadi. “Facial emotion recognition using deep convolution- al networks,” in Proc. IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, 2017, pp. 0017–0021.
  5.  D.V. Sang, N. Van Dat, and D.P. Thuan, “Facial expression recognition using deep convolutional neural networks,” in Proc. 9th Interna- tional Conference on Knowledge and Systems Engineering (KSE), Hue, 2017, pp. 130‒135.
  6.  C. Pramerdorfer and M. Kampel, “Facial expression recognition using convolutional neural networks: state of the art,” ArXiv, abs/1612.02903.
  7.  J. Yan et al., “Multi-cue fusion for emotion recognition in the wild,” Neurocomputing, vol. 309, pp.  27–35, 2018, doi: 10.1016/j.neu- com.2018.03.068.
  8.  T.A. Rashid, “Convolutional neural networks based method for improving facial expression recognition,” in Advances in Intelligent Systems and Computing, Intelligent Systems Technologies, and Applications 2016. ISTA 2016, J. C. Rodriguez, S. Mitra, S. Thampi, E. S. El-Alfy (Eds)., vol. 530, 2016, Springer, Cham.
  9.  A. Ruiz-Garcia, M. Elshaw, A. Altahhan, and V. Palade, “Deep learning for emotion recognition in faces,” in Artificial Neural Net- works and Machine Learning – ICANN 2016, A.E.P. Villa, P. Masulli, and A.J.P. Rivero (Eds.), vol. 9887, 2016, Switzerland: Springer Verlag, pp. 38‒46, doi: 10.1007/978-3-319-44781-0_5.
  10.  M. Shamim Hossain and Ghulam Muhammad, “Emotion recognition using deep learning approach from audio-visual emotional big data,” Information Fusion, vol. 49, pp. 69‒78, 2019, doi: 10.1016/j.inffus.2018.09.008.
  11.  A.S. Vyas, H.B. Prajapati, and V.K. Dabhi, “Survey on face expression recognition using CNN,” in Proc. 5th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 102‒106.
  12.  M.M. Taghi Zadeh, M. Imani, and B. Majid, “Fast facial emotion recognition using convolutional neural networks and Gabor filters,” in Proc. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 2019, pp. 577–581.
  13.  A. Renda, M. Barsacchi, A. Bechini, and F. Marcelloni, “Comparing ensemble strategies for deep learning: An application to facial ex- pression recognition,” Expert Syst. Appl., vol. 136, pp. 1‒11, 2019, doi: 10.1016/j.eswa.2019.06.025.
  14.  H. Ding, S. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a deep face recognition net for expression recognition,” in Proc. 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, USA, 2017, pp. 118‒126. doi: 10.1109/FG.2017.23.
  15.  J. Li et al., “Facial Expression Recognition by Transfer Learning for Small Datasets,” in Security with Intelligent Computing and Big-data Services. SICBS 2018. Advances in Intelligent Systems and Computing, C. N. Yang, S. L. Peng, L. Jain, (Eds.), vol. 895, Springer, Cham, 2018.
  16.  Y. Wang, C. Wang, L. Luo, and Z. Zhou, “Image Classification Based on transfer Learning of Convolutional neural network,” in Proc. Chinese Control Conference (CCC), Guangzhou, China, 2019, pp.  7506‒7510.
  17.  I. Lee, H. Jung, C. H. Ahn, J. Seo, J. Kim, and O. Kwon, “Real-time personalized facial expression recognition system based on deep learning,” in Proc. 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2016, pp. 267‒268.
  18.  J. Chen, X. Liu, P. Tu, and A. Aragones, “Person-specific expression recognition with transfer learning,” in Proc 19th IEEE International Conference on Image Processing, Orlando, USA, 2012, pp. 2621‒2624.
  19.  Y. Fan, J.C.K. Lam, and V.O.K. Li, “Multi-Region Ensemble Convolutional Neural Network for Facial Expression Recognition”, arXiv, 2018, cs. CV, https://arxiv.org/abs/1807.10575v1.
  20.  K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016, pp.  770‒778.
  21.  J. Chmielińska and J. Jakubowski, “Detection of driver fatigue symptoms using transfer learning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 869‒874, 2018, doi: 10.24425/bpas.2018.125934.
  22.  E. Lukasik et al., “Recognition of handwritten Latin characters with diacritics using CNN,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 2021, article number: e136210, doi: 10.24425/bpasts.2020.136210.
  23.  H. Zhang, A. Jolfaei, and M. Alazab, “A Face Emotion Recognition Method Using Convolutional Neural Network and Image Edge Computing,” IEEE Access, vol. 7, pp. 159081‒159089, 2019, doi: 10.1109/ACCESS.2019.2949741.
  24.  HackerEarth, “Transfer Learning Introduction Tutorials and Notes: Machine Learning,” [Online]. Available: https://www.hackerearth. com/practice/machine-learning/transfer-learning/transfer-learning-intro/tutorial/
  25.  S. Minaee, M. Minaei, and A. Abdolrashidi, “Deep-emotion: Facial expression recognition using attentional convolutional network,” Sensors, vol. 21, no. 9, p. 3046, 2021, doi: 10.3390/s21093046.
  26.  M.J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, “Coding facial expressions with Gabor wavelets,” in Proc. 3rd IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 200‒205, doi: 10.1109/AFGR.1998.670949.
  27.  P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition – Workshops, San Francisco, USA, 2010, pp.  94‒101, doi: 10.1109/CVPRW.2010.5543262.
  28.  M.F.H. Siddiqui and A.Y. Javaid, “A multimodal facial emotion recognition framework through the fusion of speech with visible and infrared images,” Multimodal Technol. Interact., vol. 4, no. 3, p. 46, 2020, doi: 10.3390/mti4030046.
  29.  M.S. Zia, M. Hussain, and M.A.A Jaffar, “Novel spontaneous facial expression recognition using dynamically weighted majority voting based ensemble classifier,” Multimed. Tools Appl., vol. 77, pp. 25537–25567, 2018.
  30.  D. Lundqvist, A. Flykt, and A. Öhman, “The Karolinska Directed Emotional Faces – KDEF,” CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 1998.
Go to article

