Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Glass and ceramic industries are the main consumption areas of quartz sand, which is a formed as a result of the weathering of igneous metamorphic rocks. In such industries, it is very important to select the correct ball size in order to grind the raw material to the desired particle size in optimum time. In this study, the changes in the specific rate of breakage of the quartz sand sample were investigated by using cylpebs of three different sizes. For this purpose, three different mono-size samples were prepared according to 4√2 series in the range of 0.090-0.053 mm. The quartz sand prepared in these three intervals were ground with 10×10, 20×20 and 30×30 mm cylpebs for different durations. Specific rate of breakage values were obtained from the particle size distributions acquired after various grinding periods. As a result of grinding tests, an increase in rate of breakage is observed due to the increase in cylpebs diameter.
Go to article

Bibliography

[1] DPT, Madencilik özel ihtisas komisyonu raporu, endüstriyel hammaddeler alt komisyonu toprak sanayii hammaddeleri III . Devlet Planlama Teşkilatı, 2613 624, Ankara (2001).
[2] SERH AM, Seramik, cam ve çimento hammaddeleri üreticileri derneği 2015-2017 dönemi faaliyet raporu, (2017).
[3] N . Yıldız, Cevher Hazırlama ve Zenginleştirme, Ertem Basım Yayın Dağıtım, Ankara (2014).
[4] S . Haner, The Effects of Ball Size on the Determination of Breakage Parameters of Nepheline Syenite. J. Min. Sci. 56 (5), 848-856 (2020). DOI : https://doi.org/10.1134/S1062739120057191
[5] K.S. Lidell, Machines for Fine Milling to Improve the Recovery of Gold from Calcines and Pyrite. Proceeding of the International Conference on Gold, Johannesburg 405-417 (1986).
[6] J. Bouchard, G. LeBlanc, M. Levesque, P. Radziszewski, D. Georges-Filteau, Breaking down Energy Consumption in Industrial Grinding Mills. In Proceedings 49th Annual Canadian Mineral Processors Operators Conference, 25-35, Canadian Institute of Mining, Metallurgy and Petroleum (2017).
[7] D.W. Fuerstenau, A.-Z.M. Abouzeid, The Energy Efficiency of Ball Milling in Comminution. Int. J. Miner. Process. 67 (1-4), 161-185 (2002). DOI : https://doi.org/10.1016/S0301-7516(02)00039-X
[8] A.K. Schellinger, A Calorimetric Method for Studying Grinding in a Tumbling Medium, Trans. AIME 190, 518- 522 (1951).
[9] M . Vardar, E. Bozkurtoğlu, Yerkabuğunu Oluşturan Maddeler Mineraller ve Kayaçlar. İnşaat Jeolojisi, 2009-2010 Course Year Grades, 20 (2009).
[10] L .G. Austin, K. Shoji, P.T. Luckie, The Effect of Ball Size on Mill Performance. Powder Technol. 14 (1), 71-79 (1976). DOI : https://doi.org/10.1016/0032-5910(76)80009-5
[11] F .C. Bond, Grinding Ball Size Selection. Trans. AIME , 592-595 (1958).
[12] T.S. Yusupov, E.A. Kirillova, G.A. Denisov, Dressing of Quartz-Feldspar Ores on the Basis of Selective Grinding and Mechanical Activation. J. Min. Sci. 39, 174-177 (2003). DOI : https://doi.org/10.1023/B:JOMI.0000008464.34124.1d
[13] W.H. Coghill, F.D. Devaney, Ball Mill Grinding. (1937). https://play.google.com/books/reader?id = k4MbYBy8674C&hl = tr&pg = GBS.PP1,access:15.12.2019
[14] M . Wolosiewicz-Glab, D. Foszcz, T. Gawenda, S. Ogonowski, Design of an Electromagnetic Mill. Its Technological and Control System Structures for Dry Milling. E3S Web of Conferences: Mineral Engineering Conference (MEC 2016), Poland 8 01066 (2016).
[15] K. Barani, H. Balochi, First-order and Second-order Breakage Rate of Coarse Particles in Ball mill Grinding. Physicochem. Probl. Miner. Process. 52 (1), 268-278 (2016). DOI : https://doi.org/10.5277/ppmp160123
[16] K. Barani, H. Balochi, A Comparative Study on the Effect of Using Conventional and High Pressure Grinding Rolls Crushing on the Ball Mill Grinding Kinetics of an Iron Ore. Physicochem. Probl. Miner. Process. 52 (2), 920-931 (2016). DOI : https://doi.org/10.5277/ppmp160231
[17] T.P. Olejnik, Grinding Kinetics of Granite Considering Morphology and Physical Properties of Grains. Physicochem. Probl. Miner. Process. 48 (1), 149-158 (2012).
[18] L .G. Austin, R.R. Klimpel, P.T. Luckie, Process Engineering of Size Reduction: Ball Milling, American Institute of Mining Metallurgical and Petroleum Engineers Inc., New York, United States of America (1984).
[19] L .G. Austin, R. Bagga, M. Çelik, Breakage Properties of Some Materials in a Laboratory Ball Mill. Powder Technol. 28 (2), 235-241 (1981). DOI : https://doi.org/10.1016/0032-5910(81)87049-0.
[20] K. Shoji, L.G. Austin, F. Smaila, K. Brame, P.T. Luckie, Further Studies of Ball and Powder Filling Effects in Ball Milling. Powder Technol. 31 (1), 121-126 (1982). DOI : https://doi.org/10.1016/0032-5910(82)80013-2
Go to article

Authors and Affiliations

Serhan Haner
1
ORCID: ORCID

  1. Afyon Kocatepe University, Department of Industrial Product Design, Dinar Yerleşkesi, Cumhuriyet Mh. Kooperat if Cd . No: 1, Dinar, Afyonkarahisar, Turkey
Download PDF Download RIS Download Bibtex

Abstract

To improve the durability of the rollers of supporting and guiding devices as well as traction ropes of ropeway facilities based upon the analysis of their contact interaction. Theoretical studies of a mathematical model of contact interaction of mine ropeway components to determine regularities of the formation of dynamic efforts within the contact area and experimental studies of the plant under mine conditions. Based upon a mathematical model, contact stresses within the zone of contact of traction rope with guiding rollers and drive sheaves of mine ropeways under real operating conditions have been determined. The obtained results are validated experimentally under mine conditions. Innovative patent-protected design solutions have been proposed; the solutions make it possible to considerably increase the durability of the ropeway components.
It has been determined that methods of surface increase in the strengthening of a roller working surface do not have proper effect as the strengthened layer on a soft base cracks and delaminates due to high contact loads; maximum angle of rope bending on rollers of supporting devices (6º – in operation manual; 15º – in safety rules) recommended for GRW is overstated. It shouldn’t be more than 1.5º in terms of values of contact stresses for standard plants; development of prestressed compression state in the material of elastic lining of a drive friction sheave allows increasing considerably (by two times and more) its service life. Ropes with reduced diameters of external layer wires (Ukraine’s regulatory document – DST 2688) being used currently on mine ropeways do not meet the operating conditions and have a short period of service life due to their corrosive and fatigue breaking. To lengthen the service life of GRW traction ropes, it is required to change for the ropes with increased diameters of the external layer wires with preliminarily clamped strands.
(Ukraines regulatory documents: DST 3077, DST 3081, DST 7668, DST 7669 and TU 14-4-1070).
Go to article

Bibliography

[1] O. Denyshchenko, L. Posunko, A. Shyrin, M. Kechin, Increase in the Efficiency of Ground Cableways in the Process of Zonal Development Working. Collection of research papers of National Mining University 46, 159-168 (2015).
[2] V . Rastsvetaev, Additional Loads on Tunnel Arch Supports Under the Action of Overhead Monorail in the Western Donbas Mines. Heotekhnichna Mekhanika 117, 53-59 (2014).
[3] A. Shyrin, V. Rastsvetaev, T. Morozova, Estimation of Reliability and Capacity of Auxiliary Vehicles While Preparing Coal Reserves for Stoping. Geomechanical Processes during Underground Mining: School of Underground Mining 105-108 (2012).
[4] A. Dryzhenko, A. Shustov, S. Moldabayev, Justification of parameters of building inclined trenches using belt conveyors. 17th International Multidisciplinary Scientific GeoConference SGEM 17, 471-478 (2017). DOI: https://doi.org/10.5593/sgem2017/13/S03.060
[5] O. Denyshchenko, A. Shyrin, V. Rastsvietaiev, O. Cherniaiev. Forming the Structure of Automated System to Control Ground Heavy-Type Ropeways. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, 79-85 (2018). DOI: https://doi.org/10.29202/nvngu/2018-4/12
[6] R.P. Singh, M. Mallick, M.K. Verma, Studies on failure behaviour of wire rope used in underground coal mines. Engineering Failure Analysis 70, 290-304 (2016). DOI: https://doi.org/10.1016/j.engfailanal.2016.09.002
[7] S. Moradi, K. Ranjbar, H. Makvandi, Failure Analysis of a Drilling Wire Rope. Journal of Failure Analysis and Prevention 12 (5), 558-566 (2012). DOI: https://doi.org/10.1007/s11668-012-9596-7
[8] Shaiful Rizam Shamsudin, Mohd Harun, Mazlee Mohd Noor & Azmi Rahmat. Failure Analysis of Crane Wire Rope. Materials Science Forum 819, 467-472 (2015). DOI: https://doi.org/10.4028/www.scientific.net/MSF.819.467
[9] А.N. Koptovets, L.N. Shyrin, E.М. Shliakhov, А.V. Denishchenko, V.V. Zil, V.V. Yavorskaia, Modeling operating processes in shoe and wheel brake of mine locomotives. Monografiya. Dnepr: National Mining University 258 (2017).
[10] V.А. Korotkov, Wear-resistance of machines. Moskva: Direkt-Media (2014).
[11] V .D. Goncharov, D.V. Pershina, Optimization of surface microrelief to improve adhesive strength of surface and base. Modern Technologies In Engineering 8, 79-87 (2013).
[12] K .I. Kozorezov, N.F. Skogorova, Steel strengthening by means of shock waves. Physics and Chemistry of Metalworking. 2, 99-105 (2015).
[13] S.V. Razorionov, G.V. Garkushin, Strengthening of metals and alloys in terms of shock compression. Journal of Technical Physics 85 (7), 77-82 (2015).
[14] P.А. Gavrish, Ye.V. Berezhnaia, Ye.А. Sobolev-Butovchenko, Thermal spraying of antifriction coating of the components of Takraf loading elevator. Scientific messenger of Donbass State Engineering Academy 2 (20Е), 50-54 (2016).
[15] D.А.Volchenko, А.V. Voznyi, О.B. Stadnyk, V.S. Vetvitskii, On the problem of using dynamic models of disc-shoe brakes of transportation vehicles in drives of handling facilities. Problems of Friction and Wearing 2 (75), 24-36 (2017).
[16] М.P. Martyntsiv, B.V. Solohub, М.V. Matiyishyn, Dynamics and reliability of cableway systems. Lviv: Editing house of Lviv Polytecnic (2011).
[17] D . Kolosov, O. Dolgov, A. Kolosov, Analytical determination of stress-strain state of rope caused by the transmission of the drive drum traction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 499-504 (2014). DOI: https://doi.org/10.1201/b17547
Go to article

Authors and Affiliations

Jamil Sami Haddad
1
ORCID: ORCID
Oleksandr Denyshchenko
2
ORCID: ORCID
Dmytro Kolosov
2
ORCID: ORCID
Stanislav Bartashevskyi
2
ORCID: ORCID
Valerii Rastsvietaiev
2
ORCID: ORCID
Oleksii Cherniaiev
2
ORCID: ORCID

  1. Al-Balqa Applied University, 1 Al-Balqa Applied University, Jordan
  2. Dnipro University of Technology, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Strip backfilling mining technology is of great significance for eliminating coal gangue, improving coal recovery rate, harmonizing the development between resources and environment in diggings. This paper firstly analyzed the roof control mechanism, the deformation and failure mechanism and characteristics of the filling body through theoretical analysis. Then, through numerical simulation combined with the geological conditions on site, a gangue strip filling scheme was designed for the 61303 working face of the 13th layer of the rear group coal of the Wennan Coal Mine in Shandong Province, and the filling scheme of filling 50 m and leaving 25 m was determined. Finally, an on-site engineering test was carried out on the 61303 working face. Through the analysis of the measured data of “three quantities” after the filling test, it can be seen that the test has achieved a good engineering application effect and verified the rationality of the filling scheme design. It solves the coal gangue problem, improves the resource recovery rate, and provides a reference for other similar mines.
Go to article

