Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 45
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the effect of the organic compound representing the cellulose derivative - sodium salt of carboxymethyl cellulose (CMC/Na) on the structure of the main component of bentonite (B) - montmorillonite (MMT). Structural analysis revealed that the CMC/Na of different viscosity interacts with the mineral only via surface adsorption, causing at the same time partial or full delamination of its layered structure. This was confirmed by the XRD diffraction tests. Such polymer destructive influence on the structure of the modified main component of the bentonite limits the use of its composites as an independent binder in moulding sand technology, but does not exclude it from acting as an additive being a lustrous carbon carrier. According to the IR spectra of the B/CMC/Na materials, it can be stated that the interaction between the organic and inorganic parts is based on the formation of hydrogen bonds. That kind of the interpretation applies especially to the MMT modified in the bentonite with a lower viscosity polymer. The characteristics of the main IR absorption bands for composites with a higher viscosity polymer indicates the formation of less stable structures suggesting the random nature of the hydrogen bonds formation.

Go to article

Authors and Affiliations

S. Cukrowicz
B. Grabowska
K. Kaczmarska
A. Bobrowski
M. Sitarz
B. Tyliszczak
Download PDF Download RIS Download Bibtex

Abstract

Recently, aluminum matrix syntactic foams (AMSFs) have become notably attractive for many different industrial areas like automotive, aerospace, construction and defense. Owing to their low density, good compression response and perfect energy absorption capacity, these advanced composite materials are also considered as strong alternatives to traditional particle reinforced composites and metal foams. This paper presents a promising probability of AMSF fabrication by means of industrial cold chamber die casting method. In this investigation, contrary to other literature studies restricted in laboratory scale, fully equipped custom-build cold chamber die casting machine was used first time and all fabrication steps were designed just as carried out in the real industrial high pressure casting applications. Main casting parameters (casting temperature, injection pressure, piston speed, filler pre-temperature and piston waiting time) were optimized in order to obtain flawless AMSF samples. The density alterations of the syntactic foams were analyzed depending upon increasing process values of injection pressure, piston speed and piston waiting time. In addition, macroscopic and microscopic investigations were performed to comprehend physical properties of fabricated foams. All these efforts showed almost perfect infiltration between filler particles at the optimized injection parameters.

Go to article

Authors and Affiliations

C. Bolat
A. Goksenli
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm2, intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm2, randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 μm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm2, 50 s, and up to 1.16 GPa for 40 J/cm2, 200 s.

Go to article

Authors and Affiliations

D. Zaguliaev
S. Konovalov
Y. Ivanov
A. Abaturova
A. Leonov
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.

Go to article

Authors and Affiliations

A. Kotarska
D. Janicki
J. Górka
ORCID: ORCID
T. Poloczek
Download PDF Download RIS Download Bibtex

Abstract

The microstructure of Al-Si alloy has coarse silicon and this structure is known dangerous for mechanical properties due to its crack effect. Sr addition is preferred to modify the coarse silica during solidification. Additionally, bifilms (oxide structure) are known as a more dangerous defect which is frequently seen in light alloys. It is aimed at that negative effect of bifilms on the properties of the alloys tried to be removed by the degassing process and to regulate the microstructure of the alloy. In this study, the effect of degassing and Sr modification on the mechanical properties of AlSi12Fe alloy was investigated, extensively. Four different parameters (as-received, as-received + degassing, Sr addition, Sr addition + degassing) were studied under the same conditions environmentally. The microstructural analyses and mechanical tests were done on cast parts. All data obtained from the experimental study were analyzed statistically by using statistical analysis software. It was concluded from the results that Sr addition is very dangerous for AlSi12Fe alloy. It can be suggested that to reach high mechanical properties and low casting defects, the degassing process must be applied to all castings whereas Sr addition should not be preferred.

Go to article

Authors and Affiliations

M. Uludağ
M. Gurtaran
D. Dispinar
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effects of adding niobium and vanadium to Fe-based oxide dispersion strengthened alloys are confirmed. The composition of alloys are Fe-20Cr-1Al-0.5Ti-0.5Y2O3 and Fe-20Cr-1Al-0.5Ti-0.3V-0.2Nb-0.5Y2O3. The alloy powders are manufactured by using a planetary mill, and these powders are molded by using a magnetic pulsed compaction. Thereafter, the powders are sintered in a tube furnace to obtain sintered specimens.

The added elements exist in the form of a solid solution in the Fe matrix and suppress the grain growth. These results are confirmed via X-ray diffraction and scanning electron microscopy analyses of the phase and microstructure of alloys. In addition, it was confirmed that the addition of elements, improved the hardness property of Fe-based oxide dispersion strengthened alloys.