Authors and Affiliations

Nagesh Jadhav
1
Rekha Sugandhi
1

  1. MIT ADT University, Pune, Maharashtra, 412201, India
Download PDF Download RIS Download Bibtex

Abstract

All universities are responsible for assessing the quality of education. One of the required factors is the results of the students’ research. The procedure involves, most often, the preparation of the questionnaire by the staff, which is voluntarily answered by students; then, the university staff uses the statistical methods to analyze data and prepare reports. The proposed EQE method by the application of the fuzzy relations and the optimistic fuzzy aggregation norm may show a closer connection between the students’ answers and the achieved results. Moreover, the objects obtained by the application of the EQE method can be visualized by using the t-SNE technique, cosine between vectors and distances of points in five-dimensional space.
Go to article

Bibliography

  1.  A. Mrówczyńska, A. Król, and P. Czech, “Artificial immune system in planning deliveries in a short time,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 969–980, 2019, doi: 10.24425/bpas.2019.126630.
  2.  G. Kovacs, “Layout design for efficiency improvement and cost reduction,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 547–555, 2019, doi: 10.24425/bpasts.2019.129653.
  3.  A. Zaborowski, “Data processing in self-controlling enterprise processes, “ Bull. Pol. Acad Sci. Tech. Sci, vol. 67, no. 1, pp. 3–20, 2019, doi: 10.24425/bpas.2019.127333.
  4.  M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, and F. Herrera, “An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field,” J. Infom., 5, pp. 146–166, 2011, doi: 10.1016/j.joi.2010.10.002.
  5.  V. Osińska, O. Sokolov, and A. Mreła, “Nonlinear Estimation of Similarity Between Scientists’ Disciplinary Profiles. Case Study,” ZIN Studia Informacyjne, 57(2A), pp. 12–27, 2019, doi: 10.36702/zin.467.
  6.  Law on higher education (Dz.U. 2005 nr 164 poz. 1365). [On line]. Available: http://isap.sejm.gov.pl/isap.nsf/DocDetails. xsp?id=WDU20051641365. (Accessed: 30 Jun. 2019) [in Polish].
  7.  R. Biswas, “An application of fuzzy sets in students’ evaluation,” Fuzzy Sets Syst., vol. 74, no. 2, pp. 187–194, 1995, doi: 10.1016/0165- 0114(95)00063-Q.
  8.  S.M. Chen and C.H. Lee, “New methods for students’ evaluating using fuzzy sets,” Fuzzy Sets Syst., vol. 104, no. 2, pp. 209–2018, 1999.
  9.  J. Ma and D. Zhou, “Fuzzy set approach to the assessment of students-centered learning,” IEEE Trans. Educ., vol. 43, no. 2, pp. 237–241, 2000, doi: 10.1109/13.848079.
  10.  D. Molodsov, “Soft Set Theory – First Results,” Comput. Math. Appl., vol. 37, pp. 19–31, 1999, doi: 10.1016/S0898-1221(99)00056-5.
  11.  B. Ahmad and A. Kharal, “On Fuzzy Soft Sets,” Adv. Fuzzy Syst., vol. 2009, no. 4–9, pp. 1–6, 2019, doi: 10.1155/2009/586507.
  12.  P. Majumdar and S.K. Samanta, “A Generalized Fuzzy Soft Set Based Student Ranking System,” Int. J. Adv. Soft Comput. Appl., vol. 3, no. 3, pp. 42‒51, Nov. 2011. [Online]. Available: http://home.ijasca.com/data/documents/A-Generalised-Fuzzy-Soft-Set.pdf (Accessed: 20 Aug. 2019).
