Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Optimization of cooling systems is of major importance due to the economy of cooling water and energy in thermal installations in the industry. The hydrodynamic study of the film is a prerequisite for the study of the intensity of the heat transfer during the cooling of a horizontal plate by a liquid film. This experimental work made it possible to quantify the hydrodynamic parameters by a new approach, a relation linking the thickness of the film to the velocity was found as a function of the geometrical and hydrodynamic characteristics of the sprayer.
A new statistical approach has been developed for the measurement of the velocity, the liquid fluid arriving at the edge of the plate and having velocity V is spilled out like a projectile. The recovering of the liquid in tubes allowed us to quantify flow rates for different heights positions relative to the plate, statistical processing permitted us to assess the probable velocity with a margin of error.

Go to article

Bibliography

[1] B. Abbasi. Pressure-based predection of spray cooling heat transfer. Ph.D. Thesis, University of Maryland, College Park, USA, 2010.
[2] E.G. Bratuta and L. Zanotchkine. Intensification of heat transfer by dispersed fluids. Machinostraenia Energy, 38(84):71--75, 1984. (in Russian).
[3] M. Tebbal. Correlation of the thermal transfer coefficient and the dispersion of the fluid on a surface at high temperature. In: 5th International Meeting on Heat Transfer, Monastir, Tunisia, 1991.
[4] W. Ambrosini, N. Forgione, F. Oriolo, P. Vigni, and S. Baessler. Experimental investigation on wave velocity in a falling film. In: 2nd International Symposium on Two-phase Flow Modelling and Experimentation, Pisa, Italy, May 23-26, 1999.
[5] W. Ambrosini, N. Forgione, and F. Oriolo. Statistical characteristics of a water film falling down a flat plate at different inclinations and temperatures. International Journal of Multiphase Flow, 28(9):1521-1540, 2002. doi: 10.1016/S0301-9322(02)00039-3.
[6] P. Adomeit and U. Renz. Hydrodynamics of three-dimensional waves in laminar falling films. International Journal of Multiphase Flow, 26(7):1183-1208, 2000. doi: 10.1016/S0301-9322(99)00079-8.
[7] S.V. Alekseenko, V.A. Antipin, A.V. Bobylev, and D.M. Markovich. Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder. Experiments in Fluids, 43:197-207, 2007. doi: 10.1007/s00348-007-0322-2.
[8] W. Aouad, J.R. Landel, S.B. Dalziel, J.F. Davidson, and D.I. Wilson. Particle image velocimetry and modelling of horizontal coherent liquid jets impinging on and draining down a vertical wall. Experimental Thermal and Fluid Science, 74:429-443, 2016. doi: 10.1016/j.expthermflusci.2015.12.010.
[9] A.C. Ashwood, S.J. Vanden Hogen, M.A. Rodarte, C.R. Kopplin, D.J. Rodríguez, E.T. Hurlburt, and T.A. Shedd. A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow. International Journal of Multiphase Flow, 68:27-39, 2015. doi: 10.1016/j.ijmultiphaseflow.2014.09.003.