Bibliography

[1] E.H. Bai, W.B. Guo, Y. Tan, et al., Green coordination mining technology of “retaining and filling road filling method”. Journal of China Coal Society 43 (S1), 21-27 (2018).
[2] D .A. Landriault, R.E. Brown, D.B. Counter, Paste backfill study for deep mining at kidd creek. CIM Bulletin 93 (1036), 156-161 (2000).
[3] J.L. Xu, Q. You, W.B. Zhu, et al., Theoretical study on mining subsidence by strip filling. Journal of China Coal Society 02, 119-122 (2007).
[4] J. Palarski, The experimental and practical results of appling backfill. Innovations in Montreal, 33-37 (1989).
[5] J.L. Xu, W.B. Zhu, X.S. Li, et al., Study on partial filling mining technology for controlling coal mining subsidence. Journal of Mining and Safety Engineering (01), 6-11 (2006).
[6] Y .L. Tan, X.S. Liu, J.G. Ning, et al., In situ investigations on failure evolution of overlying strata induced by mining multiple coal seams [J]. Geotechnical Testing Journal 40 (2), 244-257 (2017).
[7] Y .C. Yin, T.B. Zhao, Y.B. Zhang, et al., An Innovative Method for Placement of Gangue Backfilling Material in Steep Underground Coal Mines [J]. Minerals 9, 107 (2019).
[8] G .C. Zhang, S.J. Liang, Y.L. Tan, et al., Numerical modeling for longwall pillar design: A case study from a typical longwall panel in China [J]. Journal of Geophysics and Engineering 15 (1), 121-134 (2018).
[9] J. Trckova, J. Sperl, Reduction of surface subsidence risk by fly ash exploitation as filling material in deep mining areas. Natural Hazards 53 (2), 251-258 (2010).
[10] J.R. Liu, W.P. Huang, Z.P. Guo, et al., Pumping cemented coal gangue strip filling system in goaf and its application. Coal Technology 35 (12), 16-18 (2016).
[11] W.Y. Guo, Y.L. Tan, F.H. Yu, et al., Mechanical behavior of rock-coal-rock specimens with different coal thicknesses [J]. Geomechanics and Engineering 15 (4), 1017-1027 (2018).
[12] X.S. Liu, Y.L. Tan, J.G. Ning, et al., Mechanical properties and damage constitutive model of coal in coal-rock combined body [J]. International Journal of Rock Mechanics and Mining Sciences 110, 140-150 (2018).
[13] K. Zhong, Research on filling mining technology and parameters of Fuyang Coal Mine. Xi’an University of Science and Technology (2018).
[14] W.P. Huang, C. Li, L.W. Zhang, et al., In situ identification of water-permeable fractured zone in overlying composite strata [J]. International Journal of Rock Mechanics and Mining Sciences 105, 85-97 (2018).
[15] Y .L. Tan, Q.H. Gu, J.G. Ning, et al., Uniaxial compression behavior of cement mortar and its damage-constitutive model based on energy theory [J]. Materials 12, 1309 (2019). DOI: https://doi.org/10.3390/ma12081309
[16] J. Wang, J.G. Ning, J.Q. Jiang, et al., Structural characteristics of strata overlying of a fully mechanized longwall face: a case study [J], Journal of the Southern African Institute of Mining and Metallurgy 118, 1195-1204 (2018).
[17] Q. Yao, Study on segmental filling of fully mechanized mining in steeply inclined coal seam and its rock stratum control. Hunan University of Science and Technology, (2017).
[18] W.P. Huang, Q. Yuan, Y.L. Tan, et al., An innovative support technology employing a concrete-filled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field [J]. Tunnelling and Underground Space Technology 73, 26-36 (2018).
[19] J.G. Ning, J. Wang, J.Q. Jiang, et al., Estimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theory [J]. Rock Mechanics and Rock Engineering 51, 119-134 (2018).
[20] J.W. Bai, R.T. Liu, Y.J. Jiang, et al., The deformation of surrounding rock and the regulation law of confined water in strip filling and displacement mining. Journal of Mining and Safety Engineering 35 (02), 35-42 (2018).
[21] X.K. Sun, W. Wang, Theoretical study on high-water materials filling and replacement mining pressure-bearing water strip coal pillars. Journal of China Coal Society 36 (06), 909-913 (2011).
[22] T.B. Zhao, W.Y. Guo, Y.L. Tan, Y.C. et al., Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800m [J]. Rock Mechanics and Rock Engineering 51, 1539-1564 (2018).
[23] X.J. Deng, Research on the control mechanism of overlying strata movement in the thick-layered longwall roadway cementing filling in extra-thick coal seams. China University of Mining and Technology, (2017).
[24] B . Lu, X.G. Zhang, F. Li, et al., Technology and application of cement-filled mining with short-walled gangue. Journal of China Coal Society 42 (S1), 7-15 (2017).
[25] H. Wadi, S. Amziane, E. Toussaint, et al., Lateral load-carrying capacity of hemp concrete as a natural infill material in timber frame walls. Engineering Structures 180 (2019).
[26] Jiang Bang-you, Gu Shi-tan, Wang Lian-guo, et al., Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress [J]. Journal of Central South University 26 (4), 984-999 (2019).
[27] W.P. Huang, W.B. Xing, S.J. Chen, et al., Experimental study on sedimentary rock’s dynamic characteristics under creep state using a new type of testing equipment [J]. Advances in Materials Science and Engineering (2017).
[28] G .Z. Lu, J.Q. Tang, Z.Q. Song, Analysis of the difference between the periodic step and the periodic step of the transfer rock beam. Chinese Journal of Geotechnical Engineering 32 (04), 538-54 1(2010).
[29] Z.P. Guo, W.P. Huang, Parameter optimization and stability analysis of sloping strip filling. Journal of China Coal Society 36 (02), 234-238 (2011).
[30] D .W. Yin, S.J. Chen, X.Q. Liu, et al., Effect of joint angle in coal on failure mechanical behavior of roof rock-coal combined body. Q. J. Eng. Geol. Hydroge. 51 (2), 202-209 (2018).
Go to article

Authors and Affiliations

Wenbin Xing
1
ORCID: ORCID
Wanpeng Huang
1
ORCID: ORCID
Fan Feng
1
ORCID: ORCID

  1. Shandong University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

According to the requirements of green mine construction and the coordinated development of environmental protection regulations, the existing filling technologies in China are compared and analysed. Several types of technologies are discussed, including the dry filling technology for gangue, grouting and filling for separated strata zones in overburden, grouting and filling technology for caving gangue fissures, paste and paste-like filling, high-water and ultra-high-water filling, and continuous mining and continuous filling. Then, the characteristics of these individual technologies are analysed. Through the analysis and comparison of these technologies, considering the requirements of green mine construction and coordinated development of environmental protection regulations, it was found that continuous mining and continuous filling technology is a feasible mean for constructing green mines and protecting the environment. In this study, the application of continuous mining and continuous filling technology in the Yuxing coal mine is introduced. Results show that surface subsidence was less than 80 mm, and the recovery rate of the working face reached 95%. This indicates that continuous mining and continuous filling technology can solve the problems of surface subsidence, environmental damage, and coal resource waste. Finally, the development prospects of continuous mining and continuous filling technology are proposed, providing theoretical and technical support for similar mining.
Go to article