  13.  S. Weon and J. Kim, “Learning achievement evaluation strategy using fuzzy membership function,” in Proc. 31st ASEE/IEEE Frontiers in Education Conference, Reno, NV, USA, 2001, pp. T3A-19, doi: 10.1109/FIE.2001.963904. [Online]. Available: http://archive.fie- conference.org/fie2001/papers/1215.pdf (Accessed: 21 Aug. 2019).
  14.  S.M. Bai and S.M. Chen, “Evaluating students’ learning achievement using fuzzy membership functions and fuzzy rules,” Expert Syst. Appl., vol. 34, no. 1, pp. 399–410, 2008, doi: 10.1016/j.eswa.2006.09.010.
  15.  F. Dayan, M. Zulqarnain, and N. Hassan, “A Ranking Method for Students of Different Socio Economic Backgrounds Based on Generalized Fuzzy Soft Sets,” Int. J. Sci. Res. (IJSR), vol. 6, no 9, pp. 691‒694, Sep. 2017, [Online] Available: https://www.ijsr.net/search_index_ results_paperid.php?id=ART20176512. (Accessed: 20 Aug. 2019).
  16.  A. Mreła, O. Sokolov, and W. Urbaniak, “The method of learning outcomes assessment based on fuzzy relations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 527‒533, 2019, doi: 10.24425/bpasts.2019.129651.
  17.  Report on the quality of education in Adam Mickiewicz University in Poznań. [Online]. Available: http://brjk.amu.edu.pl/badanie-jakosci- ksztalcenia/badanie-jakosci-ksztalcenia-na-uam (Accessed: 30 Jun. 2019) [in Polish].
  18.  Report on the quality of education at Warsaw University of Technology, Faculty of Materials Science and Engineering. [Online]. Available: https://www.wim.pw.edu.pl/content/download/1668/14211/file/ankietyzacja.pdf (Accessed: 30 Jun. 2019) [in Polish].
  19.  Report on the quality of education at Kazimierz Wielki University in Bydgoszcz, [Online]. Available: https://www.ukw.edu.pl/download/34273/raport_oceny_ankietyzacja_2017_2018_ukw_bydgoszcz.pdf (Accessed: 30 Jun. 2019) [in Polish].
  20. [20]  L.A. Zadeh, “Fuzzy sets,” Inf.Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.
  21.  L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning –1,” Inf. Sci., vol. 8, pp. 199–249, 1975, doi: 10.1016/0020-0255(75)90036-5.
  22.  L. Rutkowski, Methods and techniques of artificial intelligence, PWN, Warsaw, pp. 1–452, 2012, [in Polish].
  23.  O. Sokolov, W. Osińska, A. Mreła, and W. Duch, “Modeling of Scientific Publications Disciplinary Collocation Based on Optimistic Fuzzy Aggregation Norms,” in Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018., eds. J. Światek, L. Borzemski and Z. Wilmowska, Advances in Intelligent Systems and Computing. Information Systems Architecture and Technology Part II, vol. 853, pp. 145–156, 2019, doi: 10.1007/978-3-319-99996-8.
  24.  L.J.P. Van der Maaten and G.E. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008, [Online]. Available: https://research.tilburguniversity.edu/en/publications/visualizing-high-dimensional-data-using-t-sne (Accessed: 21 Jun. 2019).
  25.  C.L. Hwang and K. Yoon, “Methods for multiple attribute decision making”, in Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-48318-9_3.
Go to article

Authors and Affiliations

Grzegorz Śmigielski
1
ORCID: ORCID
Aleksandra Mreła
1
ORCID: ORCID
Oleksandr Sokolov
2
ORCID: ORCID
Mykoła Nedashkovskyy
1
ORCID: ORCID

