Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The squash beetle Epilachna chrysomelina (F.) is an important insect pest which causes severe damage to cucurbit plants in Iraq. The aims of this study were to isolate and characterize an endogenous isolate of Myrothecium-like species from cucurbit plants and from soil in order to evaluate its pathogenicity to squash beetle. Paramyrothecium roridum (Tode) L. Lombard & Crous was isolated, its phenotypic characteristics were identified and ITS rDNA sequence analysis was done. The pathogenicity of P. roridum strain (MT019839) was evaluated at a concentration of 107 conidia · ml–1) water against larvae and adults of E. chrysomelina under laboratory conditions. The results revealed the pathogenicity of the isolate to larvae with variations between larvae instar responses. The highest mortality percentage was reported when the adults were placed in treated litter and it differed significantly from adults treated directly with the pathogen. Our results documented for the first time that P. roridum has potential as an insect pathogen.
Go to article

Bibliography

1. Abbott W.S. 1925. A method for computing the effectivenss of an insecticide. Journal of Economic Entomology 8: 265–277.
2. Abdullah S.K., Abbas B.A. 2008. Fungi inhabiting surface sediments of Shatt Al-Arab River and its creeks at Basrah, Iraq. Basrah Journal of Science (B) 26 (1): 68–81.
3. Abdullah S.K., Al-Mosawi K.A. 2010. Fungi associated with seeds of sunflower ( Helianthus annuus) cultivars grown in Iraq. Phytopathologia 57: 11–20.
4. Abdullah S.K., Monfort E., Asensio L., Salinas J., LopezLlorca L.V., Jansson H.B. 2010. Mycobiota of date palm plantations in Elche, SE Spain. Czech Mycology 61 (2): 149–162.
5. Abdullah S.K., Saadullah A.A. 2013. Soil mycobiota at grapevine plantations in Duhok, North Iraq. Mesopotamia Journal of Agriculture 41 (1): 437–447.
6. Abdullah S.K., Zora S.E. 1993. Soil microfungi from date palm plantations in Iraq. Basrah Journal of Science 11 (1): 45–57.
7. Abdul-Rassoul M.S. 1976. Check list of insects of Iraq. Natural History Research Centre, Publication No. 30: 1-41.
8. AmithaV., Shylaja M.D., Nalini M.S. 2014. Fungal endophytes from culinary herbs and their antioxidant activity. International Journal of Current Research 6 (8): 7996–8002.
9. Arnold A.E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews 21: 51–66.
10. Assaf L.H., Hassan F.R., Younis G.H. 2011. Evaluation of the Entomopathogenic fungi, Beauveria bassiana (Bals.)Vuill.and Paecilomyces farinosus (Dicks ex Fr.) against the Poplar Leaf Beetle Melasoma populi L. Agriculture and Veterinary Sciences 14: 35-44.
11. Awadalla S.S., Abd-Wahab H.A., Abd El-Baky N.F., Abdel-Salam S.S. 2011. Host plant preference of the melon ladybird beetle Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae) on different cucurbit vegetables in Mansoura region. Journal of Plant Protection and Pathology 2 (1): 41–47.
12. Bharath B.G., Likesh S., Yashovarma B., Prakash H.S., Shetty H.S. 2006. Seed-borne nature of Myrothecium roridium in watermelon seeds. Research Journal of Botany 1 (1): 44–45. DOI: 10.3923/rib.2006.44.45.
13. Bosio P., Siciliano I., Gilardi G., Gullino, M.L., Garibaldi A. 2017. Verrucarin A and roridin E produced on rocket by Myrothecium roridium under different temperatures and CO2 levels. World Mycotoxin Journal 10: 229–236.
14. Chavan S.B.,Vidhate R.P., Kallure G.S., Dandawate N.L., Khire J.M., Deshpande M.V. 2017. Stability studies of cuticle and mycolytic enzymes of Myrothecium verrucaria for control of insect pests and fungal phytopathogens. Indian Journal of Biotechnology 16: 404–412.
15. Domsch K.H., Gams W., Anderson T. 2007. Compendium of Soil Fungi. 2nd ed. IHW Verlag, Eching, Germany, 672 pp.
16. Gindin G., Levski S., Glazer I., Soroker V. 2006. Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus. Phytoparasitica 34: 370–379.
17. Han K.S., Choi S.K., Kim H.H., Lee S.C., Park J.H., Cho M.R., Park M.J. 2014. First report of Myrothecium roridium causing leaf and stem rot disease of Pepteromia quadrangularis in Korea. Mycobiology 42 (2): 203–205. DOI: 10.5941/MYCO.2014.42.2.203
18. Hassan F.R. 2003. Studies in poplar leaf beetle Melasoma (= Chrysomela) populi L. (Chrysomelidae: Coleoptera) in Duhok region. M.Sc. thesis, University of Duhok, College of Agriculture, Iraq, 83 pp.
19. Hassan F.R. 2019. Selective Isolation and Biomass Production of Beauveria bassiana and its Virulence to Squash Beetle Epilachna chrysomelina F. Ph.D dissertation, College of Agricultural Engineering Sciences, University of Duhok, Iraq, 165 pp.
20. Hassan F.R., Abdullah S.K., Assaf L.H. 2019. Pathogenicity of the entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. endophytic and a soil isolate against the squash beetle, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae). Egyptian Journal of Biological Pest Control 29: 74. DOI: 10.1186/s41938-019-0169-x
21. Haudenshield J.S., Pawlowski M., Miranda C., Hartman G.L. 2018. First report of Paramyrothecium roridium causing Myrothecium leaf spot on soybean in Africa. Plant Disease 102 (12): 2638. DOI: 10.1094/PDIS-04-18-0624-PDN
22. Ismail A.L.S., Abdullah S.K. 1977. Studies on the soil fungi of Iraq. Proceedings of the Indian Academy of Sciences-Section B 86 (3): 151–154.
23. Kwon H.W., Kim J.Y., Choi M.Ah., Son S.Y., Kim S.H. 2014. Characterization of Myrothecium roridium isolated from imported Anthurium plant culture medium. Mycobiology 42 (1): 82–85. DOI: 10.5941/MYCO.2014.42.1.82
24. Lee H.B., Kim J.C., Hong K.S., Kim C.J. 2008. Evaluation of fungal strain, Myrothecium roridium F0252, as a bioherbicide agent. The Plant Pathology Journal 24 (2): 453–460.
25. Li T.-X., Xiong Y.-M., Chen X., Yang Y.-N., Wang, Jia X.-W., Yang X.-P., Tan L.-L., Xu C.-P. 2019. Antifungal macrocyclic Trichothecens from the insect-associated fungus Myrothecium roridium. Journal of Agriculture and Food Chemistry 67 (47): 13033–13039. DOI: 10.1021/acs.jafc.9b04507.
26. Liang J., Li G., Zhou S., Zhao M., Cai l. 2019. Myrothecium-like new species from turfgrasses and associated rhizosphere. MycoKeys 51: 29–53. DOI: 10.3897/mycokeys.51.31957.
27. Liu J.Y., Huang L.L., Ye Y.H., Zou W.X., Guo Z.J., Tan R.X. 2006. Antifungal and new metabo¬lites of Myrothecium sp. Z16, a fungus associated with white croaker Argyromosumar¬gentatus. Journal of Applied Microbiology 100: 195–202. DOI: https://doi.org/10.1111/j.1365- 2672.2005.02760.x
28. Liu H.X., Liu W.Z., ChenY.C., Sun Z.H., Tan Y.Z., Li H.H., Zhang W.M. 2016. Cytotoxic trichothecene macrolides from the endophyte fungus Myrothecium roridium. Journal of Asian Natural Products Research 18 (7): 684–689. DOI: 10.1080/10286020.2015.1134505.
29. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Reblova M., Groenewald J.Z., Crous P.W. 2016. Genetic hyper-diversity in Stachybotriaceae. Persoonia 36: 156–246. DOI: 10.3767/003158516X691582
30. Macia-Vicente J. G., Jansson H. B., Abdullah S. K., Descals E., Salinas J., Lopez-Llorca L. V. 2008. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiology Ecology 64: 90–105. DOI: 10.1111/j.1574-6941.2007. 00443.
31. Matic S., Gilardi G., Gullino M.L., Garibaldi A. 2019. Emergence of leaf spot disease on leafy vegetable and ornamental crops caused by Paramyrothecium and Albifimbria species. Phytopathology 109: 1053–1061. DOI: 10.1094/PHYTO-10-18-0396-R
32. Mou J.Y. 1975. Preliminary study on Myrothecium sp. (in Chinese). Applicationand Research on Entomogenous Fungus in China 2: 237–238.
33. Okunowo W.O., Gbenle G.O., Osuntoki A.A., Adekunle A.A., Ojokuku S.A. 2010. Production of cellulolytic enzymes by a phytopathogenic Myrothecium roridium and some avirulent fungal aisolates from water hyacinth. African Journal of Biotechnology 9 (7): 1074–1078. DOI: 10.5897/AJB09.1598
34. Pappachan A., Rahul K., Debashish Ch., Sivaprasad V. 2019. Phylogenetic analysis of Paramyrothecium roridium causing brown leaf spot of mulberry. International Journal of Current Microbiology and Applied Sciences 8(03): 1393–1399. DOI: 10.20546/ijcmas.2019.803.163
35. Parker B.L., Skinner M., Costa S.D., Gouli S., Reid W., El Bouhssini M. 2003. Entomopathogenic fungi of Eurygaster. integriceps Puton (Hemiptera: Scutelleridae): collection and characterization for development. Biological Control 27: 260–272.
36. Shen L., Ai C.Z., SongY.C.,Wang F.W., Jiao R.H., Zhang A.H., Man H.Z., Tan R.X. 2019. Cytotoxic trichothecene macrolides produced by the endophytic Myrothecium roridium. Journal of Natural Products 82 (6): 1503–1509.
37. Soliman M.S. 2020. Characterization of Paramyrothecium roridium (basionym Myrothecium roridium) causing leaf spot of strawberry. Journal of Plant Protection Research 60 (2): 141–149. DOI: 10.24425/jppr.2020.133308
38. Talukdar D., Dantre R.K. 2014. Biochemical studies on Myrothecium roridium Tode. ex. Fries causing leaf spot of soybean. Global Journal of Research Analysis 3: 7–9.
39. Tulloch M. 1972. The genus Myrothecium Tode ex Fr. Mycological Papers 130: 1–42.
40. Vidhate R., Singh J., Ghormade V., Chavan S.B., Patil A., Deshpande M.V. 2015. Use of hydrolytic enzymes of Myrothecium verrucaria and conidia of Metarhizium anisopliae, singly and sequentially to control pest and pathogens in grapes and their compatibility with pesticides used in the field. Biopesticides International 11 (1): 48–60.
41. Warcup J.H.1960. Methods for isolation and estimation of activity of fungi in soil. p. 3–21. In: "The Ecology of Soil Fungi" (D. Parkinson, J.S. Waid, eds.). Liverpool University Press, UK.
42. White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: "PCR Protocols: A Guide to Methods and Aapplications" (M.A. Innis, D.H. Gelfand, J.J. Shinsky, T.J. White, eds.). Academic Press, San Diego, California, USA.