Go to article

Authors and Affiliations

Chun Woong Park
Jongmin Byun
ORCID: ORCID
Won June Choi
Young Do Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, to investigate effects of rhenium addition on the microstructures and mechanical properties, 15Cr-1Mo ODS ferritic steels with rhenium additions were fabricated by the mechanical alloying, hot isostatic pressing, and hot rolling processes. Unremarkable differences on grain morphologies and nano-oxide distributions were estimated in the microstructure observations. However, the ODS ferritic steels with 0.5 wt.% rhenium showed higher tensile and creep strengths at elevated temperature than that without rhenium. It was found that rhenium is very effective to improve the mechanical properties.

Go to article

Authors and Affiliations

Sanghoon Noh
ORCID: ORCID
Suk Hoon Kang
Tae Kyu Kim
Download PDF Download RIS Download Bibtex

Abstract

Liquid metal extraction (LME) process results in 100% neodymium (Nd) extraction but the highest extraction efficiency reported for Dysprosium (Dy) so far is 74%. Oxidation of Dy is the major limiting factor for incomplete Dy extraction. In order to enhance the extraction efficiency and to further investigate the limiting factors for incomplete extraction, experiments were carried out on six different particle sizes of under 200 µm, 200-300 µm, 300-700 µm, 700-1000 µm, 1000-2000 µm and over 2000 µm at 900℃ with magnesium-to-magnet scrap ratio of 15:1 for 6, 24 and 48 hours, respectively. This research identified Dy2Fe17 in addition to Dy2O3 phase to be responsible for incomplete extraction. The relationship between Dy2Fe17 and Dy2O3 phase was investigated, and the overall extraction efficiency of Dy was enhanced to 97%.

Go to article

Authors and Affiliations

Sun-Woo Nam
ORCID: ORCID
Mohammad Zarar Rasheed
ORCID: ORCID
Sang-Min Park
ORCID: ORCID
Sang-Hoon Lee
ORCID: ORCID
Do-Hyang Kim
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, a molybdenum alloy with dispersed high-entropy particles was fabricated using the powder metallurgy method. The high-entropy powder, composed of Nb, Ta, V, W, and Zr elements with a same atomic fraction, was prepared via high-energy ball milling. Using this powder, an ideal core-shell powder, composed of high-entropy powder as core and Mo powder as shell, was synthesized via the milling and reduction processes. These processes enabled the realization of an ideal microstructure with the high-entropy phase uniformly dispersed in the Mo matrix. The sintered body was successfully fabricated via uniaxial compaction followed by pressureless sintering. The sintered body was analyzed by X-ray diffraction and scanning electron microscope, and the high-entropy phase is uniformly dispersed in the Mo matrix.

Go to article

Authors and Affiliations

Won June Choi
CheonWoong Park
Jongmin Byun
ORCID: ORCID
Young Do Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Section steels produced by welding are essential parts for shipbuilding and offshore plant production. T-type and H-type section steels are produced by handwork for secondary processing, which is a generally difficult and tedious activity. Therefore, automatic welding, with sound welding properties and a high-speed process, is necessary to meet the production demands. Welding conditions can be optimized by controlling various parameters to obtain suitable and highly reliable microstructural properties. In this study, the heat affected zone and weld defects of fillet-welded Angle and T-bar parts were investigated in terms of their microstructural, macrostructural, and mechanical properties to ensure the soundness of AH36 section steel parts joined by continuous welds.

Go to article

Authors and Affiliations

Jihoon Jang
Changsuk Yoon
Sangik Lee
Dong-Geun Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to investigate the microstructural evolution and mechanical properties of hot-deformed AlMg4 alloys with Mn, Fe, and Si as the main impurities. For this purpose, solidification behavior and microstructural evolution during hot-rolling and heat-treatment processes are investigated by using theoretical calculations and experimental characterization. The crystallization and morphological transformation of intermetallic Al3Fe, Al6Mn, and Mg2Si phases are revealed and discussed in terms of the variation in chemical composition. Following a homogenization heat-treatment, the effect of heat treatment on the intermetallic compounds is also investigated after hot-rolling. It was revealed that the Mg2Si phase can be broken into small particles and spherodized more easily than the Al3Fe intermetallic phase during the hot-rolling process. For the Mn containing alloys, both yield and ultimate tensile strength of the hot-rolled alloys increased from 270 to 296 MPa while elongation decreased from 17 to 13%, which can be attributed to Mn-containing intermetallic as well as dispersoid.