  1. Kazimierz Wielki University in Bydgoszcz, Institute of Informatics, ul. Kopernika 1, 85-074 Bydgoszcz, Poland
  2. Nicolaus Copernicus University in Toruń, Faculty of Physics, Astronomy and Informatics, ul. Grudziądzka 5, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper contains a description of the geometry of Beveloid gears. It describes the distribution of forces in a Beveloid gear with a straight tooth line and a helical tooth line. The paper presents research on the experimentally determined parameters of transmission operation, including the sound pressure level and the amount of heat emitted during operation. The design and construction of the test stand were presented. The research methodology was described. Operational tests are carried out on household appliances with Beveloid gears: Grinder and Jam mixer. Thanks to an appropriately selected narrowing angle, estimated values of service life extension of the above-mentioned transmissions are given.
Go to article

Bibliography

  1. S. Beermann, “Estimation of lifetime for plastic gears,” Fall Technical Meeting of the American Gear Manufacturers Association, Detroit, Michigan, Oct. 2007, pp. 1‒17.
  2.  R. Keresztes, L. Zsidai, G. Kalácska, and P. De Baets, “Friction of polymer/steel gear pairs,” Scientific Bulletin of North University of Baia Mare, serie C, vol. XXIII, pp. 63–72, Jan. 2009.
  3.  P. Strojny, “Wpływ kąta zwężenia kół zębatych typu Beveloid na płynność przeniesienia napędu w przekładniach zębatych z tworzyw polimerowych,” Przegląd Mechaniczny, no. 6, Jun. 2016, [in Polish].
  4.  N. Agbetossou, A. Afio, K. Attipou, D. Koffi, K. Kassegne, and S. Tiem, “Modeling and Prediction of Wear for Gears in Plastic Materials and Their Composites,” Int. J. Eng. Res. Technol., vol.  9, no. 7, pp. 90–106, Jul. 2020.
  5.  A.J Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  6.  N.B. Thamba et al., “Study of Effect of Linear Tip Relief Modification in Power Transmission Efficiency of Spur Gears,” Arch. Acoust., vol. 45, no. 2, pp. 271–282, 2020.
  7.  G. Yu, H. Liu, K. Mao, C. Zhy and Z. Lu, “Examination on the wear process of polyformaldehyde gears under dry and lubricated conditions,” Friction, vol. 9, pp. 538–550, Jan. 2020.
  8.  Flir, [Online]. Available: www.flir.com (accessed Feb. 12, 2021).
  9.  A. Gebhardt, Rapid Prototyping, Carl Hanser Verlag GmbH & Co. KG, Munich, 2003.
  10.  W.F. Liu, Rapid Prototyping and engineering applications – a toolbox for prototype development, Taylor & Francis Group, Boca Raton, USA, 2008.
  11.  R.E. Śliwa, G. Budzik, J. Bernaczek, and T. Dziubek, “The rapid Prototyping of aircraft wheel hub model with the use of techniques JS, SLA, FDM,” J. KONES Powertrain Transp., vol. 18,pp.  439–443, Mar. 2011.
  12.  T. Singh, S. Kumar, and S. Sehgal, “3D printing of engineering materials: A state of the art review,” Mater. Today Proc., vol. 28, no. 3, pp. 1927‒1931, 2020.
  13.  N.B. Thamba et al., “Fault Analysis of Worm Gear Box Using Symlets Wavelet,” Arch. Acoust., vol 45, no. 3, pp. 521–540, 2020.
  14.  A. Hamrol, J. Gawlik, and J. Sładek, “Mechanical engineering in Industry 4.0,” Manag. Prod. Eng. Rev., vol. 10, pp.  14–28, Sep. 2019.
  15.  Dupont. [Online]. Available: www.dupont.com (accessed Feb. 10, 2021).
  16.  J.F. Rabek, “Współczesna wiedza o polimerach,” Tom 1. Budowa strukturalna polimerów i metody badawcze, PWN, Warszawa, 2017 [in Polish].
  17.  M. Sobolak and P. Strojny, “Effect of the narrowing angle in beveliod gear on the temperature profile on the active flank of tooth,” Adv. Sci. Technol. Res. J., vol. 7, pp. 67–69, Dec. 2013.
  18.  M. Płocica and A. Marciniec, Methodology of Preparing Hypoid Gears for Vibroacoustic Diagnostics in Laboratory Conditions, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2018.
Go to article