Bibliography

[1] J .H. Tan, Green Mine and the Policy Interpretation for Mine Safety Environmental Protection. Stone 01, 11-25 (2020). DOI: https://doi.org/10.14030/j.cnki.scaa.2020.0006 (in Chinese).
[2] L .M. Wang, MSc thesis, Study on Influence of Mining Size on Stability and Settlement Reduction Effect of Filling Pier Column. China University of Mining and Technology, Jiangsu, China (2019) (in Chinese).
[3] Y.D. Wang, MSc thesis, Study on Tax Planning of Coal Production Enterprises. China University of Mining and Technology, Jiangsu, China (2019) (in Chinese).
[4] X. Wu, B. Bai, Present Situation and Suggestions of Coal Filling Mining technology in Inner Mongolia Autonomous Region. Inner Mongolia Coal Economy 03, 51+79 (2019). DOI: https://doi.org/10.13487/j.cnki.imce.013617 (in Chinese).
[5] X. Zhou, PhD thesis, Study on Deterioration Mechanism and Modification of Mine Water Rich Filling. Beijing University of Science and Technology, Beijing, China (2018). (in Chinese).
[6] Z.M. Pei, Exploring of Modern Coal Mining Concept and Filling Mining. Technology and Market 24 (07), 447 (2017). DOI: https://doi.org/10.3969/j.issn.1006-8554.2017.07.268 (in Chinese).
[7] M.G Karfakis, C.H Bowman, E. Topuz, Characterization of Coal-mine Refuse as Backfilling Material. Geotechnical and Geological Engineering 14 (2), 129-150 (1996). DOI: https://doi.org/10.1007/BF00430273
[8] M.G Senyur, Fabric of Coal-mine Refuse as Backfilling Material and its Relation to Grain-size Distribution Parameters. Journal of the South African Institute of Mining and Metallurgy 98 (1), 39-48 (1998).
[9] H.J Siriwardane, R.S.S Kaman, P.F. Ziemkiewicz, Use of Waste Materials for Control of Acid Mine Drainage and Subsidence. Journal of Environmental Engineerin 129 (10), 910-915 (2003).
[10] C.Y. Si, MSc thesis, Evaluation of Green Mine Investment Efficiency in China, China University of Geosciences, Beijing, China (2017) (in Chinese).
[11] M.D. Zhao, PhD thesis, Experimental and Numerical Simulation Study on Overburden Temperature and Fracture of Underground Coal Gasification. China University of Mining and Technology, Beijing, China (2017) (in Chinese).
[12] Y. Liu, Y.M. Zhou, Y. Lu, H.Z. Guo, Experimental Study on Tailing Paste Filling Material Based on Regression Analysis. Safety in Coal Mine. 48 (03), 60-63 (2017). DOI: https://doi.org/10.13347/j.cnki.mkaq.2017.03.016 (in Chinese).
[13] D.L. Yang, PhD thesis, Research on Key Technology of Pneumatic Conveying and Filling by Drilling and Mining Method, China University of Mining and Technology, Jiangsui, China (2016) (in Chinese).
[14] Y.F. Zhang, Study on New Mining Technology and Mining Methods in Coal Mines. Heilongjiang Science and Technology Information 28, 42 (2016). DOI: https://doi.org/10.13939/j.cnki.zgsc.2016.36.066 (in Chinese).
[15] H.K. Yang, Application Research on Paste Filling Technology in Coal Mine. China Market Marketing 36, 66-68 (2016). DOI: https://doi.org/10.13939/j.cnki.zgsc.2016.36.066 (in Chinese).
[16] Y. Lu, Filling Technology and Development Prospect in Coal Mine. Inner Mongolia Coal Economy, 08, 23+29(2016). DOI: https://doi.org/10.13487/j.cnki.imce.007945 (in Chinese).
[17] Y.C. Wang, Z.P. Guo, C.X. Wang, J.X. Wang, Gas Filling Method Based on Paste Filling. Mining Research and Development 36 (02), 1-3(2016). DOI: https://doi.org/10.13827/j.cnki.kyyk.2016.02.001 (in Chinese).
[18] J .C. Shen, Discussion on Mining Technology with Paste Filling. Coal, 24 (08), 66-67+94 (2015). DOI: https://doi.org/10.3969/j.issn.1005-2798.2015.08.028 (in Chinese).
[19] D. Li, MSc thesis, Basic Research and Application of Long Wall Filling Mining in Xinyang Mine. Taiyuan University of Technology, Taiyuan, China (2015) (in Chinese).
[20] L . Niu, MSc thesis, Study on Physical and Mechanical Properties of Filling Body in Gangue Gypsum Filling Mining. Hebei University of Engineering, Hebei, China (2014) (in Chinese).
[21] J .S. Chen, MSc thesis, Mining Safety Technology of Complex Ore Body Under Water Dynamic Load. Central South University, Hunan, China (2010) (in Chinese).
[22] X.G. Zhang, W.J. Guo, H. Wang, Y.Y. Li, Z. Cao, Development of Safe Transportation Pressure Pre-alarm System of Coal Gangue Paste Backfilling Pipeline. Journal of China Coal Society 37 (S1), 229-233 (2012). DOI: https://doi.org/10.13225/j.cnki.jccs.2012.s1.041 (in Chinese).
[23] L . Wang, PhD thesis, Study on Strata Movement Mechanism and Deformation Prediction of Solid Dense Filling Mining. China University of Mining and Technology, Jiangsu, China (2012) (in Chinese).
[24] B .L. Ren, Research on the Future of the Underground Waste Rock Filling Mining in Hebei Province. Hebei Coal 05,13-15 (2011). DOI: https://doi.org/10.3969/j.issn.1007-1083.2011.05.007 (in Chinese).
[25] J .L. Sha, K. Hu, Study on the Necessity of Establishing the Mine Environmental Liability Insurance. China Mining Magazine 19 (S1), 111-113 (2010) (in Chinese).
[26] G .M. Feng, Y. Ding, H.J. Zhu, J.B. Bai, Experimental Research on Ultra High-water Packing Material for Mining and its Micro Morphology. Journal of China University of Mining and Technology 39 (06), 813-819 (2010) (in Chinese).
[27] N . Wang, H. Si. Filling Mined-out Area to Control Surface Subsidence. World Mining Express 3, 14-17(1999) (in Chinese).
[28] C.J. Shi, L. Robert. Day Acceleration of the Reactivity of Fly Ash by Chemical Activation. Cement and Concrete Research 25 (1), (1995).
[29] X.X. Miao, J.X. Zhang, G.L. Guo, Study on Waste-filling Method and Technology in Fully-mechanized Coal Mining. Journal of China Coal Society 35 (01), 1-6 (2010) (in Chinese).
[30] H.Z. Liu, PhD thesis, Quantitative Evaluation of Groundwater System Disturbance Caused by Coal Mining. China University of Mining and Technology, Jiangsu, China (2009) (in Chinese).
[31] G .M. Feng, PhD thesis, Research and Application of Ultra-high Water Filling Material and Filling Mining Technology. China University of Mining and Technology, Jiangsu, China (2009) (in Chinese).
[32] F. Cui, MSc thesis, Theoretical Research on Room Filling Mining in Yubujie Mine. General Institute of Coal Research, Beijing, China (2009) (in Chinese).
[33] Anon, Backfilling in German coal mines, Australian Mining 24, 80 (1988). [34] M. Yang, An Application of Dry Fill Stoping in Hetai Gold Mine. Mining Research and Development S1, 80- 82(1996) (in Chinese).
[35] J .F. Zha, PhD thesis, Research on Basic Problems of Subsidence Control in Gangue Filling Mining. China University of Mining and Technology, Jiangsu, China (2008) (in Chinese).
[36] X.S. Li, PhD thesis, Theoretical Study on Grouting Filling Settlement Reduction Technology in Caving Area Under Strip Mining Under Buildings. China University of Mining and Technology, Beijing, China (2008) (in Chinese).
[37] X.F. Liang, MSc thesis, Research on Safe Mining Technology of Industrial Coal Pillar Under Railway Bridge. Liaoning University of Engineering and Technology, Liaoning, China (2007) (in Chinese).
[38] T. Feng, J. Yuan, J.H. Liu, D.H. Xie, Research Progress and Development Trend of Mining Technology Under Building. Chinese Safety Science Journal 08, 119-123+3 (2006). DOI: https://doi.org/10.16265/j.cnki.issn1003-3033.2006.08.022 (in Chinese).
[39] J .L. Xu, M.G. Qian, H.W. Jin, Study and Application of Bed Separation Distribution and Development in the Process of Strata Movement. Chinese Journal of Geotechnical Engineering, 05, 632-636(2004). DOI: https://doi.org/10.3321/j.issn:1000-4548.2004.05.012 (in Chinese).
[40] J .X. Wang, T.Q. Liu, Feasibility Study on the Technology of Filling the Vacant Space of the Caving Rock With Cement Materials. Coal Mining Technology 01, 44-45+4 (2001). DOI: https://doi.org/10.3969/j.issn.1006-6225.2001.01.016 (in Chinese).
[41] J .R. Zheng, Solid Water Characteristics and Application of Hydrated Calcium Sulphoaluminate. Guangdong Building Materials 04, 11-12 (2000) (in Chinese).
[42] J .Z. Wang, J.R. Kang, L.X. Wu, Discussion on Mechanism and Application of Grouting in Separated-bed to Reduce Surface Subsidence Induced by Coal Mining. Journal of China University of Mining and Technology 04, 3-5 (1999). DOI: https://doi.org/10.3321/j.issn:1000-1964.1999.04.008 (in Chinese).
[43] W.B. Shi, Pumping and Filling Roadway Protection Technology in UK. Coal Science and Technology 01, 59- 60 (1986) (in Chinese).
[44] K .J. Jia, G.M. Feng, Backfill Mining Technology with Ultra High-water Material in Coal Mine and Outlook. Coal Science and Technology 40 (11), 6-9+23 (2012) (in Chinese).
[45] W.J. Guo, X.G. Zhang, J.W, Shi, Y.Y. Li, Present Situation of Research on Backfilling Mining Technology in Mines and Its Application Prospect. Journal of Shandong University of Science and Technology (Natural Science) 29 (04), 24-29 (2010). DOI: https://doi.org/10.3969/j.issn.1672-3767.2010.04.005 (in Chinese).
[46] S.H. Yan, H.X. Zhang, Status-quo of Filling Mining Technology in Coal Mines of China. Coal Mining Technology 03, 1-3, 10 (2008). DOI: https://doi.org/10.3969/j.issn.1006-6225.2008.03.001 (in Chinese).
[47] W.H. Sun, W. Zhu, X.B. Zheng, Application and Development Status of Technology of Grouting into Overburden Bed-separation to Reduce Ground Subsidence. Coal technology 02, 81-83 (2008) (in Chinese).
[48] L .P. Liu, Research and Application of Continuous Mining and Continuous Filling Green Mining Technology on Ground Deformation. China Coal Industry 08, 60-61 (2019). DOI: https://doi.org/10.3969/j.issn.1673-9612.2019.08.025 (in Chinese).
Go to article

Authors and Affiliations

Dongmei Huang
1 2
ORCID: ORCID
Daqian Xing
1 2
ORCID: ORCID
Xikun Chang
1 3
ORCID: ORCID
Yingying Zhu
1 2
ORCID: ORCID
Chunjing Gao
1 2
ORCID: ORCID

  1. Shandong University of Science and Technology, State Key Laborat ory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China
  2. Shandong University of Science and Technology, College of Safety and Environmental Engineering, Qingdao 266590, China
  3. Shandong University of Science and Technology, College of Energy and Mining Engineering, Qingdao 266590, China
Download PDF Download RIS Download Bibtex

Abstract

In this study, a series of destructive and non-destructive tests were performed on sandstone samples subjected to wetting-drying cycles. A total of 25 Wet-Dry cycles were provided to investigate any significant change in the engineering properties of sandstones in terms of their porosity, permeability, water absorption, density, Q-factor, elastic modulus (E), and unconfined compressive strength (UCS). The overall reduction in the values of density, E, Q-factor, and UCS was noted as 3-4%, 42-71%, 34-62%, and 26-70% respectively. Whereas, the overall appreciation in the values of porosity, permeability, and water absorption was recorded as 24-50%, 31-64%, and 25-50% respectively. The bivariate analysis showed that the physical parameters had a strong relationship with one another and their Pearson’s correlation value (R) ranged from 0.87-0.99. In prediction modeling, Q-factor and E were regressed with the contemplated physical properties. The linear regression models did not provide satisfactory results due to their multicollinearity problem. Their VIF (variance inflation factor) value was found much greater than the threshold limit of 10. To overcome this problem, the cascade-forward neural network technique was used to develop significant prediction models. In the case of a neural network modeling, the goodness of fit between estimated and predicted values of the Q-factor (R2 = 0.86) and E (R2 = 0.91) was found much better than those calculated for the Q-factor (R2 = 0.30) and E (R2 = 0.36) in the regression analysis.
Go to article