Go to article

Authors and Affiliations

Da B. Lee
Bong H. Kim
ORCID: ORCID
Kweon H. Choi
ORCID: ORCID
Seung Y. Yang
ORCID: ORCID
Nam S. Kim
ORCID: ORCID
Seong H. Ha
Young O. Yoon
Hyun K. Lim
ORCID: ORCID
Shae Kim
Soong K. Hyun
Download PDF Download RIS Download Bibtex

Abstract

The effect of TiC content on the microstructure and mechanical properties of a nanocrystalline Fe-Mn alloy was investigated by XRD analysis, TEM observation, and mechanical tests. A sintered Fe-Mn alloy sample with nano-sized crystallites was obtained using spark plasma sintering. Crystallite size, which is used as a hardening mechanism, was measured by X-ray diffraction peak analysis. It was observed that the addition of TiC influenced the average size of crystallites, resulting in a change in austenite stability. Thus, the volume fraction of austenite at room temperature after the sintering process was also modified by the TiC addition. The martensite transformation during cooling was suppressed by adding TiC, which lowered the martensite start temperature. The plastic behavior and the strain-induced martensite kinetics formed during plastic deformation are discussed with compressive stress-strain curves and numerical analysis for the transformation kinetics.

Go to article

Authors and Affiliations

Junhyub Jeon
ORCID: ORCID
Seunggyu Choi
Namhyuk Seo
ORCID: ORCID
Young Hoon Moon
In-Jin Shon
Seok-Jae Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

TiNi alloys have excellent shape memory properties and corrosion resistance as well as high biocompatibility. This study investigated the effects of copper addition on the phase transitions and electrochemical corrosion behaviors of Ti50Ni50-xCux alloys. TiNi, Ti50Ni47Cu3, Ti50Ni44Cu6, and Ti50Ni41Cu9 alloys were prepared using vacuum arc remelting followed by 4 h homogenization at 950°C. Differential scanning calorimetry and X-ray diffraction analyses were conducted. The corrosion behaviors of the alloys were evaluated using potentiodynamic polarization test in Hank’s balanced salt solution at a temperature of 36.5 ± 1°C. The TiNi alloy showed phase transitions from the cubic B2 phase to the monoclinic B19’ phase when the alloy was thermally cycled. The addition of copper to the TiNi alloy played a major role in stabilizing the orthorhombic B19 phases during the phase transitions of Ti50Ni50-xCux alloys. The shifts in the corrosion potential toward the positive zone and the low corrosion current density were affected by the amount of Cu added. The corrosion resistance of the TiNi alloy increased with increasing copper content.

Go to article

Authors and Affiliations

Kwangmin Lee
ORCID: ORCID
Sanghyun Rho
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to investigate the mechanical properties of beta type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) quaternary alloy for use as a cardiovascular stent. Titanium (Ti) alloys were fabricated using a vacuum arc remelting furnace process. To homogenize the specimens of each composition and remove the micro segregation, all cast specimens were subjected to homogenization at 850℃ for 4 h, which was 100℃ higher than the β-transus temperature of 750℃. The tensile strength and elongation of the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys were increased as compared to the homogenized alloys. In addition, many α/β interface boundaries formed after aging treatment at 450°C, which acted as inhibitors of strain and caused an increase in tensile strength. The elongation of Ti-4Mo-4Cr-X alloys consisting of α + β phases after aging treatment was improved by greater than 30%. Results of a potentiodynamic polarization test showed that the lowest current density of Ti-4Mo-4Cr-4Sn with 1.05 × 10–8 A/cm2 was obtained. The present Ti-4Mo-4Cr-X alloys showed better corrosion characteristics as compared to the 316L stainless steel and L605 (Co-Cr alloy) cardiovascular stent alloys.

Go to article

Authors and Affiliations

Kwangmin Lee
ORCID: ORCID
Gunhee Lee
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the microstructures and the mechanical properties of equiatomic Ti20Mo20Ta20Nb20V20 and non-equiatomic Ti40Mo15Ta15Nb15V15 and Ti60Mo10Ta10Nb10V10 HEAs using X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM), and micro-Vickers hardness test. The specimens were fabricated using the vacuum arc remelting (VAR) process and homogenized at a temperature of 1300°C for 4 h in a vacuum atmosphere. The determined thermodynamic parameters, Ω ≥ 1.1, δ ≤ 6.6%, and VEC < 6.87, suggested that the HEAs consisted of BCC solid solutions. XRD patterns of all the HEAs displayed single BCC phases. The difference in the solidification rate led to the micro-segregation associated with the elements Ta and Mo enriched in the dendrite arms and the elements V and Ti in the inter-dendritic regions. The HEA specimens showed a decrease in hardness with higher concentration of Ti element because the intrinsic hardness of Ti is lower as compared to the intrinsic hardness of Nb and Mo.