Authors and Affiliations

Piotr Strojny
1

  1. The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Developing novel methods, approaches and computational techniques is essential for solving efficiently more and more demanding up-to-date engineering problems. Designing durable, light and eco-friendly structures starts at the conceptual stage, where new efficient design and optimization tools need to be implemented. Nowadays, apart from the traditional gradient-based methods applied to optimal structural and material design, innovative techniques based on versatile heuristic concepts, like for example Cellular Automata, are implemented. Cellular Automata are built to represent mechanical systems where the special local update rules are implemented to mimic the performance of complex systems. This paper presents a novel concept of flexible Cellular Automata rules and their implementation into topology optimization process. Despite a few decades of development, topology optimization still remains one of the most important research fields within the area of structural and material design. One can notice novel ideas and formulations as well as new fields of their implementation. What stimulates that progress is that the researcher community continuously works on innovative and efficient topology optimization methods and algorithms. The proposed algorithm combined with an efficient analysis system ANSYS offers a fast convergence of the topology generation process and allows obtaining well-defined final topologies.
Go to article

Bibliography

  1.  M.P. Bendsoe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, pp. 193–202, 1989.
  2.  O. Sigmund, “A 99 line topology optimization code written in MATLAB,” Struct. Multidiscip. Optim., vol. 21, pp. 120–127, 2001.
  3.  E. Andreassen, A. Clausen, M. Schvenels, B.S. Lazarov, and O. Sigmund, “Efficient topology optimization in Matlab using 88 lines of code,” Struct. Multidiscip. Optim., vol. 4, pp.  1–16, 2011.
  4.  K. Liu and A. Tovar, “An efficient 3D topology optimization code written in Matlab,” Struct. Multidiscip. Optim., vol.  50, pp. 1175–1196, 2014.
  5.  X.M. Xieand and G.P. Steven, Evolutionary Structural Optimization, Berlin: Springer, 1997.
  6.  Q.M. Querin, G.P. Steven, and Y.M. Xie, “Evolutionary structural optimization using a bi-directional algorithm,” Eng. Comput., vol. 15, pp. 1034–1048, 1998.
  7.  K. Nabaki, J. Shen, and X. Xuang, “Evolutionary topology optimization of continuum structures considering fatigue failure,” Mater. Des., vol. 166, pp.13, 2019.
  8.  C. Kane, F. Jouveand, and M. Schoenauer, “Structural topology optimization in linear and nonlinear elasticity using genetic algorithms” in Proc. 21st ASME Design Automatic Conference, 1995, pp.1‒8.
  9.  R. Balamurugan, C. Ramakrishnan, and N. Singh, “Performance evaluation of a two stage adaptive genetic algorithm in structural topology optimization,” Appl. Soft Comput., vol. 8, pp.  1607–1624, 2008.
  10.  H.S. Gebremedhen, D.E. Woldemichael, and F.M. Hashimi, “A firefly algorithm based hybrid method for structural topology optimization,” Adv. Model. Simul. Eng. Sci., vol. 7, no. 44, p. 20, 2020.
  11.  A.A. Jaafer, M. Al-Bazoon, and A.O. Dawood, “Structural topology design optimization using the binary bat algorithm,” Appl. Sci., vol. 10, no. 4, p. 1481, 2020.
  12.  D. Gaweł, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741–750, 2017.
  13.  S.Y. Chang and S.K.Youn, “Material cloud method for topology optimization,” Numer. Methods Eng., vol. 65, pp.  1585–1607, 2006.
  14.  H.A. Eschenauer, V.V. Kobelevand, and A. Schumacher, “Bubble method for topology and shape optimization of structures,” Struct. Optim., vol. 8, pp. 42–51, 1993.
  15.  M.Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, pp. 227–246, 2003.
  16.  P. Wei, Z. Li, X. Li, and M.Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidiscip. Optim., vol. 58, pp. 831–849, 2018.
  17.  E. Biyikliand and A.C. To, “Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in Matlab,” PLoSONE, vol. 10, pp. 1–23, 2015.
  18.  Y. Xian and D.W. Rosen, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidiscip. Optim., vol. 62, pp. 19–39, 2020.
  19.  B. Xing and W.J. Gao, Innovative computational intelligence: a rough guide to 134 clever algorithms, Switzerland: Springer, 2014.
  20.  T. Tarczewski, L.J. Niewiara, and L.M. Grzesiak, “Artificial bee colony based state feedback position controller for PMSM servo-drive–the efficiency analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 997–1007, 2020.
  21.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 679–685, 2019.
  22.  A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C 0 separators for efficient isogeometric analysis simulations with direct solvers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907–917, 2018.
  23.  J. Von Neumann, Theory of self-reproducing automata, Urbana IL: University of Illinois Press, 1966.
  24.  S. Ulam, “Random processes and transformations,” in Proc. International Congress of Mathematics, 1952, vol. 2, pp. 85–87.
  25.  B. Chopard and M. Droz, “Cellular automata model for the diffusion equation,” J. Stat. Phys., vol. 64, pp. 859–892, 1991.
  26.  J.P. Crutchfield and J.E. Hanson, “Turbulent pattern bases for cellular automata,” Physica D, vol. 69, pp. 279–301, 1993.
  27.  Y. Zhao, S.A. Billings, and D. Coca, “Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighborhoods,” Int. J. Model. Identif. Control, vol.  2, no. 6, pp. 119–25, 2009.