Bibliography

[1] Wu. Faquan, Qi. Shengwen, Lan. Hengxing, Mechanism of uplift deformation of the dam foundation of Jiangya Water Power Station, Hunan Province, PR China. Hydrogeol. J. 13 (3), 451-466 (2005).
[2] O. Aydan, The inference of physico-mechanical properties of soft rocks and the evaluation of the effect of water content and weathering on their mechanical properties from needle penetration tests. In: 46th US rock mechanics/ geomechanics symposium, American Rock Mechanics Association (2012).
[3] M. Duda, J. Renner, The weakening effect of water on the brittle failure strength of sandstone. Geophys. J. Int. 192 (3), 1091-1108 (2013).
[4] P.L.P. Wasantha, P.G. Ranjith, Water-weakening behavior of Hawkesbury sandstone in brittle regime. Eng. Geol. 178, 91-101 (2014).
[5] F. Cherblan, J. Berthonneau, P. Bromblet, V. Huon, Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mech. Rock Eng. 49 (6), 2033-2042 (2016).
[6] M.R. Vergara, T. Triantafyllidis, Influence of water content on the mechanical properties of an argillaceous swelling rock. Rock Mech. Rock Eng. 49 (7), 2555-2568 (2016).
[7] C. Gökceoğlu, R. Ulusay, H. Sönmez, Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Eng. Geol. 57 (3-4), 215-237 (2000).
[8] N. Reviron, T. Reuschlé, J.D. Bernard, The brittle deformation regime of water-saturated siliceous sandstones. Geophys. J. Int. 178 (3), 1766-1778 (2009).
[9] W. He, K. Chen, A. Hayatdavoudi, K. Sawant, M. Lomas, Effects of clay content, cement and mineral composition characteristics on sandstone rock strength and deformability behaviors. J. Pet. Sci. Eng. 176, 962-969 (2019).
[10] P.D. Sumner, M.J. Loubser, Experimental sandstone weathering using different wetting and drying moisture amplitudes. Earth. Surf. Process. Landf. 33 (6), 985-990 (2008).
[11] A. Özbek, Investigation of the effects of wetting-drying and freezing-thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull. Eng. Geol. Environ. 73 (2), 595-609 (2014).
[12] G. Khanlari, Y. Abdilor, Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran. Bull. Eng. Geol. Environ. 74 (4), 1287-1300 (2015).
[13] H. Deng, J. Li, M. Zhu, K.W. Wang, L.H. Wang, C.J. Deng, Experimental research on strength deterioration rules of sandstone under “saturation-air dry” circulation function. Rock Soil Mech. 33 (11), 3306-3312 (2012).
[14] P.A. Hale, A. Shakoor, A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ. Eng. Geosci. 9 (2), 117-130 (2003).
[15] B.Y. Zhang, J.H. Zhang, G.L. Sun, Deformation and shear strength of rockfill materials composed of soft siltstones subjected to stress, cyclical drying/wetting and temperature variations. Eng. Geol. 190, 87-97 (2015).
[16] W. Hua, S. Dong, Y. Li, J. Xu, Q. Wang, The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int. J. Rock Mech. Min. Sci. 100 (78), 331-335 (2015).
[17] X. Liu, Z. Wang, Y. Fu, W. Yuan, L. Miao, Macro/microtesting and damage and degradation of sandstones under dry-wet cycles. Adv. Mater. Sci. Eng. (2016).
[18] A.V. Turkington, T.R. Paradise, Sandstone weathering: a century of research and innovation. Geomorphology 67 (1-2), 229-253 (2005).
[19] G. Andriani, N. Walsh, Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull. Eng. Geol. Environ. 62 (1), 77-84 (2003).
[20] B. Fitzner, R. Kownatzki, Porositätseigenschaften und Verwitterungsverhalten von sedimentären Naturwerksteinen. Ernst & Sohn, (1991).
[21] M.M. Demarco, E. Jahns, J. Rudrich, P. Oyhantcabal, S. Siegesmund, The impact of partial water saturation on rock strength: an experimental study on sandstone. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, 158 (4), 869 (2007).
[22] E.A. Eissa, A. Kazi, Relation between static and dynamic Young’s moduli of rocks. Int. J. Rock Mech. Min. Sci. 25 (6), (1988).
[23] S.R. Agha, M.J. Alnahhal, Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design. Appl. Ergon. 43 (6), 979-984 (2012).
[24] M. Karakus, M. Kumral, O. Kilic, Predicting elastic properties of intact rocks from index tests using multiple regression modelling. Int. J. Rock Mech. Min. Sci. 42 (2), 323-330 (2005).
[25] M.H. Kutner, C.J. Nachtsheim, J. Neter, Simultaneous inferences and other topics in regression analysis. Applied linear regression models. 4th ed. McGraw-Hill Irwin, New York, NY, 168-170 (2007).
[26] R.S. Akan, K. Nilay, U. Soner, Multiple regression model for the prediction of unconfined compressive strength of jet grout columns. Proc. Earth Planet Sci. 15, 299-303 (2015).
[27] M.F. Ahmed, U. Waqas, M. Arshad, J.D. Rogers, Effect of heat treatment on dynamic properties of selected rock types taken from the Salt Range in Pakistan. Arab. J. Geosci. 11 (22), 1-13 (2018).
[28] U. Waqas, M.F. Ahmed, M. Arshad, Classification of the intact carbonate and silicate rocks based on their degree of thermal cracking using discriminant analysis. Bull. Eng. Geol. Environ. 1-13 (2020).
[29] K.A. Aali, M. Parsinejad, B. Rahmani, Estimation of Saturation Percentage of Soil Using Multiple Regression, ANN, and ANFIS Techniques. Comput. Info. Sci. 2 (3), 127-136 (2009).
[30] A.A.K. Ghauri, A preliminary account of the texture, structure and mineralogy composition of the Khewra formation, CIS Indus salt range, west Pakistan. J. Himal. Earth Sci. 5, (1970).
[31] M. Jehangiri, M. Hanif, M. Arif, I.U. Jan, S. Ahmad, The Early Cambrian Khewra Sandstone, Salt Range, Pakistan: endorsing southern Indian provenance. Arab. J. Geosci. 8 (8), 6169-6187 (2015).
[32] S. Khan, M.M. Shah, Multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range (Pakistan): Evidences from field observations, microscopic studies and isotopic analysis. Geologica Acta 17, 1-18 (2019).
[33] S.M.I. Shah, Stratigraphy of Pakistan; Government of Pakistan. Ministry of Petroleum and Natural Resources. Geological Survey of Pakistan (2009).
[34] ISRM, Suggested methods for rock characterization, testing, and monitoring: 2007-2014. Springer (2007).
[35] US Army Corps of Engineers, (2012) http://gsl.erdc.usace.army.mil/SL/MTC/hand book/RT/RTH/116-95.pdf
[36] P.B. Kurt-Karakus, T.F. Bidleman, K.C. Jones, Chiral organochlorine pesticide signatures in global background soils. Environ. Sci. Technol. 39 (22), 8671-8677 (2005).
[37] J.A. Franklin, Suggest methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 16, 141-156 (1979).
[38] S.L. Kramer, Geotechnical earthquake engineering. Pearson Education India (1996).
[39] ASTM C-215-91, Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2003).
[40] ASTM D-2938-9, Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens (1992).
[41] J. Schimazek, H. Knatz, Der Einfluß des Gesteinsaufbaus auf die Schnittgeschwindigkeit und den Meißelverschleiß von Streckenvortriebsmaschinen. Glückauf. 106 (6), 274-278 (1970).
[42] Y. Abdi, A.T. Garavand, R.Z. Sahamieh, Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arab. J. Geosci. 11 (19), 1-11 (2018).
[43] E.T. Mohamad, D.J. Armaghani, E. Momeni, A.H. Yazdavar, M. Ebrahimi, Rock strength estimation: a PSO-based BP approach. Neural. Comput. Appl. 30 (5), 1635-1646 (2018).
[44] M. Khandelwal, T.N. Singh, Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arab. J. Geosci. 4 (3-4), 435-442 (2011).
[45] B.R. Kumar, H. Vardhan, M. Govindaraj, S.P. Saraswathi, Artificial neural network model for prediction of rock properties from sound level produced during drilling. Geomech. Geoeng. 8 (1), 53-61 (2013).
[46] Z. Zhou, X. Cai, L. Chen, W. Cao, Y. Zhao, C. Xiong, Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone. Eng. Geol. 220, 1-12 (2017).
[47] S. Chaki, M. Takarli, W.P. Agbodjan, Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr. Build. Mater. 22 (7), 1456-1461 (2008).
[48] B. Vàsàrhelyi, P. Vàn, Influence of water content on the strength of rock. Eng. Geol. 84, 70-74 (2006).
[49] P. Malkowski, L. Ostrowski, P. Bozecki, The impact of the mineral composition of Carboniferous claystones on the water-induced changes of their geomechanical properties. Geol. Geophys. Environ. 43 (1), 43-55 (2017).
[50] U. Waqas, M.F. Ahmed, Prediction Modeling for the Estimation of Dynamic Elastic Young’s Modulus of Thermally Treated Sedimentary Rocks Using Linear-Nonlinear Regression Analysis, Regularization, and ANFIS. Rock Mech. Rock Eng. 53 (12), 5411-5428 (2020).
[51] M.A. Bakar, Y. Majeed, J. Rostami, Effects of rock water content on CERCHAR Abrasivity Index. Wear 368, 132-145 (2016).
Go to article

Authors and Affiliations

Hafiz Muhammad Awais Rashid
1
Muhammad Ghazzali
1
Umer Waqas
1
Adnan Anwar Malik
2
Muhammad Zubair Abubakar
3

  1. University of Engineering and Technology, Department of Geological Engineering, Lahore, Pakistan
  2. Saitama University, Department of Civil and Environmental Engineering, Japan
  3. University of Engineering and Technology, Dean Faculty of Earth Sciences and Engineering, Lahore, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The article presents a numerical model of a U-ventilated longwall, taking into account detailed elements such as arch yielding support, roof supports and shearer. What distinguishes it from previous models is the mapping of adjacent goafs. This model considers the current state of knowledge regarding spatial height distribution, porosity and permeability of goafs. Airflow calculations were carried out using the selected turbulence models to select appropriate numerical methods for the model. Obtained results show possibilities of conducting extensive numerical calculations for the flow problems in the mine environment, taking into account more complex descriptions and the interpretation of the calculation results carried out with simpler models.
Go to article

Bibliography

[1] Ansys Inc, Ansys Fluent Theory Guide. Ansys Inc (2019).
[2] M. Baścik, 3D laser scanning in underground mines – practical experience. School of Underground Mining 2013. The Mineral And Energy Economy Research Institute of Polish Academy of Sciences (2013).
[3] P.Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuations. Quarterely of Applied Mathematics (1945).
[4] N .S. Dhamakar, G.A. Blasdell, A.S. Lyrintzis, An Overview of Turbulent Inflow Boundary Conditions for large Eddy Simulations. Proc of the 22 nr AIAA Computational Fluid Dynamics Conference AIAA Paper (2015).
[5] W. Dziurzyński, Prognozowanie procesu przewietrzania kopalni głębinowej w warunkach pożaru podziemnego. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków (1998).
[6] J. Janus, PhD thesis, Modelling of flow phenomena in mine drifts using the results of laser scanning. Strata Mechanics Research Institute of Polish Academy of Sciences (2018).
[7] J. Janus, The Application of laser scanning in the process of constructing a mine drift numerical model. 24th World Mining Congress PROCEEDINGS – Underground Mining, Brazilian Mining Association, Rio de Janeiro (2016).
[8] J. Janus, The application of laser scanning in the process of construction a mine drift numerical model. Transactions of the Strata Mechanics Research Institute 18, 3 (2016).
[9] J. Janus, Assessment of the possibilities of using laser scanning for numerical models constructions. Transactions of the Strata Mechanics Research Institute 17, (1-2) (2015).
[10] J. Janus, Wpływ zapory przeciwwybuchowej wodnej na pole prędkości i warunki przewietrzania wyrobiska kopalnianego. Archives of Mining Sciences, Seria: Monografia, Nr 19 (2019).
[11] J. Janus, J. Krawczyk, An Analysis of the Mixing of Air and Methane in the Stream Produced by the Mine Injector Station – Present Results of Measurements and Modeling. The Australian Mine Ventilation Conference 2013, The Australian Institute of Mining and Metallurgy (2013).
[12] J. Janus, J. Krawczyk, Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies 14, 4894 (2021). DOI: https://doi.org/10.24425/ather.2019.128295
[13] J. Janus, J. Krawczyk, The numerical simulation of a sudden inflow of methane into the end segment of a longwall with Y – type ventilation system. Archives of Mining Sciences 59, (4) (2014).
[14] A. Kidybiński, Podstawy geotechniki kopalnianej. Wydawnictwo Śląsk, Katowice (1982).
[15] J. Krawczyk, J. Janus, An example of defining boundary conditions for a flow in a mine gallery. Abstract in the XXIII Fluid Mechanics Conference Materials, Zawiercie (2018).
[16] J. Krawczyk, J. Janus, Velocity field in the area of artificially generated barrier on the mine drift floor. Przegląd Górniczy 71, (11) (2015).
[17] J. Krawczyk, Single and multiple-dimensional models of unsteady air and gas flows in underground mines. Archives of Mining Sciences, Seria: Monografia, No 2 (2007).
[18] F. Menter, Turbulence Modeling for Engineering Flows. ANSYS 2012 Inc. (2012). [19] F. Menter, Best Practice – Scale-Resolving Simulations in ANSYS CFD – Application Brief Version 2.0 (2015).
[20] J. Pokorný, L. Brumarová, P. Kučera, J. Martinka, A. Thomitzek, P. Zapletal, The effect of Air Flow Rate on Smoke Stratification in Longitudinal Tunnel Ventilation. Acta Montanistica Slovaca 24, (3) (2019).
[21] T. Ren, R. Balusu, C. Claassen, Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas. 35th APCOM Symposium (2011).
[22] P. Skotniczny, Three-Dimensional Numerical Simulation of the Mass Exchange Between Longwall Headings and Goafs, in the Presence of Methane Drainage in A U-Type Ventilated Longwall. Archives of Mining Sciences 58, (3) (2013).
[23] V. Sokoła-Szewioła, J. Wiatr, Application of laser scanning method for the elaboration of digital spatial representation of the shape of underground mining excavation. Przegląd Górniczy 8 (2013).
[24] J. Szlązak, PhD thesis, Wpływ uszczelniania chodników przyścianowych na przepływ powietrza przez zroby. AGH Kraków (1980).
[25] N. Szlązak, J. Szlązak, Wentylacja wyrobisk ścianowych w kopalniach węgla kamiennego, w warunkach zagrożenia metanowego i pożarowego. Górnictwo i Geologia (2) (2019).
[26] K. Wierzbiński, Wpływ geometrii chodnika wentylacyjnego i sposobu jego likwidacji na rozkład stężenia metanu w rejonie wylotu ze ściany przewietrzanej sposobem U w świetle obliczeń numerycznych CFD. Zeszyt Naukowy Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, No 94 (2016).
[27] M.A. Wala, S. Vytla, C.D. Taylor, G. Huang, Mine face ventilation: a comparison of CFD results against benchmark experiments for the CFD code validation. Mining Engineering (2007).
[28] D.M. Worrall, E.W. Wachel, U. Ozbay, D.R. Munoz, J.W. Grubb, Computational fluid dynamic modeling of sealed longwall gob in underground coal mine – A progress report. 14th United States/North American Mine Ventilation Symposium, Calizaya & Nelson (2012).
Go to article

Authors and Affiliations

Jakub Janus
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Recent works aimed to investigate geotechnical properties of Transitional Group A-2-7 (TGA-2-7) soil affected by the use of hydrated lime and fly ash class F, by-products from quarries and a cement factory in Jordan, to compensate for the gap in the granular distribution. Host soil was exposed to various proportions of fly ash and lime powder. The blended specimens were subjected to different tests related to index properties, including Atterberg limits, compaction properties and California bearing ratio. The results demonstrate that 2% fly ash led to a reduction in the plasticity index from 19% to 10%, while lime powder reduced it from 19% to 13%. A sufficient improvement of maximum dry density was observed at 20% lime addition and increased from 15.11 kN/m3 to 16.29 kN/m3. California bearing ratio that measures the strength soil linearly increased up to 10% induced by 20% lime addition.
Go to article

