Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An analysis has been carried out of the influence of annealing time at the preheating temperature of 650 °C on the change in hardness and alloy structure of lamellar graphite cast iron in the working as well as in the laboratory conditions. This preheat temperature is common during reclaiming welding of castings with complex shapes. The changes in unalloyed cast iron EN-GJL 200 to EN-GJL 300 according to ISO 1690 standard and cast iron with low amount of elements such as Sn, Cu, Cr, and Mo and their combinations were assessed. It was found that the cast iron of higher strength grades has better hardness and structural stability. Cast iron alloyed with chromium or its combinations has the highest stability. In unalloyed cast iron, a partial degradation of pearlite occurs; in alloyed cast iron the structural changes are not conclusive.

Go to article

Authors and Affiliations

J. Roučka
ORCID: ORCID
J. Prochazka
V. Kana
V. Krutis
K. Nedelova
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research concerning to AlCu4MgSi alloy ingots produced using horizontal continuous casting process. The presented research was focused on the precise determination of phase composition of the precipitates formed during the solidification of ingots and the analysis of their thermal stability. In order to assess the morphology of precipitates in the AlCu4MgSi alloy, data obtained by using a computer simulation of thermodynamic phenomena were compiled with results obtained using advanced research techniques, i.e. High-temperature X-ray diffraction (HT-XRD), SEM-EDS, Thermal and derivative analysis (TDA) and Glow discharge optical emission spectroscopy (GD OES). SEM observations and analysis of chemical composition in micro-areas showed that the precipitates are mainly intermetallic θ-Al2Cu and β-Mg2Si phases, and also presence of Al19Fe4MnSi2 intermetallic phase was confirmed by X-ray diffraction studies. Based on the prepared Thermo-Calc simulation data, high-temperature X-ray diffraction measurements were conducted.

Go to article

Authors and Affiliations

P.M. Nuckowski
M. Kondracki
T. Wróbel
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The study evaluated the curing properties of natural silica sand moulded with 1% by weight Furotec 132 resin binder catalysed by Furocure CH Fast acid and Furocure CH Slow acid. Physical properties of this sand included an AFS number of 47.35, 4.40 % clay, 0 % magnetic components, 0.13 % moisture, and 64.5 % of the size distribution spread over three consecutive sieves (150 – 600 μm). The sand was washed repeatedly to remove all the clay and oven dried. 2 kg washed sand samples were mulled with pre-determined weights of either catalyst to give 30 %, 50 % and 70 % by weight of 20 g Furotec 132 resin which was added last. Furotec 132 resin + Furocure CH Slow acid catalyst system gives longer bench lives and strip times but the maximum compressive strength in excess of 5000 N/cm2 is attained after more than 8.5 hours curing time irrespective of the weight % of catalyst added relative to the resin. On that basis, exceeding 30 weight % Furocure CH Slow acid catalyst when sand moulding with Furotec 132 resin has neither technical nor economic justification. In comparison, the Furotec 132 resin + Furocure CH Fast acid catalyst system was only capable of producing mould specimens with maximum compressive strength above 5000 N/cm2 at 30 weight % catalyst addition rate. At 50 and 70 weight % catalyst addition rates, the mulled sand rapidly turned dark green then bluish with a significant spike in temperature to about 40 oC, far exceeding the optimum curing temperature of Furotec 132. This high temperature accelerates the curing rate but with a very low degree of resin curing which explains the low compressive strength. In fact the sand grains fail to bond and have a dry, crumbly texture implying dehydration. Thus, not more than 30 weight % Furocure CH Fast acid catalyst should be used in sand moulding.

Go to article

Authors and Affiliations

M.M. Mashingaidze
Download PDF Download RIS Download Bibtex

Abstract

In order to determine the leading phase of the Fe - 4.25% C eutectic alloy, the method of directional crystallization, which allows to study the character of the solid / liquid growth front, was used. Examined eutectic was directionally solidified with a constant temperature gradient of G = 33,5 K/mm and growth rate of v = 125 μm/s (450 mm/h). The Bridgman technique was used for the solidification process. The sample was grown by pulling it downwards up to 30 mm in length. The alloy quenched by rapid pulling down into the Ga-In-Sn liquid metal. The sample was examined on the longitudinal section using a light microscope and scanning electron microscope. The shape of the solid/liquid interface and particularly the leading phase protrusion were revealed. The formation of the concave – convex interface has been identified in the quasi-regular eutectic growth arrested by quenching. The cementite phase was determined to be a leading phase. The total protrusion d is marked in the adequate figure.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results of a research on the possibilities of applying 3D printed casting models for small production series as alternative to traditional tooling production on automated DisaMatch mould production lines. The main task was to verify and compare the dimensions of the 3D printed models before and after moulding process. The paper discusses main advantages and disadvantages of the 3D printing methods used like FDM (Fused Deposition Modeling)/FFF (Fused Filament Fabrication), SLA (stereolitography) and DPP (Daylight Polymer Printing). Measurement of casting model outside dimension change resulting from moulding sand friction on their surface was made with the use of GOM INSPECT software on the basis of 3D scans made with ATOS TripleScan optical scanner. Hardness of 3D printed models made of ABS, Z-ULTRAT, three different photopolymer resins (from FormLab and Liquid Crystal companies) was verified. The result of the research printed models usability for the foundry industry was presented.

Go to article

Authors and Affiliations

Ł. Bernat
A. Kroma
Download PDF Download RIS Download Bibtex

Abstract

Clarifying the genetic background of the drought-tolerance trait is a crucial task that may help to improve plant performance under stress by a genetic engineering approach. Dehydration-responsive element-binding protein (DREB) is a transcription factor family which modulates many stress-responsive genes. In this study, we isolated a DREB homolog gene named ZmDREBtv from Zea mays var. Tevang-1. Using bioinformatic tools, a number of InDels and SNPs in ZmDREBtv sequence different from the reference accession were identified. In addition, based on deduced protein sequence similarity, ZmDREBtv was assigned to transcription factor DREB2 class as featured by a conserved DNA binding domain - AP2. The ZmDREBtv construct under thecontrol of the rd29A promoter was transformed into a drought-sensitive maize plant, K7 line. The transgenic plants were assessed with reference to molecular and phenotypic characteristics related to the drought-tolenrance trait. The results proved that the maize plants carrying ZmDREBtv gene showed enhanced tolerance and better performance to the water-deficit environment at different stages, compared to the wild-type plants.

Go to article

Authors and Affiliations

Thi Thu Hue Huynh
Thuy Linh Nguyen
Han Ly Luu
Hai Ha Nguyen
Hong Diep Le
Manh Minh Bui
Thi Hang Pham
Thi Bich Thao Doan
Thi Thu Hien Le
Hong Hanh Ha
Van Hai Nong

This page uses 'cookies'. Learn more