  28.  P. Rosin, A. Adamatzky, and X. Sun (eds.), Cellular Automata in Image Processing and Geometry, Switzerland: Springer International Publishing, 2014.
  29.  N. Inou, N. Shimotai, and T. Uesugi, “A cellular automaton generating topological structures,” in Proc. 2nd European Conference on Smart Structures and Materials, 1994, vol. 2361, pp. 47–50.
  30.  N. Inou, T. Uesugi, A. Iwasaki, and S. Ujihashi, “Self-organization of mechanical structure by cellular automata,” Key Eng. Mater., vol. 145‒149, pp. 1115–1120, 1998.
  31.  E. Kita and T. Toyoda, “Structural design using cellular automata,” Struct. Multidiscip. Optim., vol. 19, pp. 64–73, 2000.
  32.  P. Hajela and B. Kim, “On the use of energy minimization for CA based analysis in elasticity,” Struct. Multidiscip. Optim., vol. 23, pp. 24–33, 2001.
  33.  B. Tatting and Z. Gurdal, “Cellular automata for design of two-dimensional continuum structures,” in Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000, p. 10.
  34.  S. Missoum, Z. Gurdal, and S. Setoodeh, “Study of a new local update scheme for cellular automata in structural design,” Struct. Multidiscip.  Optim., vol. 29, pp. 103–112, 2005.
  35.  M.M. Abdalla and Z. Gurdal, “Structural design using cellular automata for eigenvalue problems,” Struct. Multidiscip.  Optim., vol. 19, pp. 64–73, 2004.
  36.  B. Hassani and M. Tavakkoli, “A multi-objective structural optimization using optimality criteria and cellular automata,” Asian J Civ. Eng. Build. Hous., vol. 8, pp. 77–88, 2007.
  37.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” in Proc. 8th World Congress on Struct. Multidiscip. Optim., 2009, p. 10.
  38.  J. Jia et al., “Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata,” Struct. Multidiscip. Optim.,vol. 62, pp. 757–770, 2020.
  39.  M. Afrousheh, J. Marzbanrad, and D. Gohlich, “Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm,” Struct. Multidiscip.  Optim., vol. 60, pp. 1021‒1034, 2019.
  40.  A. Tovar, N.M. Patel, and A.K. Kaushik, “Hybrid cellular automata: a biologically-inspired structural optimization technique,” in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p.15.
  41.  A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, and J.E. Renaud, “Topology optimization using a hybrid cellular automaton method with local control rules,” J. Mech. Des., vol. 128, pp. 1205–1216, 2006.
  42.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” Int. J. Pure Appl. Math., vol. 66, pp. 245–262, 2011.
  43.  B. Bochenek and K. Tajs-Zielinska, “Novel local rules of Cellular Automata applied to topology and size optimization,” Eng. Optim., vol. 44, pp. 23–35, 2012.
  44.  B. Bochenek and K. Tajs-Zielinska, “Topology optimization with efficient rules of cellular automata,” Eng. Comput., vol. 30, pp. 1086– 1106, 2013.
  45.  B. Bochenek and K. Tajs-Zielinska, “Minimal compliance topologies for maximal buckling load of columns,” Struct. Multidiscip.  Optim., vol. 51, pp. 1149–1157, 2015.
  46.  B. Bochenek and K. Tajs-Zielinska, “GOTICA – generation of optimal topologies by irregular cellular automata,” Struct. Multidiscip.  Optim., vol. 55, pp. 1989–2001, 2017.
  47.  M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197–224, 1988.
  48.  J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Mater. Des., vol. 190, pp.16, 2020.
  49.  P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,” Struct. Multidiscip. Optim., vol. 62, pp. 2117– 2130, 2020.
  50.  J. Wu and J. Wu, “Revised level set-based method for topology optimization and its applications in bridge construction,” Open Civ. Eng. J., vol. 11, pp. 153–166, 2017.
  51.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  52.  L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, “Connecting architecture and engineering through structural topology optimization,” Eng. Struct., vol. 59, pp. 716–726, 2014.
  53.  K. Tajs-Zielinska and B. Bochenek, “Topology optimization – engineering contribution to architectural design,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, pp.10, 2017.
  54.  F. Regazzoni, N. Parolini, and M. Verani, “Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers,” Comput. Methods Appl. Mech. Eng., vol. 338, pp. 562–596, 2018.
  55.  S. Das and A. Sutradhar, “Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems,” Mater. Des., vol. 193, pp.13, 2020.
  56.  M.P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York: Springer, 2003.
  57.  O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip. Optim., vol.48, pp. 1031–1055, 2013.
  58.  J.D. Deaton, and R.V. Grandhi, “A survey of structural and multidisciplinary continuum topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, pp. 1–38, 2014.
  59.  J. Liu et al., “Current and future trends in topology optimization for additive manufacturing,” Struct. Multidiscip.  Optim., vol. 57, pp. 2457– 2483, 2018.
  60.  M.A. Herfelt, P.N. Poulsen, and L.C. Hoang, “Strength-based topology optimization of plastic isotropic von Mises materials,” Struct. Multidiscip. Optim., vol.59, pp. 893–906, 2019.
  61.  B. Błachowski, P. Tauzowski, and J. Lógó, “Yield limited optimal topology design of elastoplastic structures,” Struct. Multidiscip.  Optim., vol.61, pp. 1953–1976, 2020.
  62.  L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Struct. Multidiscip. Optim., vol. 55, pp. 569–581, 2017
  63.  B. Bochenek and M. Mazur, “A novel heuristic algorithm for minimum compliance optimization,” Eng. Trans., vol. 64, pp.  541–546, 2016.
Go to article