Bibliography

[1] J.I. Chang, G.C. Cho, Geotechnical Engineering Behaviors of Gellan Gum Biopolymer Treated Sand. Canadian Geotechnical Journal 53 (10), 1-38 (2016a). DOI: https://doi.org/10.1139/cgj-2015-0475
[2] J.I. Chang, G.C. Cho, Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 8, 251-273 (2016b). DOI: https://doi.org/10.3390/su8030251
[3] C. Guo, Y. Cui, Pore Structure Characteristics of Debris Flow Source Material in the Wenchuan Earthquake Area. Engineering Geology 267, 105499 (2020). DOI: https://doi.org/10.1016/j.enggeo.2020.105499
[4] J. Park, J.C. Santamarina, Revised Soil Classification System for Coarse-Fine Mixtures. J. Geotech. Geoenviron. Eng. 143 (8), 04017039 (2017). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001705
[5] D . Peng, Q. Xu, F. Liu, Y. He, S. Zhang, X. Qi, K. Zhao, X. Zhang, Distribution and Failure Modes of the Landslides in Heitai Terrace, China. Eng. Geol. 236, 97-110 (2018). DOI: https://doi.org/10.1016/j.enggeo.2017.09.016
[6] Y . F.Cui, X.J. Zhou, C.X. Guo, Experimental Study on the Moving Characteristics of Fine Grains in Wide Grading Unconsolidated Soil Under Heavy Rainfall. J. Mt. Sci. 14 (3), 417-431 (2017). DOI: https://doi.org/10.1007/s11629-016-4303-x
[7] W.B. Chen, K. Liu, W.Q. Feng, L. Borana, J.H. Yin, Influence of Matric Suction on Nonlinear Time-Dependent Compression Behavior of a Granular Fill Material. Acta Geotechnica 15 (3), 615-633 (2020). DOI: https://doi.org/10.1007/s11440-018-00761-y
[8] Z. Zhou, H. Yang, X. Wang, B. Liu, Model Development and Experimental Verification for Permeability Coefficient of Soil-Rock Mixture. Int. J. Geomech. 17 (4), 04016106 (2017). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000768
[9] R . Salgado, P. Bandini, A. Karim, Shear Strength and Stiffness of Silty Sand. J. Geotech. Geoenviron. Eng. 126 (5), 451-462 (2000). DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)
[10] T. Ueda, T. Matsushima, Y. Yamada, Effect of Particle Size Ratio and Volume Fraction on Shear Strength of Binary Granular Mixture. Granular Matter 13 (6), 731-742 (2011). DOI: https://doi.org/10.1007/s10035-011-0292-1
[11] P . Ruggeri, D. Segato, V.M.E. Fruzzetti, G. Scarpelli, Evaluating the Shear Strength of a Natural Heterogeneous Soil Using Reconstituted Mixtures. Géotechnique 66 (11), 941-946 (2016). DOI: https://doi.org/10.1680/jgeot.15.P.022
[12] M.M. Monkul, G. Ozden, Compressional Behaviour of Clayey Sand and Transition Fines Content. Engineering Geology 89 (3), 195-205 (2007). DOI: https://doi.org/10.1016/j.enggeo.2006.10.001
[13] T.G. Ham, Y. Nakata, R.P. Orense, M. Hyodo. Influence of Gravel on the Compression Characteristics of Decomposed Granite Soil.” J. Geotech. Geoenviron. Eng. 136 (11), 1574-1577 (2010). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000370
[14] N.J. Jiang, K. Soga, M. Kuo, Microbially Induced Carbonate Precipitation for Seepage-Induced Internal Erosion Control in Sand-Clay Mixtures. Journal of Geotechnical and Geoenvironmental Engineering 143 (3), 04016100 (2016). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559
[15] X .S. Shi, J. Yin, Experimental and Theoretical Investigation on the Compression Behavior of Sand-Marine Clay Mixtures Within Homogenization Framework. Comput. Geotech 90 (Oct), 14-26 (2017). DOI: https://doi.org/10.1016/j.compgeo.2017.05.015
[16] X .S. Shi, I. Herle, D. Muir Wood, A Consolidation Model for Lumpy Composite Soils in Open-Pit Mining. Géotechnique 68 (3), 189-204 (2018). DOI: https://doi.org/10.1680/jgeot.16.P.054
[17] H .K. Dash, T.G. Sitharam, B.A. Baudet, Influence of Nonplastic Fines on the Response of a Silty Sand to Cyclic Loading. Soils and Foundations 50 (5), 695-704 (2010). DOI: https://doi.org/10.3208/sandf.50.695
[18] L . Zuo, B.A. Baudet, Determination of the Transitional Fines Content of Sand-non-Plastic Fines Mixtures. Soils Found. 55 (1), 213-219 (2015). DOI: https://doi.org/10.1016/j.sandf.2014.12.017
[19] C. Chu, Z. Wu, Y. Deng, Y. Chen, Q. Wang, Intrinsic Compression Behavior of Remolded Sand-Clay Mixture. Canadian Geotechnical Journal 54 (7), 926-932 (2017). DOI: https://doi.org/10.1139/cgj-2016-0453
[20] Z. Wu, Y. Deng, Y. Cui, Y. Chen, Q. Wang, Q. Feng, Investigations on Secondary Compression Behaviours of Artificial Soft Sand-Clay Mixtures. Soils Found. 59 (2), 326-336 (2019). DOI: https://doi.org/10.1016/j.sandf.2018.11.008
[21] W. Zhou, K. Xu, G. Ma, L. Yang, X. Chang, Effects of Particle Size Ratio on the Macro- and Microscopic Behaviors of Binary Mixtures at the Maximum Packing Efficiency State. Granular Matter 18 (4), 81 (2016). DOI: https://doi.org/10.1007/s10035-016-0678-1
[22] X .S. Shi, J. Yin, Estimation of Hydraulic Conductivity of Saturated Sand-Marine Clay Mixtures with a Homogenization Approach. Int. J. Geomech. 18 (7), 04018082 (2018). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001190
[23] X .S. Shi, J. Yin, J. Zhao, Elastic Visco-Plastic Model for Binary Sand-Clay Mixtures with Applications to One- Dimensional Finite Strain Consolidation Analysis. J. Eng. Mech. 145 (8), 04019059 (2019a). DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001623
[24] X .S. Shi, J. Zhao, J. Yin, Z. Yu, An Elastoplastic Model for Gap-Graded Soils Based on Homogenization Theory. Int. J. Solids Struct. 163 (May), 1-14 (2019b). DOI: https://doi.org/10.1016/j.ijsolstr.2018.12.017
[25] T.S. Nagaraj, F.J. Griffiths, R.C. Joshi, A. Vatsala, B.R.S. Murthy, Change in Pore-Size Distribution due to Consolidation of Clays Discussion. Géotechnique 40 (2), 303-309 (1990). DOI: http://eprints.iisc.ac.in/id/eprint/35250
[26] M. Topolnicki (3-ed edition), In Situ Soil Mixing, In: K. Kirsch, A. Bell (Eds.), Ground Improvement, CRC Press, London (2013).
[27] FHWA-HRT-13-046, Federal Highway Administration Design Manual: Deep Mixing for Embankment and Foundation Support, U.S. Department of Transportation, Federal Highway Administration (2013).
[28] B .B. Broms, Deep Soil Stabilization: Design and Construction of Lime and Lime/Cement Columns. Royal Institute of Technology, Stockholm, Sweden (2003).
[29] Cement Deep Mixing (CDM), Design and Construction Manual for CDM Institute. Partial English Translation, Cement Deep Mixing Association of Japan, Tokyo, Japan, (1985).
[30] A.J. McGinn, T.D. O’Rourke, Performance of Deep Mixing Methods at Fort Point Channel. Federal Highway Administration, Washington, DC (2003).
[31] T. Kawasaki, A. Niina, S. Saitoh, R. Babasaki, Studies on Engineering Characteristics of Cement-Base Stabilized Soil. Takenaka Technical Research Report 19, 144-165 (1978).
[32] K. Uddin, A.S. Balasubramaniam, D.T. Bergado, Engineering Behavior of Cement-Treated Bangkok Soft Clay. Geotech. Eng. 28 (1), 89-119 (1997). DOI: http://worldcat.org/issn/00465828
[33] N. Cristelo, S. Glendinning, L. Fernandes, A.T. Pinto, Effects of Alkaline- Activated Fly Ash and Portland Cement on Soft Soil Stabilization. Acta Geotechnica 8 (4), 395-405 (2013). DOI: https://doi.org/10.1007/s11440-012-0200-9
[34] M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental Feasibility Study of Geopolymer as the Next- Generation Soil Stabilizer. Constr. Build. Mater. 47, 1468-1478 (2013). DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.017
[35] S. Rios, N. Cristelo, T. Miranda, N. Arau, J. Oliveira, E. Lucas, Increasing the Reaction kinetics of Alkali-Activated Fly Ash Binders for Stabilization of a Silty Sand Pavement Sub-Base. Road Mater. Pavement Desing. 19 (1), 201- 222 (2016). DOI: https://doi.org/10.1080/14680629.2016.1251959
[36] H .H. Abdullah, M.A. Shahin, P. Sarker, Stabilisation of Clay with Fly-Ash Geopolymer Incorporating GGBFS. In: Proceedings of the second Proceedings of the Second World Congress on Civil, Structural and Environmental Engineering (CSEE’17), 1-8 (2017).
[37] A.B. Moghal, State of the Art Review on the Role of Fly Ashes in Geotechnical and Geo Environmental Applications. J. Mater. Civ. Eng. 29 (8), 04017072 (2017). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001897
[38] S. Pourakbar, A. Asadi, B.B. Huat, N. Cristelo, M.H. Fasihnikoutalab, Application of Alkali-Activated Agro-Waste Reinforced with Wollastonite Fibers in Soil Stabilization. J. Mater. Civ. Eng. 29 (2), 04016206 (2016). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001735
[39] Elkhebu, A. Zainorabidin, I. Bakar, B.K. Huat, L. Abdeldjouad, W. Dheyab, Alkaline Activation of Clayey Soil Using Potassium Hydroxide and Fly Ash. International Journal of Integrated Engineering 10 (9), 99-104 (2019). DOI: https://doi.org/10.30880/ijie.2018.10.09.016
[40] L . Abdeldjouad, A. Asadi, R.J. Ball, H. Nahazanan, B.K. Huat, W. Dheyab, A. Elkhebu, Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering 5, (2019b). DOI: https://doi.org/10.1007/s40891-019-0157-y
[41] L . Abdeldjouad, A. Asadi, R.J. Ball, H. Nahazanan, B.K. Huat, Application of Alkali-Activated Palm Oil Fuel Ash Reinforced with Glass Fibers in Soil Stabilization. Soils and Foundations 59 (5), 1552-1561 (2019c). DOI: https://doi.org/10.1016/j.sandf.2019.07.008
[42] B .R. Phanikumar, E. Ramanjaneya, Compaction and Strength Characteristics of An Expansive Clay Stabilized with Lime Sludge and Cement. Soils and Foundations 60, 129-138 (2020). DOI: https://doi.org/10.1016/j.sandf.2020.01.007
[43] D .N. Little, E.H. Males, J.R. Prusinski, B. Stewart Cementitious Stabilization, A Research Report, A2J01, Committee on Cementitious stabilization. Louisiana State University (2016).
[44] Z.D. Zhu, S.Y. Liu, Utilisation of a New Soil Stabilizer for Silt Subgrade. Eng. Geol. 97 (3-4), 192-198 (2008). DOI: https://doi.org/10.1016/j.enggeo.2008.01.003
[45] X .B. Yu, B. Zhang, D. Cartweight, Beneficial Utilization of Lime Sludge for Subgrade Stabilization: A pilot investigation. Ohio Department of Transportation, Office of Research and Development (2010).

