Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of preliminary research on the application of olivine moulding sands with hydrated sodium silicate containing 1.5 % wt. of binder to perform ecological casting cores in hot-box technology using a semi-automatic core shooter. The following parameters were used in the process of core shooting: initial shot pressure of 6 bar, shot time 3 s, the temperature of the corebox: 200, 250 and 300 °C and the core curing time: 30, 60, 90, 120 and 150 s. The matrix of the moulding mixture was olivine sand, and the binder of the sandmix was commercial, unmodified hydrated sodium silicate with molar module SiO2/Na2O of 2.5. In one shot of the automatic core-shooter were formed three longitudinal specimens (cores) with a dimensions 22.2×22.2×180 mm. The samples obtained in this way were subjected to the assessment of the influence of the shooting parameters, i.e. shooting time, temperature and curing time in core-box, using the following criteria: core box fill rate, mechanical strength to bending Rg U, apparent density, compaction degree and susceptibility to friability of sand grains after hardening. The results of trials on the use of olivine moulding sands with hydrated sodium silicate (olivine SSBS) in the process of core shooting made it possible to determine the conditions for further research on the improvement of inorganic hot-box process technology aimed at: reduction of the heating temperature and the curing time. It was found that correlation between the parameters of the shooting process and the bending strength of olivine moulding sands with sodium silicate is observed.

Go to article

Authors and Affiliations

M. Stachowicz
ORCID: ORCID
Ł. Pałyga
D. Kępowicz
Download PDF Download RIS Download Bibtex

Abstract

For quality grey cast iron production, the challenging issues are to avoid cementite structure and obtain the desired graphite morphology with proper matrix as well as hardness. The objective of the present research is to find out the right combination of preconditioner and inoculant that may help to overcome the challenges. In this work, sulphur content is kept low (0.01%). Two preconditioners namely metallurgical SiC and zirconium bearing FeSi with two types of inoculant are individually used to make four combinations of sample and for each case metal is poured into the green sand mould. Finally Brinell hardness and graphite morphology is observed in the thickest and thinnest portions of the castings. Metallurgical SiC with barium bearing inoculant gives better graphite morphology and hardness than strontium bearing inoculant, on the other hand zirconium bearing FeSi gives more satisfying result than SiC with every type of inoculant. Among all of the combinations Zr bearing preconditioner with Ba bearing inoculant gives good graphite morphology with best mechanical properties in both thickest and thinnest portions of the casting.

Go to article

Authors and Affiliations

Md. Sojib S. Hossain
A.K.M. Bazlur B. Rashid
Download PDF Download RIS Download Bibtex

Abstract

Monitoring the solidification process is of great importance for understanding the quality of the melt, for controlling it, and for predicting the true properties of the alloy. Solidification is accompanied by the development of heat, the magnitude of which depends on the different phases occurring during solidification. Thermal analysis is now an important part of and tool for quality control, especially when using secondary aluminium alloys in the automotive industry. The effect of remelting on the change of crystallization of individual structural components of experimental AlSi9Cu3 alloy was determined by evaluation of cooling curves and their first derivatives. Structural analysis was evaluated using a scanning electron microscope. The effect of remelting was manifested especially in nucleation of phases rich in iron and copper. An increasing number of remelts had a negative effect after the fourth remelting, when harmful iron phases appeared in the structure in much larger dimensions.

Go to article

Authors and Affiliations

M. Matejka
ORCID: ORCID
D. Bolibruchova
Justyna Kasińska
ORCID: ORCID
M. Kuriš
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental-numerical tests of firing at aluminum composite materials. The test materials were manufactured by pressure infiltration of porous ceramic preforms made of -Al2O3 particles in the amount of 30% and 40% by volume. The EN AW-7075 alloy was chosen as the material matrix, and the steel 7.62×39 mm (M 43) FMJ (Full Metal Jacket) intermediate ammunition was selected for firing. In the result of the experiment, the samples were perforated with a clear difference in the muzzle diameter. The projectile with fragments caused damage to up to three reference plates placed behind the samples (witness plates) in composites with 40% of particles by volume. The mechanics of crack propagation during ballistic impacts of the projectile was characterized based on microstructure studies. Then, using numerical analysis of impact load, the examination of composite materials puncture in the ABAQUS environment was carried out. The Finite Element Method (FEM) was employed for the discretization of geometric models using Hex elements. The Johnson-Cook constitutive model describing the relationship between stress and strain in metal-ceramic composites was applied for the analyses. Numerical models were then subjected to numerical verification using smoothed particle hydrodynamics (SPH). Based on the obtained results, it was found that the hybrid FEM/SPH method correlates significantly with the experimental results.

Go to article

Authors and Affiliations

A. Kurzawa
D. Pyka
K. Jamroziak
Download PDF Download RIS Download Bibtex

Abstract

In order to identify the influence of different Mn, Cd, V and Zr content on the properties of Al-Cu casting alloys in hydraulic valves, orthogonal test methods were used to prepare alloy test bars with different elements and contents. Tensile tests were performed on the test bars so obtained. The microstructure of alloys with different compositions is studied. The results show that adding approximately 0.4% of Mn can not only form a strengthening phase but also reduce the excessive segregation of the matrix along the grain boundary. A Cd content of 0.2% can promote the formation of micro Cd spheres in the softer aluminum matrix. Hard spots increase the wear resistance of the material; however, an excess of Cd will cause element segregation and deteriorate the mechanical properties of the valve body. Zr and V refine the grains in the alloy; however, an excess of these elements will lead to a large area of segregation. If proper heat treatment is lacking, the mechanical properties of the valve body deteriorate.

Go to article

Authors and Affiliations

Rong Li
ORCID: ORCID
Lunjun Chen
Qi. Zeng
ORCID: ORCID
Ming Su
Zhiping Xie
ORCID: ORCID

This page uses 'cookies'. Learn more