Authors and Affiliations

Katarzyna Tajs-Zielińska
1
Bogdan Bochenek
1

  1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

3D scanning measurements are gaining popularity every year. Quick inspections on already captured point clouds are easy to prepare with the use of modern software and machine learning. To achieve repeatability and accuracy, some surface and measurement issues should be considered and resolved before the inspection. Large numbers of manufacturing scans are not intended for manual correction. This article is a case study of a small surface inspection of a turbine guide vane based on 3D scans. Small surface errors cannot be neglected as their incorrect inspection can result in serious faults in the final product. Contour recognition and deletion seem to be a rational method for making a scan inspection with the same level of accuracy as we have now for CMM machines. The main reason why a scan inspection can be difficult is that the CAD source model can be slightly different from the inspected part. Not all details are always included, and small chamfers and blends can be added during the production process, based on manufacturing standards and best practices. This problem does not occur during a CMM (coordinate measuring machine) inspection, but it may occur in a general 3D scanning inspection.
Go to article

Bibliography

  1.  W. Cuypers, N. Van Gestel, A. Voet, J. P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng., vol. 47, no.  3–4, pp. 292–300, 2009, doi: 10.1016/j.optlaseng.2008.03.013.
  2.  An International Standard: Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM), ISO 10360:2011, 2011.
  3.  B.S. Marció, P. Nienhaysen, D. Habor, and R.C.C. Flesch, “Quality assessment and deviation analysis of three-dimensional geometrical characterization of a metal pipeline by pulse-echo ultrasonic and laser scanning techniques,” Meas. J. Int. Meas. Confed., vol. 145, pp. 30–37, 2019, doi: 10.1016/j.measurement.2019.05.084.
  4.  GOM Inspect Brochure, 2019. [Online]. Available: https://www.3dteam.pl/wp-content/uploads/2020/11/GOM-Software.pdf.
  5.  Geomagic Control X Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2020-10/3d-systems-controlx- en-letter-web-2020-10-07.pdf.
  6.  An International Standard: Dimensioning and Tolerancing, ASME Y14.5, 2019.
  7.  An International Standard: Geometrical tolerancing, ISO 1101, 2017.
  8.  J. Fan, L. Ma, A. Sun, and Z. Zou, “An approach for extracting curve profiles based on scanned point cloud,” Meas. J. Int. Meas. Confed., vol. 149, p. 107023, 2020, doi: 10.1016/j.measurement.2019.107023.
  9.  L. Li, M. Sung, A. Dubrovina, L. Yi, and L. J. Guibas, “Supervised fitting of geometric primitives to 3D point clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019, pp.  2647–2655, doi: 10.1109/CVPR.2019.00276.
  10.  Y. Liu and Y. Xiong, “Automatic segmentation of unorganized noisy point clouds based on the Gaussian map,” CAD Comput. Aided Des., vol. 40, no. 5, pp. 576–594, 2008, doi: 10.1016/j.cad.2008.02.004.
  11.  Y. Yang, H. Fang, Y. Fang, and S. Shi, “Three-dimensional point cloud data subtle feature extraction algorithm for laser scanning measurement of large-scale irregular surface in reverse engineering,” Meas. J. Int. Meas. Confed., vol. 151, p. 107220, 2020, doi: 10.1016/j. measurement.2019.107220.