Go to article

Authors and Affiliations

Feyroz Ramadan Hassan
1
Nacheervan Majeed Ghaffar
2
Lazgeen Haji Assaf
3
Samir Khalaf Abdullah
4

  1. Department of Plant Protection, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region, Duhok, Iraq
  2. Duhok Research Center, College of Veterinary Medicine, Duhok University, Kurdistan Region, Duhok, Iraq
  3. Plant Protection, General Directorate of Agriculture-Duhok, Kurdistan Region, Duhok, Iraq
  4. Department of Medical Laboratory Techniques, Al-Noor University College, Nineva, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the antioxidant effect of selenium in Pisum sativum L. plants pre-treated with sodium selenite or sodium selenate at a concentration of 10 and 20 μM, and then colonized by pea aphid Acyrthosiphon pisum (Harris). It has been hypothesized that selenium at low concentrations alleviates oxidative stress caused by aphid feeding on pea leaves. The study focused on the generation of reactive oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical), the activities of the antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) scavenging the reactive oxygen species levels, as well as on total antioxidant activity in pea leaves. Selenium in pea leaves exposed to aphid feeding affected changes in the levels of reactive oxygen species, the activity of studied antioxidant enzymes, and the total antioxidant capacity. Effects depended on the form and concentration of selenium, as well as on the time after the colonization of pea plants by aphids. Obtained results showed beneficial effects of selenium in alleviating oxidative stress in pea leaves caused by aphid feeding.
Go to article