[10] T. Takamasa and T. Hazuku. Measuring interfacial waves on film flowing down a vertical plate wall in the entry region using laser focus displacement meters. International Journal of Heat and Mass Transfer, 43(15):2807-2819, 2000. doi: 10.1016/S0017-9310(99)00335-X.
[11] K. Moran, J. Inumaru, and M. Kawaji. Instantaneous hydrodynamics of a laminar wavy liquid film. International Journal of Multiphase Flow, 28(5):731-755, 2002. doi: 10.1016/S0301-9322(02)00006-X.
[12] M. Tebbal and H. Mzad. An hydrodynamic study of a water jet dispersion beneath liquid sprayers. Forschung im Ingenieurwesen, 68(3):126-132, 2004. doi: 10.1007/s10010-003-0118-3. (in German).
[13] H. Mzad and M. Tebbal. Thermal diagnostics of highly heated surfaces using water-spray cooling. Heat and Mass Transfer, 45(3):287-295, 2009. doi: 10.1007/s00231-008-0431-3.
[14] E.S. Benilov, S.J. Chapman, J.B. McLeod, J.R. Ockendon, and V.S. Zubkov. On liquid films on an inclined plate. Journal of Fluid Mechanics, 663(25):53-69, 2010. doi: 10.1017/S002211201000337X.
[15] X.G. Huang, Y.H. Yang, P. Hu, and K. Bao. Experimental study of water-air countercurrent flow characteristics in large scale rectangular channel. Annals of Nuclear Energy, 69:125-133, 2014. doi: 10.1016/j.anucene.2014.02.005.
[16] Y.Q. Yu and X. Cheng. Experimental study of water film flow on large vertical and inclined flat plate. Progress in Nuclear Energy, 77:176-186, 2014.doi: 10.1016/j.pnucene.2014.07.001.
[17] H. Mzad and M. Elguerri. Simulation of twin overlapping sprays underneath hydraulic atomizers: influence of spray hydrodynamic parameters. Atomization and Sprays, 22(5):447-460, 2012. doi: 10.1615/AtomizSpr.2012006076.
[18] K. Choual, R. Benzeguir, and M. Tebbal. Experimental study of the dispersion beneath liquid sprayers in the intersection area of jets on a horizontal plate. Mechanika, 23(6):835-844, 2017. doi: 10.5755/j01.mech.23.6.17243.
[19] W-F. Du, Y-H. Lu, R-C. Zhao, L. Chang, and H-J. Chang. Film thickness of free falling water flow on a large-scale ellipsoidal surface. Progress in Nuclear Energy, 105:1-7, 2018. doi: 10.1016/j.pnucene.2017.12.007.
[20] C.B. Tibiriçá, F.J. do Nascimento, and G. Ribatski. Film thickness measurement techniques applied to micro-scale two-phase flow systems. Experimental Thermal and Fluid Science, 34(4):463-473, 2010. doi: 10.1016/j.expthermflusci.2009.03.009.
[21] H. Ouldrebai, E.K. Si-Ahmed, M. Hammoudi, J. Legrand, Y. Salhi, and J. Pruvost. A laser multi-reflection technique applied for liquid film flow measurements. Experimental Techniques, 43:213-223, 2019. doi: 10.1007/s40799-018-0279-5.
[22] J. Cai and X. Zhuo. Researches on hydrodynamics of liquid film flow on inclined plate using diffuse-interface method. Heat and Mass Transfer, 56:1889-1899, 2020. doi: 10.1007/s00231-020-02829-6.
[23] E.G Bratuta and M. Tebbal. Influence of the jet on the fluid dispersion. IzvestiaVouzob, Métallurgie, 12:108-111, 1983.
[24] B. Patrick, B. Barber, and D. Brown. Practical aspects of the design, operation and performance of caster spray systems. Revue de Métallurgie, 98(4):383-390, 2001. doi: 10.1051/metal:2001192.
Go to article