  12.  Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object recognition,” 2009 IEEE 12th Int. Conf. Comput. Vis. Work. ICCV Work, 2009, pp. 689–696, 2009, doi: 10.1109/ICCVW.2009.5457637.
  13.  M. Pauly, R. Keiser, and M. Gross, “Multi-scale Feature Extraction on Point-Sampled Surfaces,” vol. 22, no. 3, pp. 281–289, 2003.
  14.  D. Fehr, W.J. Beksi, D. Zermas, and N. Papanikolopoulos, “Covariance based point cloud descriptors for object detection and recognition,” Comput. Vis. Image Underst., vol. 142, pp. 80–93, 2016, doi: 10.1016/j.cviu.2015.06.008.
  15.  T. Hackel, J.D. Wegner, and K. Schindler, “Contour detection in unstructured 3D point clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1610–1618, doi: 10.1109/CVPR.2016.178.
  16.  H. Wang, C. Wang, H. Luo, P. Li, Y. Chen, and J. Li, “3-D Point Cloud Object Detection Based on Supervoxel Neighborhood With Hough Forest Framework,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 4, pp. 1570–1581, 2015, doi: 10.1109/ JSTARS.2015.2394803.
  17.  Geomagic Design X Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2019-11/3d-systems-designx- en-letter-web-2019-10-25.pdf.
  18.  Geomagic Wrap Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2019-11/3d-systems-wrap-en-letter- web-2019-11-01.pdf.
  19.  The StL Format, 2021. [Online]. Available: http://www.fabbers.com/tech/STL_Format.
  20.  G. Lavoué, F. Dupont, and A. Baskurt, “A new CAD mesh segmentation method, based on curvature tensor analysis,” CAD Comput. Aided Des., vol. 37, no. 10, pp. 975–987, 2005, doi: 10.1016/j.cad.2004.09.001.
  21.  M. Centin and A. Signoroni, “RameshCleaner: conservative fixing of triangular meshes,” STAG Smart Tools Apps Graph. – Eurographics Italian Chapter Conference, 2015, doi: 10.2312/stag.20151300.
  22.  L. Di Angelo, P. Di Stefano, and A. E. Morabito, “Fillets, rounds, grooves and sharp edges segmentation from 3D scanned surfaces,” CAD Comput. Aided Des., vol. 110, pp. 78–91, 2019, doi: 10.1016/j.cad.2019.01.003.
  23.  L. Di Angelo and P. Di Stefano, “Geometric segmentation of 3D scanned surfaces,” CAD Comput. Aided Des., vol. 62, pp. 44–56, 2015, doi: 10.1016/j.cad.2014.09.006.
  24.  Q. Li, X. Huang, S. Li, and Z. Deng, “Feature extraction from point clouds for rigid aircraft part inspection using an improved Harris algorithm,” Meas. Sci. Technol., vol. 29, no. 11, 2018, doi: 10.1088/1361-6501/aadff6.
  25.  Y. Tao, Y. Q. Wang, H. B. Liu, and M. Li, “On-line three-dimensional point cloud data extraction method for scan-tracking measurement of irregular surface using bi-Akima spline,” Meas. J. Int. Meas. Confed., vol. 92, pp. 382–390, 2016, doi: 10.1016/j.measurement.2016.06.008.
  26.  G. Palma, P. Cignoni, T. Boubekeur, and R. Scopigno, “Detection of Geometric Temporal Changes in Point Clouds,” Comput. Graph. Forum, vol. 35, no. 6, pp. 33–45, 2016, doi: 10.1111/cgf.12730.
  27.  Computer workstation used by authors: “Intel(R) Xeon(R) CPU E5‒1650 v4 @ 3.60GHz.” 2020.
  28.  A. Jagannathan and E.L. Miller, “Three-dimensional surface mesh segmentation using curvedness-based region growing approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp.  2195–2204, 2007, doi: 10.1109/TPAMI.2007.1125.
Go to article

Authors and Affiliations

Marcin Jamontt
1
Paweł Pyrzanowski
2
ORCID: ORCID

  1. General Electric Company, al Krakowska 110-114, 02-265 Warsaw, Poland
  2. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland

This page uses 'cookies'. Learn more