Bibliography

1. Andrade F.R., da Silva G.N., Guimarães K.C., Barreto H.B.F., de Souza K.R.D., Guilherme L.R.G., Faquin V. Reis A.R. 2018. Selenium protects rice plants from water deficit stress. Ecotoxicology and Environmental Safety 164: 562–570. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.022
2. Apel K., Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
3. Bartosz G. 2013. Druga twarz tlenu. Wolne rodniki w przyrodzie. [Second Face of Oxygen. Free Radicals in Nature]. Wydawnictwo Naukowe PWN, Warszawa, Poland, 447 pp. (in Polish)
4. Beauchamp C., Fridovich I. 1971. Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44 (1): 276–287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8
5. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
6. Cartes P., Jara A., Pinilla L., Rosas A., Mora M. 2010. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annales of Applied Biology 156: 297–307. DOI: https://doi.org/10.1111/j.1744-7348.2010.00387.x
7. Coppola V., Coppola M., Rocco M., Digilio M.C., D’Ambrosio C., Renzone G., Renzone G., Martinelli R., Scaloni A., Pennacchio F., Rao R., Corrado G. 2013. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomocs 14: 515–532. DOI: https://doi.org/10.1186/1471-2164-14-515
8. Czerniewicz P., Sytykiewicz H., Durak R., Borowiak-Sobkowiak B., Chrzanowski G. 2017. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiology and Biochemistry 118: 529–540. DOI: https://doi.org/10.1016/j.plaphy.2017.07.024
9. Dampc J., Kula-Maximenko M., Molon M., Durak R. 2020. Enzymatic defense response of apple aphid Aphis pomi to increased temperature. Insects 11 (7): 436. DOI: https://doi.org/10.3390/insects11070436
10. Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: https://doi.org/10.3389/ fenvs.2014.00053
11. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779–795. DOI: https://doi: 10.1007/s000180050041
12. del Pino A.M., Guiducci M., D’Amato R., Di Michele A., Tosti G., Datti A., Palmerini C.A. 2019. Selenium maintains cytosolic Ca2+ homeostasis and preserves germination rates of maize pollen under H2O2-induced oxidative stress. Scientific Reports 9 (1): 1–9. DOI: https://doi.org/1038/s41598-019-49760-3
13. del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53: 1255–1272. DOI: https://doi.org/10.1093/jexbot/53.372.1255
14. Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology 23 (3): 345–357. DOI: https://doi.org/10.1016/0048-4059(83)90019-X
15. Feng R., Wei C., Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany 87: 58–68. DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002
16. Foyer C.H., Rasool B., Davey J.W., Hancock R.D. 2016. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. Journal of Experimental Botany 67 (7): 2025–2037. DOI: https://doi.org/10.1093/jxb/erw079.
17. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12): 909–930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
18. Gouveia G.C.C., Galindo F.S., Lanza M.G.D.B., Silva A.C.R., Mateus M.P.B, Silva M.S., Tavanti R.F.R., Tavanti T.R., Lavres J., Reis A.R. 2020. Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety 202: e110916. DOI: https://doi.org/10.1016/j.ecoenv.2020.110916
19. Guardado-Félixa D., Serna-Saldivarb S.O., Cuevas-Rodrígueza E.O., Jacobo-Velázquezb D.A., Gutiérrez-Uribeb J.A. 2017. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea ( Cicer arietinum L.) sprouts. Food Chemistry 226: 69–74. DOI: https://doi.org/10.1016/j.foodchem.2017.01.046
20. Gupta M., Gupta S. 2017. An overview of plant selenium uptake, metabolism and toxicity in plants. Frontiers in Plant Science 7: e2074. DOI: https://doi.org/10.3389/fpls.2016.02074
21. Habibi G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101: 31–39. DOI: https://doi.org/10.2478/acas-2013-0004
22. Hartikainen H., Xue H., Piironen V. 2000. Selenium as an antioxidant. Plant and Soil 225: 193–200. DOI: https://doi.org/10.1023/A:1026512921026
23. He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Guan Z., He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defence enzyme activity in response to aphid infestation. Journal of Plant Physiology 168 (7): 687–693. DOI: https://doi.org/10.1016/j.jplph.2010.10.009
24. Holman J. 2009. Host Plant Catalog for Aphids. Palearctic Region. Springer Science + Business Media B.V., Berlin/Heidelberg, Germany, 1216 pp.
25. Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M, Tran L.-S.P. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science 6: e420. DOI: https://doi.org/10.3389/ fpls.2015.00420
26. Kasote D.M., Katyare S.S., Hegde M.V., Bae H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences 11 (8): 982–991. DOI: https://doi:10.7150/ijbs.12096
27. Kuśnierczyk A., Winge P., Jorstad T.S., Troczyńska J., Rossiter J.T., Bunes A.M. 2008. Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid ( Brevicoryne brassicae) attack. Plant, Cell and Environment 31 (8): 1097–1115. DOI: https://doi.org/10.1111/j.1365-3040.2008.01823.x
28. Lehmann S., Serrano M., L’Haridon F., Tjamos S.E., Metraux J P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112: 54–62. DOI: https://doi.org/10.1016/j.phytochem.2014.08.027
29. Łukasik I., Goławska S., Wójcicka A. 2012. Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies 21 (6): 1937–1941.
30. Łukasik I., Goławska S. 2013. Effect of host plant on levels of reactive oxygen species andantioxidants in the cereal aphids Sitobion avenae and Rhopalosiphum padi. Biochemical Systematic and Ecology 51: 232–239. DOI: https://doi.org/10.1016/j.bse.2013.09.001
31. Łukaszewicz S., Politycka B., Smoleń S. 2018. Effect of selenium on the content of essential micronutrients and their translocation in garden pea. Journal of Elementology 23 (4): 1307–1317. DOI: https://doi.org/10.5601/jelem.2017.22.4.1577.
32. Maffei M.E., Mithöfer A., Boland W. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68 (22–24): 2946–2959. DOI: https://doi.org/10.1016/j.phytochem.2007.07.016
33. Mai V.C., Bednarski W., Borowiak-Sobkowiak B., Wilkaniec B., Samardakiewicz S., Morkunas I. 2013. Oxidative stress in pea seedling leaves in response to Acirthosiphon pisum infestation. Phytochemistry 93: 49–62. DOI: https://doi.org/10.1016/j.phytochem.2013.02.011
34. Mai V.C., Tran N.T., Nguyen D.S. 2016. The involvement of peroxidases in soybean seedlings’ defence against infestation of cowpea aphid. Arthropod-Plant Interactions 10: 283–292. DOI: https://doi.org/10.1007/s11829-016-9424-1
35. Marchi-Werle L., Heng-Moss T.M., Hunt T.E., Baldin E.L.L., Baird L.M. 2014. Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 107 (5): 1985–1991. DOI: https://doi.org/10.1603/EC14220
36. Mechora Š., Ugrinović K. 2015. Can plant-herbivore interaction be affected by selenium? Austin Journal of Environmental Toxicology 1(1): e5.
37. Messner B., Boll M. 1994. Cell suspension of spruce ( Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide. Plant Cell Tissue Organ and Culture 39: 69–78. DOI: https://doi.org/10.1007/BF00037594
38. Moloi M.J., van der Westhuizen A.J. 2008. Antioxidative enzymes and the Russian wheat aphid ( Diuraphis noxia) resistance response in wheat ( Triticum aestivum). Plant Biology 10 (3): 403–407. DOI: https://doi.org/10.1111/j.1438-8677.2008.00042.x
39. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22 (5): 867–880. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
40. Ni X., Quinsberry S.S. 2003. Possible roles of esterase, glutathione S-transferase, and superoxide dismutase activities in understanding aphid–cereal interactions. Entomologia Experimentalis et Applicata 108: 187–195. DOI: https://doi.org/10.1046/j.1570-7458.2003.00082.x
41. Ni X., Quisenberry S.S., Heng-Moss T.M., Markwell J., Sarath G., Klucas R., Baxendale F. 2001. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology 94: 743–751. DOI: https://doi.org/10.1603/0022-0493-94.3.743
42. Pereira A.S., Dorneles A.O.S., Bernardy K., Sasso V.M., Bernardy D., Possebom G., Rossato L.V., Dressler V.L., Tabaldi L.A. 2018. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research 25: 18548–18558. DOI: https://doi.org/10.1007/s11356-018-2005-3
43. Pierson L.M., Heng-Moss T.M., Hunt T.E., Reese J. 2011. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid ( Aphis glycines Matsumura) feeding. Arthropod-Plant Interactions 5: 49–58. DOI: https://doi.org/10.1007/s11829-010-9115-2
44. Prochaska T.J. 2011. Characterization of the Tolerance Response in the Soybean KS4202 to Aphis glycines Matsumura. M.Sc. Thesis, University of Nebraska, Lincoln, USA.
45. Prochaska T.J., Pierson L.M., Baldin E.L.L., Hunt T.E., Heng-Moss T.M., Reese J.C. 2013. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 106 (2): 1036–1044. DOI: https://doi.org/10.1603/EC12320
46. Quan L.J., Zhang B., Shi W.W., Li H.Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal od Integrative Plant Biology 50: 2–18. DOI: https://doi.org/10.1111/j.1744-7909.2007.00599.x
47. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231–1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3
48. Ríos J.J., Blasco B., Cervilla L.M., Rosales M.A., Sanchez-Rodriguez E., Romero L., Ruiz J.M. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology 154: 107–116. DOI: https://doi.org/10.1111/j.1744-7348.2008.00276.x
49. Saxena I., Srikanth S., Chen Z. 2016. Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science 7: e570. DOI: https://doi.org/10.3389/fpls.2016.00570
50. Shalaby T., Bayoumi Y., Alshaal T., Elhawat N., Sztrik A., El-Ramady H. 2017. Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant Soil 421: 245–258. DOI: https://doi.org/10.1007/s11104-017-3458-8
51. Shao Y., Guo M., He X., Fan Q., Wang Z., Jia J., Guo J. 2019. Constitutive H2O2 is involved in sorghum defense against aphids. Brazilian Journal of Botany 42 (2): 271–281. DOI: https://doi.org/10.1007/s40415-019-00525-2
52. Sieprawska A., Kornaś A., Filek M. 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – review. Acta Biologica Cracoviensia. Series Botanica 57 (1): 9–20. DOI: http://dx.doi.org/10.1515/abcsb-2015-0014
53. van Breusegem F., Vranová E., Dat J.F., Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Science 161 (3): 405–416. DOI: https://doi.org/10.1016/S0168-9452(01)00452-6
54. von Tiedemann A.V. 1997. Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology 50 (3): 151–166. DOI: https://doi.org/10.1006/pmpp.1996.0076
55. Walz C., Juenger M., Schad M., Kehr J. 2002. Evidence for the presence and activity of a complete defence system in mature sieve tubes. The Plant Journal 31 (2): 189–197. DOI: https://doi.org/10.1046/j.1365-313X.2002.01348.x
56. Wu J., Baldwin I.T. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44: 1–24. DOI: https://doi.org/10.1146/annurev-genet-102209-163500
57. Yang T., Poovaiah B. W. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America 99 (6): 4097–4102. DOI: https://doi.org/10.1073/pnas.052564899
Go to article