Go to article

Authors and Affiliations

Omar Asad Ahmad
1
ORCID: ORCID

  1. Amman Arab University, Civil Engineering Department, Faculty of Engineering, P.O Box. 2234, Amman 11953, Jordan
Download PDF Download RIS Download Bibtex

Abstract

The deformation properties of rocks play a crucial role in handling most geomechanical problems. However, the determination of these properties in laboratory is costly and necessitates special equipment. Therefore, many attempts were made to estimate these properties using different techniques. In this study, various statistical and soft computing methods were employed to predict the tangential Young Modulus (Eti, GPa) and tangential Poisson’s Ratio (vti) of coal measure sandstones located in Zonguldak Hardcoal Basin (ZHB), NW Turkey. Predictive models were established based on various regression and artificial neural network (ANN) analyses, including physicomechanical, mineralogical, and textural properties of rocks. The analysis results showed that the mineralogical features such as the contents of quartz (Q, %) and lithic fragment (LF, %) and the textural features (i.e., average grain size, d50, and sorting coefficient, Sc) have remarkable impacts on deformation properties of the investigated sandstones. By comparison with these features, the mineralogical effects seem to be more effective in predicting the Eti and vti. The performance of the established models was assessed using several statistical indicators. The predicted results from the proposed models were compared to one another. It was concluded that the empirical models based on the ANN were found to be the most convenient tools for evaluating the deformational properties of the investigated sandstones.
Go to article

Bibliography

[1] K . Zorlu, C. Gökçeoglu, F. Ocakoglu, H.A. Nefeslioglu, S. Acikalin, Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 96, 141-158 (2008). DOI : https://doi.org/10.1016/j.enggeo.2007.10.009
[2] N . Ceryan, Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J. African Earth. Sci. 100, 634-644 (2014). DOI : https://doi.org/10.1016/j.jafrearsci.2014.08.006
[3] A. Shakoor, R.E. Bonelli, Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Environ. Eng. Geosci. 28, 55-71 (1991). DOI : https://doi.org/10.2113/gseegeosci.xxviii.1.55
[4] A. Ersoy, M.D. Waller, Textural characterisation of rocks. Eng. Geol. 39, 123-136 (1995). DOI : https://doi.org/10.1016/0013-7952(95)00005-Z
[5] F.G. Bell, P. Lindsay, The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng. Geol. 53, 57-81 (1999). DOI : https://doi.org/10.1016/S0013-7952(98)00081-7
[6] R. Prikryl, Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng. Geol. 87, 149-162 2006. DOI : https://doi.org/10.1016/j.enggeo.2006.05.011
[7] J.S. Coggan, D. Stead, J.H. Howe, C.I Faulks, Mineralogical controls on the engineering behavior of hydrothermally altered granites under uniaxial compression. Eng. Geol. 160, 89-102 (2013). DOI : https://doi.org/10.1016/j.enggeo.2013.04.001
[8] C .A. Ozturk, E. Nasuf, S. Kahraman, Estimation of rock strength from quantitative assessment of rock texture. Journal of the Southern African Institute of Mining and Metallurgy 114 (6), 471-480 (2014).
[9] E. Ali, W. Guang, A. Ibrahim, Microfabrics-Based Approach to Predict Uniaxial Compressive Strength of Selected Amphibolites Schists Using Fuzzy Inference and Linear Multiple Regression Techniques, Environ. Eng. Geosci. 21 (3), 235-245 (2015). DOI: https://doi.org/10.2113/gseegeosci.21.3.235
[10] X.A. Cabria, Effects of weathering in the rock and rock mass properties and the influence of salts in the coastal roadcuts in Saint Vincent and Dominica. Master Thesis, Twente University, (2015).
[11] N .Q.A.M. Yusof, H. Zabidi, Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor. Procedia Chemistry 19, 975-980 (2016). DOI : https://doi.org/10.1016/j.proche.2016.03.144
[12] E. Köken A. Özarslan, G. Bacak, Weathering effects on physical properties and material behavior of granodiorite rocks. In: Rock Mechanics and Rock Engineering – From the past to the future Ulusay et al. (Eds), ISRM International Symposium, EUROCK 2016, 331-336 (2016).
[13] T.K. Koca, M.Y. Koca, Classification of weathered andesitic rock materials from the İzmir Subway line on the basis of strength and deformation. Bull. Eng. Geol. Environ. 78, 3575-3592 (2019). DOI : https://doi.org/10.1007/s10064-018-1346-y
[14] M.N. Bidgoli, Z. Zhao, L. Jing, Numerical evaluation of strength and deformability of fractured rocks. Rock Mech. and Geotech. Eng. 5, 419-430 (2013). DOI: https://doi.org/10.1016/j.jrmge.2013.09.002
[15] H. Xu, W. Zhou, R. Xie, L. Da, C. Xiao, Y. Shan, H. Zhang, Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs. Math. Prob. Eng. 5967159, (2016). DOI : https://doi.org/10.1155/2016/5967159
[16] J. Shu, L. Jiang, P. Kong, Q. Wang, Numerical Analysis of the Mechanical Behaviors of Various Jointed Rocks under Uniaxial Tension Loading. Appl. Sci. 9, 1824 (2019). DOI: https://doi.org/10.3390/app9091824
[17] P. Davy, C. Darcel, R. Le Goc, D. Mas Ivars, Elastic Properties of Fractured Rock Masses With Frictional Properties and Power Law Fracture Size Distributions. J. Geophys. Res. 123 (8), 6521-6539 (2018). DOI : https://doi.org/10.1029/2017JB015329
[18] M. Babaeian, M. Ataei, F. Sereshki, F. Sotoudeh, A new framework for evaluation of rock fragmentation in open pit mines. Rock Mech. Geotech. Eng. 11 (2), 325-336 (2019). DOI : https://doi.org/10.1016/j.jrmge.2018.11.006
[19] A.A. Mahmoud, S. Elkatatny, D.A. Shehri, Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations. Sustainability 12, 1880 (2020). DOI: https://doi.org/10.3390/su12051880
[20] D . Lv, Z. Li, J. Chen, H. Liu, J. Guo, L. Shang, Characteristics of the Permian coal-formed gas sandstone reservoirs in Bohai Bay Basin and the adjacent areas. North China, Petrol. Sci. Eng. 78 (2), 516-528, (2011). DOI : https://doi.org/10.1016/j.petrol.2011.06.018
[21] A. Fan, R. Yang, N. Lenhardt, M. Wang, Z. Han, J. Li, Y. Li, Z. Zhao, Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gasfield, Ordos Basin (central China). Marine Petrol. Geol. 103, 276-293 (2019). DOI: https://doi.org/10.1016/j.marpetgeo.2019.02.010
[22] P. Tan, Y. Jin, L. Yuan, et al., Understanding hydraulic fracture propagation behavior in tight sandstone – coal interbedded formations: an experimental investigation. Pet. Sci. 16, 148-160 (2019). DOI : https://doi.org/10.1007/s12182-018-0297-z
[23] D .G. Roy, T.N. Singh, Predicting deformational properties of Indian coal: Soft computing and regression analysis approach. Measurement 149, 106975 (2020). DOI: https://doi.org/10.1016/j.measurement.2019.106975
[24] R. Koch, R. Sobott, Sandsteine: Entstehung, Eigenschaften, Verwitterung, Konservierung, Restaurierung. In: Siegesmund, Snethlage (eds) Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 59, 145-174 (2008).
[25] J. Rüdrich, T. Bartelsen, R. Dohrmann, S. Siegesmund, Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 63, 1545-1564 (2010). DOI: https://doi.org/10.1007/s12665-010-0767-0
[26] F.J. Pettijohn, Sand and sandstone, Springer-Verlag Berlin, (1973). e-ISBN: 978-1-4615-9974-6
[27] J.R.L Allen, Petrology, origin and deposition of the highest Lower Old Red sandstone of Shropshire, England. J. Sedimen. Res. 32 (4), 657-697 (1962).
[28] D .F. Howarth, J.C. Rowlands, Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech. Rock Eng. 20, 57-85 (1987). DOI: https://doi.org/10.1007/BF01019511
[29] A. Azzoni, F. Bailo, E. Rondena, et al., Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock. Mech. Rock. Eng. 29, 39-46 (1996). DOI : https://doi.org/10.1007/BF01019938
[30] M. Alber, S. Kahraman, Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mech. Rock. Eng. 42, 117-127 (2009). DOI : https://doi.org/10.1007/s00603-008-0167-x
[31] F. Arıkan R. Ulusay, N. Aydın, Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull. Eng. Geol. Environ. 66, 415-430 (2007). DOI : https://doi.org/10.1007/s10064-007-0087-0
[32] Ö. Ündül, A. Tuğrul, On the variations of geoengineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 75, 1326 (2016). DOI: https://doi.org/10.1007/s12665-016-6152-x
[33] E. Köken, S. Top, A. Özarslan, Assessment of Rock Aggregate Quality Through the Analytic Hierarchy Process (AHP). Geotech. Geol. Eng. 38, 5075-5096 (2020). DOI: https://doi.org/10.1007/s10706-020-01349-8
[34] R.H.C. Wong, K.T. Chau, P. Wang, Microcracking and grain size effect in Yuen Long Marbles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (5), 479-485 (1996). DOI: https://doi.org/10.1016/0148-9062(96)00007-1
[35] Y.H. Hatzor, V. Palchik, The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. Int. J .Rock Mech. Min. Sci. 34 (5), 805-816 (1997). DOI : https://doi.org/10.1016/S1365-1609(96)00066-6
[36] A. Tugrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51 (4), 303-317 (1999). DOI : https://doi.org/10.1016/S0013-7952(98)00071-4
[37] E. Eberhardt, B. Stimpson, D. Stead, Effects of grain size on the initiation and propagation thresholds of stressinduced brittle fractures. Rock Mech. Rock Eng. 32, 81-99 (1999). DOI : https://doi.org/10.1007/s006030050026
[38] R. Přikryl, Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech. Min. Sci. 38 (5), 671-682 (2001). DOI: https://doi.org/10.1016/S1365-1609(01)00031-4
[39] M. Cai, P.K. Kaiser, Y. Tasaka, T. Maejima, H. Morioka, M. Minami, Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci. 41 (5), 833-847 (2004). DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001
[40] M. Nicksiar, C.D. Martin, Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng. Geol. 154, 64-76 (2013). DOI: https://doi.org/10.1016/j.enggeo.2012.12.007
[41] E. Köken, Investigations on Fracture Evolution of Coal Measure Sandstones from Mineralogical and Textural Points of View. Indian Geotech. J. 50, 1024-1040 (2020). DOI: https://doi.org/10.1007/s40098-020-00427-1
[42] N . Yesiloglu-Gultekin, E.A. Sezer, C. Gokceoglu, H. Bayhan, An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Sys. App. 40 (3), 921-928 (2013). DOI: https://doi.org/10.1016/j.eswa.2012.05.048
[43] N .F. Hassan, O.A. Jimoh, S.A. Shehu, Z. Hareyani, The effect of mineralogical composition on strength and drillability of granitic rocks in Hulu Langat, Selangor Malaysia. Geotech. Geol. Eng. 37, 5499-5505 (2019). DOI : https://doi.org/10.1007/s10706-019-00995-x
[44] R.S. Tandon, V. Gupta, The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Eng. Geol. 153, 125-143 (2013). DOI : https://doi.org/10.1016/j.enggeo.2012.11.005
[45] M. Rӓisӓnen, Relationships between texture and mechanical properties of hybrid rocks from the Jaala-Iitti complex, southeastern Finland. Eng. Geol. 74, 197-211 (2004). DOI: https://doi.org/10.1016/j.enggeo.2004.03.009
[46] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori, Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI : https://doi.org/10.1016/j.ijrmms.2012.12.042
[47] R. Ulusay, K. Tureli, M.H. Ider, Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 38 (1-2), 135-157 (1994). DOI: https://doi.org/10.1016/0013-7952(94)90029-9
[48] S. Kahraman, Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 38 (7), 981-994 (2001). DOI: https://doi.org/10.1016/S1365-1609(01)00039-9
[49] G.R. Lashkaripour, Predicting mechanical properties of mudrock from index parameters. Bull. Eng. Geol. Environ. 61, 73-77 (2002). DOI: https://doi.org/10.1007/s100640100116
[50] P.A. Hale, A. Shakoor, A Laboratory Investigation of the Effects of Cyclic Heating and Cooling, Wetting and Drying, and Freezing and Thawing on the Compressive Strength of Selected Sandstones. Environ. Eng. Geosci. 9 (2), 117-130 (2003). DOI: https://doi.org/10.2113/9.2.117
[51] C . Gokceoglu, H. Sonmez, K. Zorlu, Estimating the uniaxial compressive strength of some clay bearing rocks selected from Turkey by nonlinear multivariable regression and rule-based fuzzy models. Expert Systems 26 (2), 176-190 (2009). DOI: https://doi.org/10.1111/j.1468-0394.2009.00475.x
[52] M. Khandelwal, T.H. Singh, Correlating static properties of coal measures rocks with P-wave velocity. Int. J. Coal Geol. 79 (1-2), 55-60, (2009). DOI: https://doi.org/10.1016/j.coal.2009.01.004
[53] S. Dehghan, G.H Sattari, S. Chehreh Chelgani, M.A. Aliabadi, Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Tech. (China), 20 (1), 41-46, (2010). DOI: https://doi.org/10.1016/S1674-5264(09)60158-7
[54] S. Yagiz, Correlation between slake durability and rock properties for some carbonate rocks. Bull. Eng. Geol. Environ. 70 (3), 377-383 (2011). DOI: https://doi.org/10.1007/s10064-010-0317-8
[55] T.N. Singh, A.K. Verma, Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks. Eng. Comput. 28, 1-12 (2012). DOI: https://doi.org/10.1007/s00366-011-0210-5
[56] M. Khandelwal, Correlating P-wave velocity with the physicomechanical properties of different rocks. Pure Appl. Geophys. 170, 507-514 (2013). DOI: https://doi.org/10.1007/s00024-012-0556-7
[57] R. Barzegar, M. Sattarpour, M.R. Nikudel, et al., Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, Case study: Azarshahr area, NW Iran, Model. Earth Sys. Environ. 2, 76 (2016). DOI: https://doi.org/10.1007/s40808-016-0132-8
[58] A. Teymen, E.C. Mengüç, Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks. Int. J. Min. Sci. Tech. 30 (6), 785-797 (2020). DOI : https://doi.org/10.1016/j.ijmst.2020.06.008
[59] M.L. Larrea, S.M. Castro, E.A. Bjerg, A software solution for point counting. Petrographic thin section analysis as a case study. Arab. J. Geosci. 7, 2981-2989 (2014). DOI: https://doi.org/10.1007/s12517-013-1032-0
[60] E. Köken, Size Reduction Characterization of Underground Mine Tailings: A Case Study on Sandstones. Nat. Resour. Res. 30, 867-887 (2021). DOI: https://doi.org/10.1007/s11053-020-09707-2
[61] E.F. McBride, A classification of common sandstones. J. Sediment. Petrol. 33 (3), 664-669, (1963). DOI : https://doi.org/10.1306/74D70EE8-2B21-11D7-8648000102C1865D
[62] R.H. Dott, Wackes, greywacke and matrix: what approach to immature sandstone classification. J. Sedimen. Res. 34, 625-632 (1964).
[63] R.L. Folk, W.C. Ward, Brazos River bar, a study in the significance of grain size parameters. J. Sedimen. Petrol. 27 (1), 3-26 (1957). DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
[64] R.L. Folk, Petrology of sedimentary rocks. Austin: Hemphill Pub. (1981), ISBN: 0-914696-14-9.
[65] I SRM, The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. (2007) International Society for Rock Mechanics (ISRM), (2007), Ankara, Turkey
[66] D .U. Deere, R.P. Miller, Engineering classification and index properties for intact rock. Technical Report Air Force Weapons Laboratory (Report No, AFWL-TR-65-116), 136-184, New Mexico, (1966).
[67] E. Yasar , Y. Erdoğan, Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int. J. Rock Mech Min. Sci. 41, 871-875 (2004). DOI : https://doi.org/10.1016/j.ijrmms.2004.01.012
[68] I . Yilmaz, G. Yuksek, Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN and ANFIS models. Int. J. Rock Mech. Min. Sci. 46, 803-810 (2009). DOI : https://doi.org/10.1016/j.ijrmms.2008.09.002
[69] Z.A. Moradian, M. Behnia, Predicting the Uniaxial Compressive Strength and Static Young’s Modulus of Intact Sedimentary Rocks Using the Ultrasonic Test. Int. J. Geomech. 9 (1), 14-19 (2009). DOI : https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14)
[70] G. Pappalardo, Correlation between P-wave velocity and physical-mechanical properties of intensely jointed dolostones, Peloritani Mounts, NE Sicily. Rock Mech. Rock Eng. 48, 1711-1721 (2015). DOI : https://doi.org/10.1007/s00603-014-0607-8
[71] H. Arman, S. Paramban, Correlating natural, dry, and saturated ultrasonic pulse velocities with the mechanical properties of rock for various sample diameters. Appl. Sci. 10, 9134 (2020). DOI : https://doi.org/10.3390/app10249134
[72] N . Sabatakakis, G. Koukis, G. Tsiambos, S. Papanakli, Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 97, 80-90 (2008). DOI: https://doi.org/10.1016/j.enggeo.2007.12.004
[73] R. Singh, A. Kainthola, T.N. Singh, Estimation of elastic constant of rocks using an ANFIS approach, Appl. Soft Comput. J. 12, 40-45 (2012). DOI: https://doi.org/10.1016/j.asoc.2011.09.010
[74] A.I. Lawal, M.A. Idris, An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. Int. J. Environmen. Stud. 77 (2), 318-334, (2020). DOI : https://doi.org/10.1080/00207233.2019.1662186.
[75] S.K. Das, Artificial neural networks in geotechnical engineering: modeling and application issues, Metaheuristics in water, geotechnical and transport engineering, 231-270 (2013).
[76] M. Heidari, G.R. Khanlari, A.A. Momeni, Prediction of Elastic Modulus of Intact Rocks Using Artificial Neural Networks and non-Linear Regression Methods. Australian J. Basic Appl. Sci. 4 (12), 5869-5879 (2010).
[77] D .J. Armaghani, E.T. Mohamad, E. Momeni, M.S. Narayanasamy, An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301-1319 (2015). DOI: https://doi.org/10.1007/s10064-014-0687-4
[78] S. Yagiz, E.A. Sezer, C. Gokceoglu, Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int. J. Numer Anal. Methods Geomech. 36 (14), 1636-1650 (2012). DOI : https://doi.org/10.1002/nag.1066
[79] S. Aboutaleb, M. Behnia, R. Bagherpour, B. Bluekian, Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull. Eng. Geol. Environ. 77 (4), 1717-1728 (2018). DOI: https://doi.org/10.1007/s10064-017-1043-2
[80] A. Jamshidi, H. Zamanian, R. Zarei Sahamieh, The Effect of Density and Porosity on the Correlation Between Uniaxial Compressive Strength and P-wave Velocity. Rock Mech. Rock Eng. 51, 1279-1286 (2018). DOI : https://doi.org/10.1007/s00603-017-1379-8
Go to article

