Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Resistance genes in response to root-knot nematode (Meloidogyne javanica) infection suppress one or more of several critical steps in nematode parasitism and their reproduction rate. The reaction of seven commercial tomato genotypes to M. javanica infection was investigated under greenhouse conditions. Current results classified these genotypes as: three resistant (Jampakt, Malika and Nema Guard), one moderately resistant (Fayrouz), and three susceptible (Castle Rock, Super Marmande and Super Strain B). Except Nema Guard, nematode infection significantly reduced plant height, fresh and dry weights of shoots of the other tomato genotypes. Leaf area was significantly reduced for all examined tomato genotypes except Malika and Nema Guard. Total chlorophyll was reduced in all tested tomato genotypes except Jampakt. Infection parameters of M. javanica and their population were significantly reduced on all nematode-resistant tomato genotypes compared to the susceptible genotypes. Also, the maturation rate of M. javanica was suppressed in the resistant genotypes compared to the susceptible genotypes. These results were confirmed by histological study that illustrated a delay in nematode development and their maturation. Total phenolic content significantly increased in nematode infected roots of both resistant and susceptible genotypes except Malika. Among non-infected roots, Malika showed the highest level of total phenols while after M. javanica infection, Nema Guard revealed the highest level of total phenols. Among infected roots, the highest level of total phenols was recorded in Castle Rock. These results suggested that using nematode-resistant tomato genotypes could provide an efficient and nonpolluting method to control root-knot nematodes.

Go to article

Authors and Affiliations

Mohamed Youssef Banora
Omar Abd Alhakim Almaghrabi
Download PDF Download RIS Download Bibtex

Abstract

During potato desiccation the above-ground parts can be destroyed by mechanical, mechanical-chemical, or chemical methods. In the current study, the mechanical-chemical method was used and instead of chemical compounds natural nonanoic acid (pelargonic acid) was used. Nonanoic acid is a natural active ingredient that can be extracted from vegetable oil (rapeseed oil). It is a short chain fatty acid and a natural product, that fits well with the principles of the Green Revolution, which has introduced restrictions worldwide on the use of chemical plant protection products and promotes natural ones. For comparison carfentrazone-ethyl and glufosinate-ammonium were used. Studies were carried out in Poland during 2012–2014 with the potato variety Ikar, which is known to be among the varieties difficult to desicccate in Poland. The results show that potato leaves were efficiently destroyed by both nonanoic acid and chemicals (carfentrazone-ethyl and glufosinate-ammonium). The level of destruction varied from 94.5% to 99%. The level of stalk drying caused by nonanoic acid was high and it was similar to that of chemical desiccants. None of the studied desiccants significantly affected yield, vascular necrosis or quantity of starch in tubers.

Go to article

Authors and Affiliations

Przemysław Kardasz
Wojciech Miziniak
Marcin Bombrys
Agata Kowalczyk
Download PDF Download RIS Download Bibtex

Abstract

Rice blast is the main disease of rice plants in Indonesia and several countries worldwide. Controlling this disease using chemical fungicides has harmful effects on the environment. Therefore, we need biocontrol agents which are more environmentally friendly such as rice phyllosphere bacteria. This study aimed to explore bacteria producing bioactive compounds from the rice phyllosphere environment to control blast disease. A total of 88 isolates were successfully isolated from rice leaves in Sukabumi, Situgede, and Jasinga (West Java, Indonesia). From them, we obtained 22 bacteria isolates with antifungal activity against Pyricularia oryzae in vitro assay. In addition, seven non-pathogenic bacteria were obtained from further screening in hypersensitivity, hemolysis and pathogenicity assays, namely STGG 3, STGG 7, STGG 8, STGG 14, SKBV 1, STGV 8, and SKBG 78. To show their antifungal activity, we tested crude extracts of these seven isolates and the results revealed that all the crude extracts can inhibit the growth of P. oryzae. Based on a genetic approach, isolates STGG 3, STGG 7, and STGG 14 were found to have both nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) genes, while isolate SKBV 1 only had the NRPS gene. The NRPS and PKS genes from potential isolates were similar to NRPS and PKS genes of Bacillus sp. in different strains. Furthermore, molecular identification based on the 16S rRNA gene revealed that the seven potential isolates belong to three genera, i.e. Bacillus (STGG 3, STGG 7, STGG 8, STGG 14, SKBV 1), Enterobacter (STGV 8) and Brachybacterium (SKBG 78). We suggest that the seven isolates found in this study have potency and could be recommended as biocontrol agents of blast disease caused by P. oryzae.

Go to article

Authors and Affiliations

Sri Martina Wiraswati
Iman Rusmana
Abdjad Asih Nawangsih
Aris Tri Wahyudi

This page uses 'cookies'. Learn more