Authors and Affiliations

Sabina Łukaszewicz
1
Barbara Politycka
1
Beata Borowiak-Sobkowiak
2

  1. Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
  2. Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated the potential use of the nano-emulsion of Lippia multiflora Mold. essential oil in managing the cabbage pest ( Brassica oleracea L.) in two Ivorian areas (Yamoussoukro and Korhogo) during the wet seasons (April-September 2018). The nano- -emulsion was tested against cabbage diamondback moth ( Plutella xylostella), aphid ( Brevicoryne brassicae), webworm ( Hellula undalis), cutworm ( Spodoptera exigua) and whitefly ( Bemisia tabaci) under field conditions. The efficacy of essential oil emulsion was compared with the synthetic pesticide Karate 5 EC (Lambda cyhalothrin 52 g · l–1). The results indicated that the nano-emulsion of essential oil gave better control of the cabbage insect pest than the untreated plots. For all the insects studied, the nano-emulsion was very effective towards the species B. brassicae and P. xylostella for which the reduction of the mean population was respectively, 28.48 ± 0.2 and 0.6 ± 0.02 in Yamoussoukro and 0.0 and 7.11 ± 0.16 in Korhogo, compared to 45.32 ± 0.43 and 15.89 ± 0.23, respectively, for untreated plots. The yields of cabbage heads obtained in both areas Yamoussoukro and Korhogo were 4.7 and 15, respectively. The head damage percentages were 23.3% in Yamoussoukro and 26.7% in Korhogo when the fields were sprayed with nano-emulsion and were 13.3% and 28.3%, respectively, when the cabbages were treated with the synthetic pesticide. The formulation obtained here might be an interesting alternative for integrated pest management of cabbage.
Go to article

Bibliography

1. Aboagye E. 1996. Biological studies and insecticidal control of cabbage worm ( Hellula undalis). PhD Thesis, Bsc. Dissertation, Faculty of Agriculture, KNUST, Kumasi.
2. Baba M.F., Koumaglo K., Ayedoun A., Akpagana K., Moudachirou M., Bouchet P. 1997. Activité antifongique d’huiles essentielles extraites au Bénin et au Togo. Cryptogamie. Mycologie 18 (2): 165–168. (in French)
3. Baidoo P.K., Adam J.I. 2012. The effects of extracts of Lantana camara (L.) and Azadirachta indica (A. Juss) on the population dynamics of Plutella xylostella, Brevicoryne brassicae and Hellula undalis on cabbage. Sustainable Agriculture Research 1: 229–234. DOI: http://dx.doi.org/10.5539/sar.v1n2p229
4. Baidoo P.K., Mochiah M.B. 2016. Comparing the effectiveness of garlic ( Allium sativum L.) and hot pepper ( Capsicum frutescens L.) in the management of the major pests of cabbage Brassica oleracea (L.). Sustainable Agriculture Research 5: 83–91. DOI: http://dx.doi.org/10.5539/sar.v5n2p83
5. Bassole I.H., Guelbeogo W.M., Nebie R., Costantini C., Sagnon N., Kabore Z.I., Traore S.A. 2003. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parassitologia 45: 23–26.
6. Bassolé I.H.N., Lamien-Meda A., Bayala B., Tirogo S., Franz C., Novak J., Nebié R.C., Dicko M.H. 2010. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15: 7825–7839. DOI: https://doi.org/10.3390/molecules15117825
7. Boulogne I., Petit P., Ozier-Lafontaine H., Desfontaines L., Loranger-Merciris G. 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letters 10: 325–347. DOI: http://dx.doi.org/10.1007/s10311-012-0359-1
8. Cerda H., Carpio C., Ledezma-Carrizalez A.C., Sánchez J., Ramos L., Muñoz-Shugulí C., Andino M., Chiurato M. 2019. Effects of aqueous extracts from amazon plants on Plutella xylostella (Lepidoptera: Plutellidae) and Brevicoryne brassicae (Homoptera: Aphididae) in laboratory, semifield, and field trials. Journal of Insect Science 19 (5): 8. DOI: 10.1093/jisesa/iez068
9. Christofoli M., Costa E.C.C., Bicalho K.U., Cássia D. V., Peixoto M.F., Alves C.C.F., Araújo W.L., Melo Cazal C. 2015. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products 70: 301–308. DOI: https://doi.org/10.1016/j.indcrop.2015.03.025
10. Dadang D., Fitriasari E.D., Prijono D. 2011. Field efficacy of two botanical insecticide formulations against cabbage insect pests, Crocidolomia pavonana (F.) (Lepidoptera: Pyralidae) and Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Journal of International Society for Southeast Asian Agricultural Sciences 17: 38–47.
11. Feng J., Zhang, Q., Liu Q., Zhu Z., McClements D.J., Jafari S.M. 2018. Application of nanoemulsions in formulation of pesticides. p. 379–413. In: “Nanoemulsions, Formulation, Applications, and Characterization” (S.M. Jafari, D.J. McClements, eds.). Elsevier, 664 pp. DOI: 10.1016/B978-0-12-811838-2.00012-6
12. Furlong M.J., Wright D.J., Dosdall L.M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology 58: 517–541. DOI: https://doi.org/10.1146/annurev-ento-120811-153605
13. Gill H.K., Garg H. 2014. Pesticides: environmental impacts and management strategies, Pesticides-toxic aspects. IntechOpen. DOI: 10.5772/57399
14. Ezena G.N., Akotsen-Mensah C., Fening K.O. 2016. Exploiting the insecticidal potential of the invasive siam weed, Chromolaena odorata L. (Asteraceae) in the management of the major pests of cabbage and their natural enemies in Southern Ghana. Advances in Crop Science and Technology 4: 230. DOI: https://doi.org/10.4172/2329-8863.1000230
15. Khoshraftar Z., Safekordi A.A., Shamel A., Zaefizadeh M. 2019. Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chemistry Letters and Reviews 12: 286–298. DOI: https://doi.org/10.1080/17518253.2019.1643930
16. Maji T.K., Baruah I., Dube S., Hussain M.R. 2007. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology 98: 840–844. DOI: https://doi.org/10.1016/j.biortech.2006.03.005
17. Mondedji A.D., Nyamador W.S., Amevoin K., Ketoh G. K., Glitho I. A. 2014. Efficacité d’extraits de feuilles de neem Azadirachta indica (Sapindale) sur Plutella xylostella (Lepidoptera : Plutellidae), Hellula undalis (Lepidoptera : Pyralidae) et Lipaphis erysimi (Hemiptera : Aphididae) du chou Brassica oleracea (Brassicaceae) dans une approche « Champ Ecole Paysan » au sud du Togo. International Journal of Biological and Chemical Sciences, 8(5): 2286-2295.
18. Munthali D.C., Tshegofatso A.B. 2014. Factors affecting abundance and damage caused by cabbage aphid, Brevicoryne brassicae on four Brassica leafy vegetables: Brassica oleracea var. Acephala, B. chinense, B. napus and B. carinata. The Open Entomology Journal 8: 1–9. DOI: 10.2174/1874407901408010001
19. Mustafa I.F., Hussein M.Z. 2020. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10: 1608. DOI: https://doi.org/10.3390/nano10081608
20. Oladimeji F.A., Orafidiya O.O., Ogunniyi T.A.B., Adewunmi T.A. 2000. Pediculocidal and scabicidal properties of Lippia multiflora essential oil. Journal of Ethnopharmacology 72: 305–311. DOI: 10.1016/s0378-8741(00)00229-4
21. Owolabi M.S., Ogundajo A., Lajide L., Oladimeji M.O., Setzer W.N., Palazzo M.C. 2009. Chemical composition and antibacterial activity of the essential oil of Lippia multiflora Moldenke from Nigeria. Record of Natural Product 3: 170–177.
22. Paula H.C., Sombra F.M., Abreu F.O., Paul R. 2010. Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. Journal of the Brazilian Chemical Society 21: 2359–2366. DOI: http://doi.org/10.1590/S0103-50532010001200025
23. Shiberu T., Negeri M. 2016. Effects of synthetic insecticides and crude botanicals extracts on cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) on cabbage. Journal of Fertilizers and Pesticides 7: 162. DOI: 10.4172/2471-2728.1000162
24. Solomon B., Sahle F.F., Gebre-Mariam T., Asres K., Neubert R.H.H. 2012. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. European Journal of Pharmaceutics and Biopharmaceutics 80: 61–66. DOI: 10.1016/j.ejpb.2011.08.003
25. Tia E.V., Adima A.A., Niamké S.L., Jean G.A., Martin T., Lozano P., Menut C. 2011. Chemical composition and insecticidal activity of essential oils of two aromatic plants from Ivory Coast against Bemisia tabaci G. (Hemiptera: Aleyrodidae). Natural Product Communications 6 (8): 1183–1188. DOI: 10.1177/1934578X1100600835
26. Tia E.V., Lozano P., Menut C., Lozano Y.F., Martin T., Niamké S., Adima A.A. 2013. Potentiality of essential oils for control of the whitefly Bemisia tabaci Genn., a greenhouse pest. Phytothérapie 11: 31–38. DOI: 10.1007/s10298-012-0736-8
27. Tia V.E., Doannio J.M. C., Adima A.A. 2020. Repellent effect of some essential oil from Ivorian ethnomedicinal plant against malaria vector, Anopheles gambiae (Giles, 1902). International Journal of Mosquito Research 7 (1): 16–24.
28. Yang F.-L., Li X.-G., Zhu F., Lei C.-L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57: 10156–10162. DOI: 10.1021/jf9023118
29. Zorzi G.K., Carvalho E.L.S., von Poser G.L., Teixeira H.F. 2015. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Revista Brasileira de Farmacognosia 25: 426–436. DOI: https://doi.org/10.1016/j.bjp.2015.07.015
Go to article