Go to article

Authors and Affiliations

Seongi Lee
Kwangmin Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the extrusion characteristics of Al-2Zn-1Cu-0.5Mg-0.5RE alloys at 450, 500, and 550℃ were investigated for the high formability of aluminum alloys. The melt was maintained at 720℃ for 20 minutes, then poured into the mold at 200℃ and hot-extruded with a 12 mm thickness bar at a ratio of 38:1. The average grain size was 175.5, 650.1, and 325.9 μm as the extrusion temperature increased to 450, 500 and 550℃, although the change of the phase fraction was not significant as the extrusion temperature increased. Cube texture increased with the increase of extrusion temperature to 450, 500 and 550℃. As the extrusion temperature increased, the electrical conductivity increased by 47.546, 47.592 and 47.725%IACS, and the tensile strength decreased to 92.6, 87.5, 81.4 MPa. Therefore, the extrusion temperature of Al extrusion specimen was investigated to study microstructure and mechanical properties.

Go to article

Authors and Affiliations

Yong-Ho Kim
ORCID: ORCID
Hyo-Sang Yoo
ORCID: ORCID
Kyu-Seok Lee
Sung-Ho Lee
Hyeon-Taek Son
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Recently, since the demand of rare earth permanent magnet for high temperature applications such as an electric motor has increased, dysprosium (Dy), a heavy rare earth element, is becoming important due to severe bias in its production. To fulfill the increasing need of Dy, recycling offers as a promising alternative. In recycling of rare earths, Hydro-metallurgical extraction method is mainly used however it has adverse environmental effects. Liquid metal extraction on the other hand, is an eco-friendly and simple method as far as the reduction of rare earth metal oxide is concerned. Therefore, liquid metal extraction was studied in this research as an alternative to the hydro-metallurgical recycling method. Magnesium (Mg) is selected as solvent metal because it doesn’t form intermetallic compounds with Fe, B and has a low melting and low boiling point. Extraction behavior of Dy in (Nd,Dy)-Fe-B magnet is observed and effect of Mg ratio on extraction of Dy is confirmed.

Go to article

Authors and Affiliations

Sangmin Park
Sun-Woo Nam
ORCID: ORCID
Ju-Young Cho
ORCID: ORCID
Sang-Hoon Lee
ORCID: ORCID
Seung-Keun Hyun
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the magnetic properties and wave absorption characteristics of high entropy alloys are investigated. The high entropy alloys with FeNiMnCoCu, FeNiMnZnCo, and FeNiZnCoCu compositions were synthesized by the sol-gel method. After the sol-gel process, the annealing process and hydrogen reduction process was performed. FeNiMnCoCu and FeNiZnCoCu were revealed soft magnetic property. The saturation magnetization was 12 emu/g and 36 emu/g, respectively. And The coercive force was –45 Oe and –34 Oe, respectively. The high entropy alloy with these compositions was revealed wave absorption property at above 10 gigahertz frequency region. And it has shown the trend that wave absorption frequency has decreased with the sample thickness increasing.

Go to article

Authors and Affiliations

Suwon Yang
Jeong-Gon Kim
Kwang-Pil Jeong
Jin-Hyuk Choi
Download PDF Download RIS Download Bibtex

Abstract

NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Go to article

Authors and Affiliations

Ju-Young Cho
ORCID: ORCID
Yong-Ho Choa
ORCID: ORCID
Sun-Woo Nam
ORCID: ORCID
Rasheed Mohammad Zarar
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The U-type ferrite is a kind of hexagonal ferrite, and it is known as a microwave absorber in the X-band. The magnetic and dielectric loss of the U-type ferrite change to the composition and coating layer, etc. In this study, the silicon oxide layer was coated on the substituted U-type ferrites to improve microwave absorption characteristics. The complex permittivity and complex permeability were measured using toroidal specimens that were press-molded and the measured frequency range was set from 2-18 GHz. The improvement of the microwave absorption rate was different according to the type of the substituted U-type ferrites. Only in the substituted U-type ferrites with nickel and zinc, an improvement in the microwave absorption rate due to enhancement of magnetic loss was confirmed. The highest microwave absorption was 99.9% at 9.6 GHz, which was S_Z0.5U.