Authors and Affiliations

Ekin Köken
1
ORCID: ORCID

  1. Abdullah Gul University, Nanotechnology Engineering Department, 38170, Kayseri, Turkey
Download PDF Download RIS Download Bibtex

Abstract


One of the ways to reduce greenhouse gas emissions to the atmosphere is to minimise the production of fossil fuels energy, which, among others, can be achieved through gradual closure of hard and brown coal mines. However, such transformation comes with economic and social problems as well as structural changes. This article is a case study based on the objectives of the Spatial Development Plan for the Central Coal Region (CRW) – Lublin Coal Basin (LZW), developed as a consequence of the discovery of significant hard coal deposits in the north-eastern part of the Lublin voivodeship in the 1960’s. In retrospect, it can be observed that the overly ambitious objectives of the CRW-LZW urban plan were implemented only to a limited extent.
This article aims to compare the original urban planning objectives with the current development of the industrial district and to indicate the cause for such a significant limitation of the realisation of the originally planned investment. Also, the article endeavours to simultaneously emphasize which factors should be specially considered, when planning such large-scope investments, that also broadly influence demographic and urban structure of the region and the way it is functioning.
The analysis was carried out in the context of economic difficulties and the political crisis at the turn of the 1970s and 1980s, the changes in the country’s political and economic system, as well as the principles of the socio-economic concept of sustainable development implemented at the end of the 20th century, and the currently prevailing circular economy. The characteristics and analysis of the adopted design solutions were carried out, the assessment of the extent to which the planned investment was completed and what factors influenced its current condition. The collected data is summarized and compared in a table. The conclusions may prove helpful in establishing the direction of Lublin Coal Basin the development in the coming years. The described solutions and experiences may constitute the theoretical basis for accurate forecasting of the scope of similar investments in the future.
Go to article

Bibliography

[1] A . Frejowski, J. Bondaruk, A. Duda, Wyzwania i szanse dla terenów po wyeksploatowanych kopalniach węgla: od czarnej do zielonej energii. Energies 14, 1385 (2021). DOI : https://doi.org/10.3390/en14051385
[2] H . Gerbelová, A. Spisto, S. Giaccaria, Regional Energy Transition: An Analytical Approach to the Slovakian Coal Regio. Energies 14, 110 (2021). DOI : https://doi.org/10.3390/en14010110
[3] L. Kolanowski, Rozwój przestrzenny Łęcznej, jako ośrodka Lubelskiego Zagłębia Węglowego. Annales Universitatis Mariae Curie-Skłodowska, Lublin 73, Sectio B (2018). DOI : https://doi.org/10.17951/b.2018.73.0.29-47
[4] L. Lehotský, M. Černík, Brown coal mining in the Czech Republic – lessons on the coal phase-out. International Issues & Slovak Foreign Policy Affairs 28, (3/4) (2019). https://www.jstor.org/stable/26905905, accessed 25.02.2021
[5] P. Oei, H. Brauers, P. Herpich, Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018. Climate Policy 20 (8), 963-979 (2020). DOI : https://doi.org/10.1080/14693062.2019.1688636
[6] E . Pietrzyk-Sokulska, R. Uberman, J. Kulczycka, The impact of mining on the environment in Poland – myths and reality. Mineral Resources Management 31 (1) (2015). DOI : https://doi.org/10.1515/gospo-2015-0009
[7] E . Sermet, J. Górecki, Podstawowe kryteria możliwości podziemnego zgazowania węgla w Lubelskim Zagłębiu Węglowym. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii Polskiej Akademii Nauk nr 83/2012, (2012). ISSN 2080-0819.
[8] A . Tajduś, A. Tokarski, Risks related to energy policy of Poland until 2040 (EPP 2040). Archives of Mining Sciences 65 (4), 877-899 (2020). DOI : https://doi.org/10.24425/ams.2020.135183
[9] K . Van de Loo, Social engineering for coal mine closures – a world bank report, the international research deficit and reflections from a German perspective. Mining Report 155 (4) (2019).
[10] B. Brylak-Szymczak, A. Link, M. Żurkowska, M. Osmulska, E. Mazurek, R. Dylewski, Łęczna. Nowe polskie miasto. Przyszłość, perspektywy. Rada Miejska w Łęcznej, Łęczna (1994).
[11] A . Frużyński, Zarys dziejów górnictwa węgla kamiennego w Polsce. Muzeum Górnictwa Węglowego, Zabrze (2012). ISBN 978-83-935614-4-5
[12] J. Kicki, B. Kozek, J. Jarosz, A. Dyczko (Ed.), 30 lat górnictwa węglowego na Lubelszczyźnie 1975-2005, Lubelski Węgiel „Bogdanka” Spółka Akcyjna, (2006). ISBN: 978-83-917727-3-X
[13] A . Zdanowski, Atlas Geologiczny Lubelskiego Zagłębia Węglowego, Państwowy Instytut Geologiczny, Warszawa, (1999). OCLC: 45743965
[14] A . Harat, Z. Adamczyk, A. Klupa, Economic and environmental aspects of the liquidation of coal mines, Proceeding of Conference: 17th International Multidisciplinary Scientific Geo Conference SGE M 2017, 29 June – 5 July, (2017). DOI : https://doi.org/10.5593/sgem2017/54/S23.035, ISSN 1314-2704
[15] J. Kaliński, Z. Landau, Gospodarka Polski w XX wieku. Wyd. 2 zmienione. Polskie Wydawnictwo Ekonomiczne, Warszawa, (2003). ISBN: 978-83-208-1428-6
[16] A Green New Deal. Joined-up policies to solve the triple crunch of the credit crisis, climate change and high oil prices, New Economics Foundation, Londyn, (2008). https://neweconomics.org/2008/07/green-new-deal, accessed: 23.11.2021
[17] EU coal regions: opportunities and challenges ahead. https://ec.europa.eu/jrc/en/news/eu-coal-regions-opportunitiesand-challenges-ahead, accessed 25.07.2021
[18] Kluczowe elementy Strategii rozwoju LW Bogdanka S.A. Obszar Wydobycie Grupy ENEA do 2030 roku (perspektywa do 2040 roku). https://ri.lw.com.pl/o-firmie-strategia, accessed 25.07.2021
[19] https://www.lw.com.pl/pl,2,aktualnosci,d264,kontynuacja_i_transformacja__nowa_strategia_lw_bogdanka_ do_2030_r.html, accessed 25.07.2021
[20] https://leczna.pl/leczna/leczna-w-liczbach, accessed 25.07.2021
[21] Letter from the President of the Management Board of Lubelski Węgiel Bogdanka, No. 227.PR.076.28.14.2021.1388.
[22] Letter of the Undersecretary of State No. UAN .1-LZW-20/79 of March 16, 1979.
[23] Directive (EU ) 2018/2001 of the European Parliament and of the Council of December 11, 2018, on the promotion of the use of energy from renewable sources, (2018).
[24] P. Czyżak, M. Hetmański, 2030 – Analiza dot. Granicznego roku odejścia od węgla w energetyce w Europie i Polsce. Instrat Policy Paper 01/2020, (2020). ISBN: 978-83-946738-3-3
[25] C . Kemfert, M. Fischedick, K. Bausch, Phasing out coal in the German energy sector interdependencies, challenges and potential solutions. German Institute for Economic Research (DIW Berlin), (2019). https://www.ecologic.eu/sites/default/files/publication/2019/3537-kohlereader_englisch-final.pdf, accessed 23.11.2021
[26] J. Porzycki, Lubelskie Zagłębie Węglowe. [In:] Przewodnik 42 Zjazdu Polskiego Towarzystwa Geologicznego Lublin, Wydawnictwo Geologiczne, (1970).
[27] J. Stochlak, K. Zarębski, Rozwój badań hydrogeologicznych w Centralnym Rejonie Węglowym LZW w okresie 1964-1981. Instytut Kształtowania Środowiska Lublin, GIG Oddz. Terenowy Lublin
[28] Spatial Development Plan of the Central Coal Region of the Lublin Coal Basin.
[29] Resolution of the Council of Ministers no. 58/77 on the construction of a pilot-mining mine in the LZW, (1977).
[30] Resolution of the Council of Ministers no. 34/88 on the suspension of the construction of the k-2 mine in Stefanów, (1988).
[31] Resolution of the Sejm of the Polish People’s Republic of December 18, 1976 on the five-year national socioeconomic plan for the years 1976-1980. Journal of Laws of 1976 no. 39, item 226.
[32] Resolution of the Council of Ministers no. 7/89 on suspension of financing the construction of the Bogdanka mine from central funds, (1989).
[33] Regulation No. 10 of the Minister of Local Economy and Environmental Protection of January 20, 1974, on the establishment of a technical standard for the design of multi-family dwellings and residential buildings for nonagricultural people, „Dziennik Budownictwa“ (1974).
Go to article