Authors and Affiliations

Vama Etienne Tia
1
Soumahoro Gueu
2
Mohamed Cissé
1
Yalamoussa Tuo
3
Ayekpa Jean Gnago
4
Eugène Konan
5

  1. Département Biochimie – Génétique, Université Peleforo Gon Coulibaly, BP1328 Korhogo, Côte d’Ivoire (Ivory Coast)
  2. Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, BP1093 Yamoussoukro, Côte d’Ivoire (Ivory Coast)
  3. Département Biologie Animale, Université Peleforo Gon Coulibaly, BP1328 Korhogo, Côte d’Ivoire (Ivory Coast)
  4. Laboratoire de Zoologie Agricole et d’Entomologie, Institut National Polytechnique Félix Houphouët-Boigny, BP1093 Yamoussoukro, Côte d’Ivoire (Ivory Coast)
  5. Département de Recherche et Développement, Compagnie Ivoirienne de Coton (COIC), BP193 Korhogo, Côte d’Ivoire (Ivory Coast)
Download PDF Download RIS Download Bibtex

Abstract

Numerous plant species around the world suffer from the presence of viruses, which especially in economically important crops, cause irretrievable damage and/or extensive losses. Many biotechnological approaches have been developed, such as meristem culture, chemotherapy, thermotherapy or cryotherapy, to eliminate viruses from infected plants. These have been used alone or in combination. In this work, meristem culture, thermotherapy and cryotherapy were compared for Apple mosaic virus elimination from hazelnut local cultivar “Palaz”. The virus-free plant was also confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) after each treatment and, the best results were obtained by cryotherapy. A one step freezing technique, droplet vitrification, was used for cryotherapy, and the best regeneration percentage was 52%. After cryotherapy, virus-free seedlings of hazelnut local cultivar “Palaz” were confirmed as being virus-free after three subcultured periods.
Go to article