Go to article

Authors and Affiliations

Kwang-Pil Jeong
Jeong-Gon Kim
Su-Won Yang
Jin-Hyuk Choi
Seung-Young Park
Download PDF Download RIS Download Bibtex

Abstract

The secondary aluminium alloys are very important material in actual industry from economic and ecological point of view. The secondary aluminium used for production of casts, however, contains some elements, i.e. iron, – affecting physical, chemical and mechanical behaviour. The subject of our investigation has been corrosion behaviour in natural atmosphere of the hypoeutectic AlSi7Mg0.3 cast alloys with various content of iron, because the Fe content affects not only mechanical properties but corrosion resistance, as well. Three types of the AlSi7Mg0.3 cast alloys were exposed for 9 months in natural atmosphere and the measure of their degradation by corrosion was found by determination of the weight loss and the light microscopy. In addition, a scanning electron microscopy (SEM) analyses and evaluation of surface changes were used. The corrosion behaviour in natural atmosphere was compared to results of the carried out electrochemical and exposure laboratory experiments in chloride solutions.

Go to article

Authors and Affiliations

L. Kuchariková
ORCID: ORCID
T. Liptáková
ORCID: ORCID
E. Tillová
ORCID: ORCID
M. Bonek
D. Medvecká
Download PDF Download RIS Download Bibtex

Abstract

In the paper presents two new patented of unconventional methods author’s and sleeve-type products of extruding [PL219182, PL221425]. The extrusion methods have been developed with the aim of reducing the energy and force parameters during the plastic forming of material. Traditional methods of extruding similar products are characterized by considerably higher extrusion force magnitudes. This results in substantial limitations and problems of an engineering nature. Moreover, the proposed methods of producing bottomed and bottomless sleeves are distinguished by the capability to minimize or totally eliminate the waste. The author’s methods of extruding long bottomless sleeves, presented herein, were used for developing a method for shaping inner toothing in spline sleeves. The theoretical analysis is based on thermomechanical simulation of the possibility of applying such processes to the extrusion of spline shafts with inner toothing. Next, the obtained results were compared with analogous parameters for classical indirect extrusion. The possibility of shaping inner toothing over the entire product length according to the proposed spline sleeve plastic forming methods was also explored.

Go to article

Authors and Affiliations

J. Michalczyk
S. Wiewiórowska
Download PDF Download RIS Download Bibtex

Abstract

Corrosion is a main problem for longtime exploration of heat exchangers in automotive industry. Proper selection of accelerated corrosion test for newly developed material is a key aspect for aluminum industry. The selection of material based on corrosion test includes test duration, chemical spray composition, temperature and number of cycles. The paper present comparison of old and newly developed accelerated corrosion tests for testing automotive heat exchanger. The accelerated test results are comprised with heat exchanger taken from market after life cycle.

Go to article

Authors and Affiliations

Ł. Biało
T. Grodniewicz
P. Żabiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the effect of austempering temperature and time on the microstructure and content of retained austenite of a selected cast steel assigned as a material used for frogs in railway crossovers. Bainitic cast steel was austempered at 400°C, 450°C and 500°C for two selected times (0.5 h, 4.0 h) to study the evolution of the microstructure and retained austenite content. The microstructure was characterized by optical microscopy, X-ray diffraction analyses (XRD), and hardness tests. Phase transformations during and after austempering were determined by dilatometric methods.

The increase in isothermal temperature causes an increase in time to start of bainitic transformation from 0.25 to 1.5 s. However, another increase in temperature to 500°C shifts the incubation time to as much as 11 s. The time after which the transformations have ended at individual temperatures is similar and equal to about 300 s (6 min.). The dilatation effects are directly related to the amount of bainite formation. Based on these we can conclude that the temperature effect in the case of cast steel is inversely proportional to the amount of bainite formed. The largest effect can be distinguished in the case of the sample austempered at 400°C and the smallest at 500°C. Summarizing the dilatometric results, we can conclude that an increase in austempering temperature causes an increase in austenite stability. In other words, the chemical composition lowers (shifts to lower temperatures) the range of bainite transformation. It is possible that at higher austempering temperatures we will receive only stable austenite without any transformation. This is indicated by the hatched area in Figure 4b. This means that the heat treatment of cast steel into bainite is limited on both sides by martensitic transformation and the range of stable austenite. The paper attempts to estimate the content of retained austenite with X-ray diffraction.

Go to article

Authors and Affiliations

S. Parzych
R. Dziurka
ORCID: ORCID
M. Goły
B. Kulinowski

This page uses 'cookies'. Learn more