Authors and Affiliations

Abdelbaki Elmahi
1
ORCID: ORCID
Touhami Baki
1
ORCID: ORCID
Mohamed Tebbal
1

  1. Faculty of Mechanics, Gaseous Fuels and Environment Laboratory, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), El Mnaouer, Oran, Algeria.
Download PDF Download RIS Download Bibtex

Abstract

Considering the importance of gear systems as one of the important vibration and noise sources in power transmission systems, an active control for suppressing gear vibration is presented in this paper. A gear bearing model is developed and used to design an active control gear-bearing system. Two possible configurations of control system are designed based on active bearing and active gear-shaft torsional coupling to control and reduce the disturbance affecting system components. The controller for computing the actuation force is designed by using the H-infinity control approach. Simulation results indicate that the desired controller can efficiently be used for vibration control of gear bearing systems.
Go to article

Bibliography

[1] H.N. Özgüven and D.R. Houser. Dynamic analysis of high speed gears by using loaded static transmission error. Journal of Sound and Vibration, 125(1):383–411, 1988. doi: 10.1016/0022-460X(88)90416-6.
[2] T.J. Sutton, S.J. Elliott, M.J. Brennan, K.H. Heron and D.A.C. Jessop. Active isolation of multiple structural waves on a helicopter gearbox support strut. Journal of Sound and Vibration, 205(1):81–101, 1997. doi: 10.1006/jsvi.1997.0972.
[3] G.T. Montague, A.F. Kaskak, A. Palazzolo, D. Manchala, and E. Thomas. Feed-forward control of gear mesh vibration using piezoelectric actuators. Shock and Vibration, 1(5):473–484 1994. doi: 10.3233/SAV-1994-1507.
[4] B. Rebbechi, C. Howard, and C. Hansen. Active control of gearbox vibration. Proceedings of the Active Control of Sound and Vibration Conference, pages 295–304, Fort Lauderdale, Florida, USA, 02-04 December, 1999.
[5] M.H. Chen and M.J. Brennan. Active control of gear vibration using specially configured sensors and actuators. Smart Materials and Structures, 9:342–350, 2000. doi: 10.1088/0964-1726/9/3/315.
[6] M. Li, T.C. Lim, and W.S. Shepard Jr. Modeling active vibration control of a geared rotor system. Smart Materials and Structures, 13:449–458, 2004. doi: 10.1088/0964-1726/13/3/001.
[7] Y.H. Guan, T.C. Lim, and W.S. Shepard Jr. Experimental study on active vibration control of a gearbox system. Journal of Sound and Vibration, 282(3-5):713–733, 2005. doi: 10.1016/j.jsv.2004.03.043.
[8] Y.H. Guan, M. Li, T.C. Lim, and W.S. Shepard Jr. Comparative analysis of actuator concept for active gear pair vibration control. Journal of Sound and Vibration, 269(1-2):273–294, 2004. doi: 10.1016/S0022-460X(03)00072-5.
[9] Y. Li, F. Zhang, Q. Ding, and L. Wang. Method and experiment study for active vibration control of gear meshing. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 27(2):215–221, 2014.
[10] W. Gao, L. Wang, and Y. Liu. A modified adaptive filtering algorithm with online secondary path identification used for suppressing gearbox vibration. Journal of Mechanical Science and Technology, 30(11):4833–4843, 2016. doi: 10.1007/s12206-016-1002-z.
[11] W. Sun, F. Zhang, H. Li, H. Wang, and S. Luo. Co-simulation study on vibration control of multistage gear transmission system based on multiple control algorithms. Proceedings of the 2017 International Conference on Advanced Mechatronic Systems, pages 1–7, Xiamen, China, 2017. doi: 10.1109/ICAMechS.2017.8316474.
[12] W. Sun, F. Zhang, W. Zhu, H. Wang, S. Luo, and H. Li. A comparative study based on different control algoritms for suppressing multistage gear transmission system vibrations. Shock and Vibration, 2018:ID7984283, 2018. doi: 10.1155/2018/7984283.
[13] H. Wang, F. Zhang, H. Li, W. Sun, and S. Luo. Experimental analysis of an active vibration frequency control in gearbox. Shock and Vibration, 2018:ID7984283, 2018. doi: 10.1155/2018/1402697.
[14] C. Lauwerys, J. Swevers, and P. Sas. Robust linear control of an active suspension on a quarter car test-rig. Control Engineering Practice, 13(5):577–586, 2005. doi: 10.1016/ j.conengprac.2004.04.018.
[15] W. Sun, J. Li, Y. Zhao, and H. Gao. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics, 21(1):250–260, 2011. doi: 10.1016/j.mechatronics.2010.11.001.
[16] A. Farshidianfar, A. Saghafi, S.M. Kalami, and I. Saghafi. Active vibration isolation of machinery and sensitive equipment using H∞ control criterion and particle swarm optimization method. Meccanica, 47:437–453, 2012. doi: 10.1007/s11012-011-9451-z.
[17] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4-6 October, 1995. doi: doi.org/10.1109/MHS.1995.494215">10.1109/MHS.1995.494215.
[18] J.F. Schutte and A.A. Groenwold. A study of global optimization using particle swarms. Journal of Global Optimization, 31:93–108, 2005. doi: 10.1007/s10898-003-6454-x.
[19] D. Sedighizadeh and E. Masehian. Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5):1793-8201, 2009.
[20] A. Saghafi, A. Farshidianfar, and A.A. Akbari. Vibrations control of gear-bearing dynamic system. Modares Mechanical Engineering, 14(6):135-143, 2014. (in Persian).
[21] A. Farshidianfar and A. Saghafi. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dynamics, 75:783–806, 2014. doi: 10.1007/s11071-013-1104-4.
[22] A. Saghafi and A. Farshidianfar. An analytical study of controlling chaotic dynamics in a spur gear system. Mechanism and Machine Theory, 96(1):179–191, 2016. doi: 10.1016/j.mechmachtheory.2015.10.002.
[23] G. Pinte, S. Devos, B. Stallaert, W. Symens, J. Swevers, and P. Sas. A piezo-based bearing for the active structural acoustic control of rotating machinery. Journal of Sound and Vibration, 329(9):1235–1253, 2010. doi: 10.1016/j.jsv.2009.10.036.
[24] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. 2nd ed., Wiley Interscience, New York, 2005.
Go to article

Authors and Affiliations

Amin Saghafi
1
ORCID: ORCID
Anooshirvan Farshidianfar
2

  1. Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
  2. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

This page uses 'cookies'. Learn more