Bibliography

1. Akbas B., Degirmenci K. 2009. Incidence and natural spread of Apple mosaic virus on hazelnut in the west black sea coast of Turkey and its effect on yield. Journal of Plant Pathology 91 (3): 767–771. DOI: https://doi.org/10.4454/jpp.v91i3.577
2. Balamuralikrishnan M., Doraisamy S., Ganapathy T., Viswanathan R. 2002. Combined Effect of Chemotherapy and Meristem Culture on Sugarcane Mosaic Virus Elimination in Sugarcane. Sugar Tech 4 (2): 19–25. DOI: https://doi.org/10.1007/BF02956875
3. Bettoni J.C., Costa M.D., Gardin J.P.P., Kretzschmar A.A., Pathirana R. 2016. Cryotherapy: a new technique to obtain grapevine plants free of viruses. Revista Brasileira de Fruticultura 38: 2–13. DOI: https://doi.org/10.1590/0100-29452016833
4. Dĩaz-Barrita A.J., Norton M, Martĩnez-Peniche R.A., Uchanski M., Mulwa R., Skirvin R.M. 2008. The use of thermotherapy and in vitro meristem culture to produce virus-free ‘Chancellor’ grapevines. International Journal of Fruit Science 7 (3): 15–25. DOI: https://doi.org/10.1300/J492v07n03_03
5. Feng C., Wang R., Li J., Wang B., Yin Z., Cui Z., Li B., Bi W., Zhang Z., Li M., Wang Q. 2013. Production of pathogen-free horticultural crops by cryotherapy of in vitro-grown shoot tips. p. 463–482. In: "Protocols for Micropropagation of Selected Economically-Important Horticultural Plants" (M. Lambardi, E.A. Ozudogru, S.M. Jain, eds.). Methods in Molecular Biology, Clifton, New York, 490 pp. DOI: https://doi.org/10.1007/978-1-62703-074-8
6. Gergerich R.C., Dolja V.V. 2006. Introduction to plant viruses, the invisible foe. The Plant Health Instructor: 478. DOI: https://doi.org/10.1094/PHI-I-2006-0414-01
Helliot B., Panis B., Poumay Y., Swennen R., Lepoivre P., Frison E. 2002. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana ( Musa spp.). Plant Cell Reports 20 (12): 1117–1122. DOI: https://doi.org/10.1007/s00299-002-0458-8
7. Hu G., Dong Y., Zhang Z., Fan X., Ren F., Zhou J. 2015. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture 121 (2): 435–443. DOI: https://doi.org/10.1007/s11240-015-0714-6
8. Hu J.S., Li H.P., Barry K., Wang M. 1995. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two Cucumber mosaic virus isolates infecting banana in Hawaii. Plant Disease 79 (9): 902–906. DOI: https://doi.org/10.1094/PD-79-0902
9. Kaya E. 2015. Using reverse transcription-polymerase chain reaction (RT-PCR) for determination of Apple mosaic ilarvirus (ApMV) in hazelnut ( Corylus avellana L.) cultivars. JSM Biochemistry and Molecular Biology 3 (1): 1011.
10. Kaya E., Alves A., Rodrigues L., Jenderek M., Hernandez-Ellis M., Ozudogru A., Ellis D. 2013. Cryopreservation of Eucalyptus Genetic Resources. CryoLetters 34 (6): 608–618.
11. Kaya E., Galatali S., Guldag S., Ozturk B. 2020. A new perspective on cryotherapy: pathogen elimination using plant shoot apical meristem via cryogenic techniques. p. 137–148. In: " Plant Stem Cells: Methods and Protocols" (M. Naseem, T. Dandekar, eds.). Springer, US, 150 pp. DOI: https://doi.org/10.1007/978-1-0716-0183-9
12. Kaya E., Souza F.V.D. 2017. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane ( Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cellular and Developmental Biology - Plant 53: 410–417. DOI: https://doi.org/10.1007/s11627-017-9837-2
13. Kobylko T., Nowak B., Urban A. 2005. Incidence of Apple mosaic virus (ApMV) on hazelnut in south-east Poland. Folia Horticulturae 17 (2): 153–161.
14. Kumar S., Khana M.S., Raja S.K., Sharmab A.K. 2009. Elimination of mixed infection of Cucumber mosaic and Tomato aspermy virus from Chrysanthemum morifolium Ramat. cv. Pooja by shoot meristem culture. Scientia Horticulturae 119 (2): 108–112. DOI: https://doi.org/10.1016/j.scienta.2008.07.017
15. Lambardi M., Sharma K.K., Thorpe T.A. 1993. Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine ( Pinus halepensis Mill.). In Vitro Cellular and Developmental Biology – Plant 29: 189–199. DOI: https://doi.org/10.1007/BF02632034
16. Lloyd G., McCown B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. International Plant Propagators' Society 30: 421–427.
17. López-Delgado H., Mora-Herrera M.E., Zavaleta-Mancera H.A., Cadena-Hinojosa M., Scott I.M. 2004. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research 81 (3): 171–176. DOI: https://doi.org/10.1007/BF02871746
18. Marascuilo L.A., McSweeney M. 1977. Post-hoc multiple comparisons in sample preparations for test of homogeneity. p. 141–147. In: “Non-Parametric and Distribution-Free Methods for the Social Sciences” (M. McSweeney, L.A. Marascuilo, eds.). Pacific Grove, CA, USA: Brooks/Cole Publications.
19. Menzel N., Jelkmann N., Maiss E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant m-RNA as internal control. Journal of Virological Methods 99: 89–92. DOI: https://doi.org/10.1016/S0166-0934(01)00381-0
20. Milosevic S., Cingel A., Jevremovic S.B., Stankovic I., Bulajic A., Branka K., Subotic A. 2012. Virus elimination from ornamental plants using in vitro culture techniques. Journal Pesticides and Phytomedicine – Pesting 27 (3): 203–211. DOI: https://doi.org/10.2298/PIF1203203M
21. Nukari A., Uosukainen M., Rokka V.M. 2009. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland. Agricultural and Food Science 18: 117–128. DOI: https://doi.org/10.2137/145960609789267506
22. O’Donnell K. 1999. Plant pathogen diagnostics: present status and future developments. Potato Research 42: 437–447. DOI: https://doi.org/10.1007/BF02358160
23. Ozudogru E.A., Kaya E., Kirdok E., Issever-Ozturk S. 2011. In vitro propagation from young and mature explants of thyme ( Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular & Developmental Biology – Plant 47: 309–320. DOI: https://doi.org/10.1007/s11627-011-9347-6
24. Paprstein F., Sedlak J., Polak J., Svobodova L., Hassan M., Bryxiova M. 2008. Results of in vitro thermotherapy of apple cultivars. Plant Cell Tissue and Organ Culture 94 (3): 347–352. DOI: https://doi.org/10.1007/s11240-008-9342-8
25. Paprstein F., Sedlak J., Svobodova L., Polak J., Gadiou S. 2013. Results of in vitro chemotherapy of apple cv. Fragrance. Horticultural Science 40: 186–190. DOI: https://doi.org/10.17221/37/2013-HORTSCI
26. Ramgareeb S., Snyman S.J., van Antwerpen T., Rutherford R.S. 2010. Elimination of virus and rapid propagation of disease-free sugarcane ( Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell Tissue and Organ Culture 100: 175–181. DOI: https://doi.org/10.1007/s11240-009-9634-7
27. Rout G.R., Mohanpatra A., Jain M.S. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances 24 (6): 531–560. DOI: https://doi.org/10.1016/j.biotechadv.2006.05.001
28. Sakai A., Kobayashi S., Oiyama I. 1990. Cryopreservation of nucellar cells of navel orange ( Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9: 30–33. DOI: https://doi.org/10.1007/BF00232130
29. Sellner L.N., Coelen R.J., Mackenzie J.S. 1992. A one-tube, one manipulation RT-PCR reaction for detection of Ross river virus. ‎ Journal of Virological Methods 40 (3): 255–263. DOI: https://doi.org/10.1016/0166-0934(92)90084-Q
30. Slack S.A., Tufford L.A. 1995. Meristem culture for virus elimination. p. 117–128. In: "Plant Cell, Tissue and Organ Culture, Fundamental Methods" (O.L. Gamborg, G.C. Phillips, eds.), Springer-Verlag Berlin Heidelberg, 349 pp. DOI: https://doi.org/10.1007/978-3-642-79048-5
31. Spiegel S., Frison E.A., Converse R.H. 1993. Recent development in therapy and virus-detection procedures for international movements of clonal plant germplasm. Plant Disease 77: 176–1180. DOI: https://doi.org/10.1094/PD-77-1176
32. Spiegel S., Scott W., Bowman-Vance V., Tam Y., Galiakparov N.N., Rosner A. 1996. Improved detection of prunus necrotic ringspot virus by the polymerase chain reaction. European Journal of Plant Pathology 102 (7): 681–685. DOI: https://doi.org/10.1007/BF01877249
33. Tan R., Wang L., Hong N., Wang G. 2010. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue and Organ Culture 101: 229–235. DOI: https://doi.org/10.1007/s11240-010-9681-0
34. Ustaoglu B., Karaca M. 2010. The possible effects of temperature conditions on hazelnut farming in Turkey. Itudergisi 9 (3): 153–161.
35. Valasevich N., Cieślińska M., Kolbanova E. 2014. Molecular characterization of Apple mosaic virus isolates from apple and rose. European Journal of Plant Pathology 141: 839–845. DOI: https://doi.org/10.1007/s10658-014-0580-9
36. Vivek M., Modgil M. 2018. Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. Virus Disease 29 (1): 75–82. DOI: https://doi.org/10.1007/s13337-018-0437-5
37. Wang Q.C., Cuellar W.J., Rajamäki M.L., Hiraka Y., Valkonen J.P.T. 2008. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology 9: 237–250. DOI: https://doi.org/10.1111/j.1364-3703.2007.00456.x
38. Wang Q., Liu Y., Xie Y., You M. 2006. Cryotherapy of Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato Virus Y (PVY). Potato Research 49: 119–129. DOI: https://doi.org/10.1007/s11540-006-9011-4
39. Wang Q., Panis B., Engelmann F., Lambardi M., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: a technique for pathogen elimination to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Annals of Applied Biology 154: 351–363. DOI: https://doi.org/10.1111/j.1744-7348.2008.00308.x
40. Wang Q.C., Valkonen J.P.T. 2008a. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods 154: 135–145. DOI: https://doi.org/10.1016/j.jviromet.2008.08.006
41. Wang Q.C., Valkonen J.P.T. 2008b. Efficient elimination of Sweetpotato little leaf phytoplasma fromsweetpotato by cryotherapy of shoot tips. Plant Pathology 57: 338–347. DOI: https://doi.org/10.1111/j.1365-3059.2007.01710.x
42. Wang Q.C., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: novel pathogen eradication method. Trends in Plant Science 14: 119–122. DOI: https://doi.org/10.1016/j.tplants.2008.11.010
43. Wang B., Wang R.R., Cui Z.H., Bi W.L., Li J.W., Li B.Q., Ozudogru E.A., Volk G.M., Wang Q.C. 2014. Potencial applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances 32: 583–595. DOI: https://doi.org/10.1016/j.biotechadv.2014.03.003
44. Ward E., Foster S.J., Fraaije B.A. McCartney H.A. 2004. Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Annals of Applied Biology 145: 1–16. DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00354.x
Go to article

Authors and Affiliations

Ergun Kaya
1

  1. Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Characterization of angular leaf spot (ALS) disease of beans caused by Pseudocercospora griseola (Sacc.) Crous & Braun along with its occurrence was investigated using 118 isolates obtained from beans grown in greenhouses in the western Black Sea region of Turkey. Incidences of ALS disease ranged between 77–100% and 82–100% for summer and autumn sown bean cultivations while the disease severity was in the ranges of 66–82% and 74–86% for the same periods, respectively. All of the 118 isolates of P. griseola yielded 500–560 bp PCR products from ITS1 and ITS4 primers, while 45 isolates yielded 200–250 bp products from actin genes primer and 5 isolates yielded 300–350 bp from calmodulin primer. The form of the Turkish isolates of P. griseola was determined as f. griseola since ITS sequences of 118 isolates of P. griseola showed between 98–100% similarity to the isolates of P. griseola f. griseola deposited in GenBank and our isolates took place on the same branch on the phylogenetic tree formed by the representative isolates in GenBank. The actin sequences did not give a clear differentiation for the forms of P. griseola. The phylogenetic trees generated by ITS1, ITS2 and actin genes formed similar branches. Each had two main clade and similar sub clades.
Go to article

Bibliography

1. Abadio A.K.R., Lima S.S., Santana M.F., Salamao T.M.F., Sartorato A., Mizubuti E.S.G., Araujo E.F., Queiroz de M.V. 2012. Genetic diversity analysis of isolates of the fungal bean pathogen Pseudocercospora griseola from central and southern Brazil. Genetics and Molecular Research 11 (2): 1272–1279. DOI: 10.4238/2012.May.14.1
2. Bora T., Karaca İ. 1970. Kültür Bitkilerinde Hastalığın ve Zararın Olçülmesi. [Measurement of Disease and Damage in Cultivated Plants]. Ege University, Faculty of Agriculture Auxiliary Textbook, No. 167. (in Turkish).
3. Canpolat S., Maden S. 2017. Determination of the inoculum sources of angular leaf spot disease caused by Pseudocercospora griseola, on common beans. Plant Protection Bulletin 57 (1): 39–47 (in Turkish with English abstract). DOI: 10.16955/bitkorb.299016, ISSN 0406-3597
4. Canpolat S., Maden S. 2020. Reactions of some common bean cultivars grown in Turkey against some isolates of angular leaf spot disease, caused by Pseudocercospora griseola. Plant Protection Bulletin 60 (2): 45–54. (in Turkish with English abstract). DOI: 10.16955/bitkorb.630968
5. Chilagane L.A., Nchimbi-Msolla S., Kusolwa P.M., Porch T.G., Diaz L.M.S., Tryphone G.M. 2016. Characterization of the common bean host and Pseudocercospora griseola, the causative agent of angular leaf spot disease in Tanzania. African Journal of Plant Science 10 (11): 238–245. DOI: https://doi.org/10.5897/AJPS2016.1427
6. Crous P.W., Lienbenberg M.M., Braun U., Groenewald J.Z. 2006. Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies in Mycology 55 (1): 163–173. DOI: 10.3114/sim.55.1.163
7. Ddamulira G., Mukankusi C.M., Ochwo-Ssemakula M., Edema R., Sseruwagi P., Gepts P.L. 2014. Distribution and variability of Pseudocercospora griseola in Uganda. Journal of Agricultural Science 6 (6): 16–29. DOI: 10.5539/jas.v6n6p16
8. Nay M.M., Souza T.L.P.O., Gonçalves-Vidigal M.C., Raatz B., Mukankusi C.M., Gonçalves-Vidigal M.C., Abreu A.F.B., Melo L.C., Pastor-Corrales M.A. 2019. A review of angular leaf spot resistance in common bean. Crop Science 59: 1376–1391. DOI: 10.2135/cropsci2018.09.0596
9. Sartorato A. 2004. Pathogenic variability and genetic diversity of Phaeoisariopsis griseola isolates from two counties in the State of Goias, Brazil. Journal of Phytopathology 152: 385–390.
10. Schoonhoven A., Pastor-Corrales M.A. 1987. Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical, CIAT Apartado Areo 6713 Cali, Colombia, p.56.
11. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725.
12. Townsend G.K., Heuberger J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report 27: 340–343.
13. Viguiliouk E., Mejia S.B., Kendall C.W., Sievenpiper J.L. 2017. Can pulses play a role in improving cardiometabolic health. Evidence from systematic reviews and meta‐analyses. Annuals of the New York Academy of Sciences 1392 (1): 43.
Go to article

Authors and Affiliations

Sirel Canpolat
1
Salih Maden
2

  1. Department of Phytopathology, Ankara Plant Protection Central Research Institute, Ankara, Turkey
  2. Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Modern agriculture and plant breeding must continuously meet the high and increasingly growing requirements of consumers and recipients. In this context, one of the conditions for effective management of any farm is access to quick and efficient diagnostics of plant pathogens, the result of which, together with the assessment of experts, provide breeders with tools to effectively reduce the occurrence of plant diseases. This paper presents information about biodiversity and spectrum of endophytic and phytopathogenic bacterial species identified in plant samples delivered to the Plant Disease Clinic in 2013–2019. During the tests, using the Biolog Gen III system, the species affiliation of the majority of detected bacterial strains found in plant tissues as an endophyte and not causing disease symptoms on plants was determined. These data were compiled and compared with the number of found identifications for a given species and data on the pathogenicity of bacterial species towards plants. In this way, valuable information for the scientific community was obtained about the species composition of the bacterial microbiome of the crop plants studied by us, which were confronted with available literature data. In the study, special attention was paid to tomato, which is the plant most often supplied for testing in the Plant Disease Clinic due to its economic importance.
Go to article

Bibliography

1. Ahmed F.A., Arif M., Alvarez A.M. 2017. Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. Frontiers in Microbiology 8: 1–9. DOI: 10.3389/fmicb.2017.01728
2. Bosmans L., Moerkens R., Wittemans L., De Mot R., Rediers H., Lievens B. 2017. Rhizogenic agrobacteria in hydroponic crops: epidemics, diagnostics and control. Plant Pathology 66: 1043–1053. DOI: https://doi.org/10.1111/ppa.12687
3. Buell C.R., Joardar V., Lindeberg M. Selengut J, Paulsen I.T., Gwinn M.L., Dodson R.J., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R., Daugherty S., Brinkac L., Beanan M.J., Haft D.H., Nelson W.C., Davidsen T., Zafar N., Zhou L., Liu J., Yuan Q., Khouri H., Fedorova N., Tran B., Russell D., Berry K., Utterback T., Van Aken S.E., Feldblyum T.V., D'Ascenzo M., Deng W.L., Ramos A.R., Alfano J.R., Cartinhour S., Chatterjee A.K., Delaney T.P., Lazarowitz S.G., Martin G.B., Schneider D.J., Tang X., Bender C.L., White O., Fraser C.M., Collmer A. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 100: 10181–10186. DOI: 10.1073/pnas.1731982100
4. Chojniak J., Jałowiecki Ł., Dorgeloh E. Hegedusova B., Ejhed H., Magnér J., Płaza G. 2015. Application of the BIOLOG system for characterization of Serratia marcescens ss marcescens isolated from onsite wastewater technology (OSWT). Acta Biochimica Polonica 62: 799–805. DOI: 10.18388/abp.2015_1138
5. Ciardi J.A., Tieman D.M., Lund S.T., Jones J.B., Stall R.E., Klee H.J. 2000. Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiology 123: 81–92. DOI: 10.1104/pp.123.1.81
6. Coutinho T.A., Venter S.N., 2009. Pantoea ananatis: an unconventional plant pathogen. Molecular Plant Pathology 10: 325–335. DOI: 10.1111/j.1364-3703.2009.00542.x
7. Daami-Remadi M. 2007. First report of Pectobacterium carotovorum subsp. carotovorum on tomato plants in Tunisia. Tunisian Journal of Plant Protection 2: 1–5.
8. Esker P.D., Nutter F.W. 2002. New frontiers in plant disease losses and disease management assessing the risk of stewart’s disease of corn through improved knowledge of the role of the corn flea beetle vector. Phytopathology: 1999–2001.
9. Freeman N.D., Pataky J.K. 2001. Levels of stewart’s wilt resistance necessary to prevent reductions in yield of sweet corn hybrids. Plant Disease 85: 1278–1284. DOI: https://doi.org/10.1094/PDIS.2001.85.12.1278
10. Gartemann K.H., Kirchner O., Engemann J., Gräfen I., Eichenlaub R., Burger A. 2003. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology 106: 179–191. DOI: https://doi.org/10.1016/j.jbiotec.2003.07.011
11. SP. 2018. Produkcja upraw rolnych i ogrodniczych w 2017 r. Statistics Poland: 1–84.
12. Iakimova E.T., Sobiczewski P., Michalczuk L., Wegrzynowicz-Lesiak E., Mikiciński A., Woltering E.J. 2013. Morphological and biochemical characterization of Erwinia amylovora-induced hypersensitive cell death in apple leaves. Plant Physiology and Biochemistry 63: 292–305. DOI: 10.1016/j.plaphy.2012.12.006
13. Jones J.B. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology 76: 430.
14. Kalużna M., Pulawska J., Waleron M., Sobiczewski P. 2014. The genetic characterization of Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight in Poland. Plant Pathology 63: 1404–1416. DOI: https://doi.org/10.1111/ppa.12211
15. Kałużna M., Willems A., Pothier J.F., Ruinelli M., Sobiczewski P., Puławska J. 2016. Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Systematic and Applied Microbiology 39: 370–377. DOI: 10.1016/j.syapm.2016.05.005
16. Krawczyk K., Borodynko-Filas N. 2020. Kosakonia cowanii as the new bacterial pathogen affecting soybean ( Glycine max Willd.). European Journal of Plant Pathology 157: 173–183. DOI: https://doi.org/10.1007/s10658-020-01998-8
17. Krawczyk K., Kamasa J., Zwolińska A., Pospieszny H. 2010. First report of Pantoea ananatis associated with leaf spot disease of maize in Poland. Journal of Plant Pathology 92: 807–811. DOI: http://dx.doi.org/10.4454/jpp.v92i3.332
18. Krawczyk K., Łochyńska M. 2020. Identification and characterization of Pseudomonas syringae pv. mori affecting white mulberry ( Morus alba) in Poland. European Journal of Plant Pathology 158: 281–291. DOI: https://doi.org/10.1007/s10658-020-02074-x
19. Krawczyk K., Zwolińska A., Pospieszny H., Borodynko N. 2016. First report of ‘ Candidatus Phytoplasma asteris’- related strain affecting juniperus plants in Poland. Plant Disease 100: 2521–2521. DOI: https://doi.org/10.1094/PDIS-05-16-0621-PDN
20. Lukezic F.L. 1979. Pseudomonas corrugate, a pathogen of tomato, isolated from symptomless alfalfa roots. Phytopathology 69: 27. DOI: 10.1094/Phyto-69-27
21. Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S.V., Machado M.A., Toth I., Salmond G., Foster G.D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13:614–629. DOI: 10.1111/J.1364-3703.2012.00804.X
22. Mikiciński A., Sobiczewski P., Puławska J., Maciorowski R. 2016. Control of fire blight ( Erwinia amylovora) by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple ( Malus spp.). European Journal of Plant Pathology 145: 265–276. DOI: https://doi.org/10.1007/s10658-015-0837-y
24. Mikiciński A., Sobiczewski P., Sulikowska M., Puławska J., Treder J. 2010. Pectolytic bacteria associated with soft rot of calla lily ( Zantedeschia spp.) tubers. Journal of Phytopathology 158: 201–209. DOI: https://doi.org/10.1111/j.1439-0434.2009.01597.x
25. Nabhan S., Boer S.H. De Maiss E., Wydra K. 2019. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. International Journal of Systematic and Evolutionary Microbiology 2520–2525. DOI: 10.1099/ijs.0.046011-0
26. Ottesen A.R., González Peña A., White J.R. Pettengill J.B., Li C., Allard S., Rideout S., Allard M., Hill T., Evans P., Strain E., Musser S., Knight R., Brown E. 2013. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiology 13: 114. DOI: https://doi.org/10.1186/1471-2180-13-114
27. Pospieszny H., Krawczyk K., Kamasa J., Petrzik K. 2007. First report of a phytoplasma affecting tomato in Poland. Plant Disease 91: 1054. DOI: https://doi.org/10.1094/PDIS-91-8-1054B
28. Pulawska J., Maes M., Willems A., Sobiczewski P. 2000. Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains. Systematic and Applied Microbiology 23: 238–244. DOI: https://doi.org/10.1016/S0723-2020(00)80010-7
29. Rapicavoli J., Ingel B., Blanco-Ulate B., Cantu D., Roper C. 2018. Xylella fastidiosa: an examination of a re-emerging plant pathogen. Molecular Plant Pathology 19: 786–800. DOI: 10.1111/mpp.12585
30. Sawada H., Azegami K. 2014. First report of root mat (hairy root) of tomato ( Lycopersicon esculentum) caused by Rhizobium radiobacter harboring cucumopine Ri plasmid in Japan. Japanese Journal of Phytopathology 80: 98–114. DOI: https://doi.org/10.3186/jjphytopath.80.98
31. Scarlett C.M., Fletcher J.T., Roberts P., Lelliott R.A. 1978. Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Annals of Applied Biology 88: 105–114. DOI: https://doi.org/10.1111/j.1744-7348.1978.tb00684.x
32. Schaad N.W., Jones J.B., Chun W. 2001. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. American Phytopathological Society (APS Press), 373 pp.
33. Tian B., Zhang C., Ye Y., Wen J., Wu Y., Wang H. 2017. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems and Environment 247: 149–156. DOI: https://doi.org/10.1016/j.agee.2017.06.041
34. Xin X.F., Kvitko B., He S.Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology 16: 316–328. DOI: 10.1038/nrmicro.2018.17
35. Zhao Y., Thilmony R., Bender C.L., Schaller A., He S.Y., Howe G.A. 2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal 36: 485–499. DOI: 10.1046/j.1365-313x.2003.01895.x
36. Zwolińska A., Borodynko N., Krawczyk K., Pospieszny H. 2016. First report of aster yellows related phytoplasma affecting sugar beets in Poland. Plant Disease 100: 2158. DOI: https://doi.org/10.1094/PDIS-02-16-0225-PDN
37. Zwolińska A., Krawczyk K., Klejdysz T., Pospieszny H. 2011. First report of ‘Candidatus Phytoplasma asteris’ associated with oilseed rape phyllody in Poland. Plant Disease 95: 1475. DOI: https://doi.org/10.1094/PDIS-03-11-0177
38. Zwolińska A., Krawczyk K., Pospieszny H. 2012. Molecular characterization of stolbur phytoplasma associated with pea plants in Poland. Journal of Phytopathology 160: 317–323. DOI: 10.1111/j.1439-0434.2012.01903.x
Go to article

Authors and Affiliations

Weronika Zenelt
1
Krzysztof Krawczyk
2
Natasza Borodynko-Filas
1
ORCID: ORCID

  1. Plant Disease Clinic and Bank of Plant Pathogen, Institute of Plant Protection – National Research Institute, Poznań, Poland
  2. Department of Molecular Biology and Biotechnology, Institute of Plant Protection – National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Interpersonal interaction performance is significantly determined by group members’ personality traits. If a group lives in long-term isolation, the influence of personality traits on interpersonal interaction performance will be even stronger. The current study identified and examined the impact of the personality traits of the personnel living at the Ukrainian Antarctic Akademik Vernadsky station (N = 35) on their interpersonal interactions during long-term Antarctic expeditions. The results show that expeditioners’ personality traits significantly determined their interpersonal interactions. However, the influence of personality traits on different areas of interactions can vary significantly among different groups of expeditioners, even sometimes in diametrically opposite directions. The main reason for this is a formed microclimate specific to each group and corresponding group norms for formal and informal relations due to significant differences in personality traits that are characteristic of different groups’ participants. We determined that eleven indicators, out of a total of 23 examined personality traits, significantly differed among expeditioners from different groups (different expeditions). The study results can be used to enable better psychological selection of Antarctic expedition participants and to provide psychological support for these individuals.
Go to article

Authors and Affiliations

Oleg Kokun
1
ORCID: ORCID
Larysa Bakhmutova
2
ORCID: ORCID

  1. Directorate, G.S. Kostiuk Institute of Psychology of National Academy of Educational Sciences of Ukraine, Ukraine
  2. Scientific and organizational department, National Antarctic Scientific Center of Ministry of Education and Science of Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the details of the morphological and anatomical structure of the generative organs of the Subantarctic flowering plant, belonging to the family Caryophyllaceae - Colobanthus apetalus (Labill.) Druce. The research material was collected in hostile natural conditions in Subantarctic regions, and also was grown in the incubators and the greenhouse of the University of Warmia and Mazury in Olsztyn (Poland). C. apetalus forms tufts with soft and grassy leaves and small greenish flowers that are more obvious than in other Colobanthus species. C. apetalus forms open (chasmogamic) flowers in greenhouse cultivation. The flowers most often form five stamens with two microsporangia. Over a dozen pollen grains are formed in each microsporangium. Studies of the plant material originated from natural conditions conducted by means of a light microscope, have shown that the ovules of the analyzed representative of the genus Colobanthus are anatropous, crassinucellar, and the monosporic embryo sac develops according to the Polygonum type (the most common type in angiosperms). C. apetalus plants underwent a full development cycle in greenhouse cultivation and produced fertile, perispermic seeds. During the C. apetalus growth in conditions at increased air humidity, the vivipary was also observed.
Go to article

Authors and Affiliations

Sylwia Milarska
1
ORCID: ORCID
Piotr Androsiuk
1
ORCID: ORCID
Irena Giełwanowska
1
ORCID: ORCID

  1. Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland

This page uses 'cookies'. Learn more