Authors and Affiliations

Michał Tomasz Dmitruk
1
ORCID: ORCID

  1. Lublin University of Technology, 38D Nadbystrzycka Str., 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Desired rock fragmentation is the need of the hour, which influences the entire mining cycle. Thus, most engineering segments pay attention to rock fragmentation and neglect by-products like ground vibration and fly rock. Structural and mechanical properties of rock mass like joint spacing, joint angle, and compressive strength of rock pose a puzzling impact on both fragmentation and ground vibration. About 80% of explosive energy that gets wasted in producing ill effects can be positively optimised, with a new set of blast design parameters upon identifying the behaviour of rock mass properties. In this connection, this research aims to investigate the influence of joint spacing, joint angle, and compressive strength of rock on fragmentation and induced ground vibration. To accomplish this task, research was carried out at an opencast coal mine. It was discovered from this research that compressive strength, joint spacing, and joint angle have a significant effect on the mean fragmentation size (MFS) and peak particle velocity (PPV). With the increase in compressive strength, MFS explicit both increase and decrease trends whilst PPV increased with a specific increase in compressive strength of the rock. An increase in joint spacing triggers both increase and decrease trends in both MFS and PPV. While there is an increase in joint angle, MFS and PPV decrease.
Go to article

Bibliography

[1] R .L. Ash, Ph.D. Thesis, The Influence of Geological Discontinuities on Rock Blasting, University of Minnesota, United States (1973).
[2] A.K. Hakan, Adnan Konuk, The effect of discontinuity frequency on ground vibrations produced from bench blasting: A case study. Soil Dyn. Earthq. 28 (9), 686-694 (2008). DOI : https://doi.org/10.1016/J.SOILDYN.2007.11.006
[3] B.S. Choudhary, K. Sonu, K. Kishore, S. Anwar, Effect of rock mass properties on blast-induced rock fragmentation. Int. J. Min. Miner. Eng. 7 (2), 89-101 (2016). DOI: https://dx.doi.org/10.1504/IJMME.2016.076489
[4] G .R. Adhikari, M.M. Singh, R.N. Gupth, Influence of rock properties on blast-induced vibration. Min. Sci. Technol. 8 (3), 297-300 (1989). DOI: https://doi.org/10.1016/S0167-9031(89)90437-4
[5] R .E. Goodman, Methods of Geological engineering in discontinuous Rock. West Publishing, St. Paul. (1976).
[6] M. King, L. Myerand, J. Rezowalli, Experimental studies of elastic-wave propagation in a columnar-jointed rock mass. Geophys. Prospect. 34, 1185-1199 (1986). DOI: https://doi.org/10.1111/j.1365-2478.1986.tb00522.x
[7] G . Berta, Blasting-induced vibration in tunneling. unn. Undergr. Space Technol. (9), 175-187 (1994). DOI : https://doi.org/10.1016/0886-7798(94)90029-9
[8] S.P. Singh, The influence of geology on blast damage. CIM Bulletin, Conference: 26th International conference on ground control in mining At: Morgantown, West Virginia, USA (2007).
[9] R .E. Goodman, Block Theory and Its Application to Rock Engineering. Geotechnique. ISSN 0016-8505 | E-ISSN 1751-7656. 45 (3) 383-423 (1995). DOI: https://doi.org/10.1680/geot.1995.45.3.383
[10] P.R. La Pointe, H.G. Ganow, The influence of cleats and joints on production blast fragment size in the Wyodak Coal, Compbell Country, Wyoming, in Proceedings of the 27th US Symposium on Rock Mechanics, University of Alabama. pp. 464-70 (1986).
[11] D . Van Zyl, An approach to incorporate rock fabric information in blast fragmentation investigation. In Proceedings of the 2nd Mini-Symposium on Explosives and Blasting Research, Society of Explosives Engineers, Georgia. pp. 81-89 (1986).
[12] E.I. Efremov, V.M. Komir, N.I. Myachina, V.A. Nikiforova, S.N. Rodak, V.V. Shelenok, Influence of the structure of a medium on fragment size composition in blasting. Sov. Min. Sci. 16, 18-22 (1980). DOI : https://doi.org/10.1007/BF02504281
[13] Y .K. Wua, H. Haoa, Y.X. Zhoub, K. Chongb, Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil Dyn. Earthq. Eng. 17, 407-412 (1998). DOI: https://doi.org/10.1016/S0267-7261(98)00030-X
[14] W . Fourney, R.D. Dick, D.F. Fordyce, T.A. Weaver, Effects of Open Gaps on Particle Velocity Measurements. Rock Mech. Rock Eng. 30 (2), 95-111 (1997). DOI: https://doi.org/10.1007/BF01020127
[15] R ustan, Z.G. Yang, The influence from primary structure on fragmentation. 1st. International Symposium on rock fragmentation by blasting. Lulea, Sweden. 2, 581-604 (1983).
[16] W .L. Fourney, Mechanisms of rock fragmentation in by blasting. Hudson J.A, editor. Compressive rock engineering, principles, practice and projects. Oxford: Pergamon Press (1993).
[17] R .K.Paswan, Mohammad. Sarim, P.K. Singh, H.S. Khare, B.K. Singh, R.J. Singh, Controlled blasting at Parsa East &KantaBasan opencast mines for safe and efficient Mining operations. Ind. Min. & Eng. J. 53 (4), 7-17 (2014).
[18] C.L. Jimeno, E. Jimeno, F.J.A. Carcedo, Drilling and Blasting of Rocks. A.A. Balkema Publishers, Rotterdam, The Netherlands. (1995). DOI: https://doi.org/10.1080/09208119608964786
[19] T .H. Lewandowski, V.K. Luan Mai, R.E. Danell. Influence of discontinuities on presplitting effectiveness, Rock fragmentation by blasting – Fragblast5. B. Mohanty, Montreal, Canada, (1996). DOI : https://doi.org/10.1080/13855149709408388
[20] P.N. Worsey, S. Qu. Effect of joint separation and filling on pre-split blasting. The 3rd Mini Symposium on Explosives and Blasting Research. pp. 26-40 (1987).
[21] B.S. Whittaker, R.N. Singh, G. Sun, Fracture Mechanics Applied to Rock Fragmentation due to blasting. Rock Fracture Mechanics – Principles, Design and Applications, Elsevier Science Ltd. 71 (13), 443-479 (1992).
[22] P.K. Singh, M.P. Roy, R.K. Paswan, Md. Sarim. Suraj Kumar, Rakesh Ranjan Jha, Rock fragmentation control in opencast blasting. J. Rock Mech. Geotech. 8, 225-237 (2016). DOI: https://doi.org/10.1016/j.jrmge.2015.10.005
[23] K. Nur Lyana, Z. Hareyani, A. Kamar Shah, Mohd, M.H. Hazizan, Effect of Geological Condition on Degree of Fragmentation in a Simpang Pulai Marble Quarry, 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP), 4-6 August (2015).
[24] J.M. Belland, Structure as a Control in Rock Fragmentation Coal Lake Iron Ore Deposited. The Canadian Mining and Metallurgical Bulletin. 59 (647), 323-328 (1968).
[25] K. Talhi, B. Bensaker, Design of a model blasting system to measure peak p-wave stress, Soil Dyn. Earthq. Eng. 23 (6), 513-519 (2003). DOI: http://dx.doi.org/10.1016/S0267-7261(03)00018-6
[26] P.F. Gnirk, E.D. Fleider, On the correlation between explosive crater formation and rock properties. In Proceedings of the 9th Symposium on Rock Mechanics, AIME. New York. 321-45 (1968).
[27] D .P. Singh, Y.V. Apparao, S.S. Saluja, A laboratory study on effect of joints on rock fragmentation. American Rock Mechanics Association, The 21st U.S. Symposium of Rock Mechanics (USRMS), 27-30 May (1980).
[28] Zhi-qiang.Yin, Hu. Zu-xiang, Ze-di Wei, Guang-ming Zhao, Ma Hai-feng, Zhuo Zhang, Rui-min Feng, Assessment of Blasting-Induced Ground Vibration in an Open-Pit Mine under Different Rock Properties. Adv. Civ. Eng. 10 (2018). DOI: https://doi.org/10.1155/2018/4603687
[29] J. Henrych. The dynamics of explosion and its use. Earthq Eng Struct Dyn. Elsevier, New York (1979). DOI: https://doi.org/10.1002/eqe.4290080309
[30] G .W. Ma, X.M. An, Numerical simulation of blasting-induced rock fractures. Int. J. Rock Mech. Min. Sci. 45 (6), 966-975 (2008). DOI: http://dx.doi.org/10.1016/j.ijrmms.2007.12.002
[31] J.C. Li, W. MaG., Analysis of blastwave interaction with a rock joint. Rock Mech Rock Eng. 43 (6), 777-787 (2010). DOI: https://doi.org/10.1007/s00603-009-0062-0
[32] J.C. Li, H.B. Li, J. Zhao, An improved equivalent viscoelastic medium method for wave propagation across layered rock masses. Int. J. Rock Mech. Min. Sci. (2015). DOI: http://dx.doi.org/10.1016/j.ijrmms.2014.10.008
[33] P.C. Vinh, T.T. Tuan, D.X. Tung, N.T. Kieu, Reflection and transmission of SH waves at a very rough interface and its band gaps. J. Sound Vib. 411-422 (2017). DOI: https://doi.org/10.1016/j.jsv.2017.08.046
Go to article

Authors and Affiliations

Sri Chandrahas
1 2
ORCID: ORCID
Bhanwar Singh Choudhary
1
ORCID: ORCID
N.S.R. Krishna Prasad
2
ORCID: ORCID
Venkataramayya Musunuri
2
ORCID: ORCID
K.K. Rao
3
ORCID: ORCID

  1. Department of Mining Engineering, IIT(ISM) Dhanbad, India
  2. Department of Mining Engineering, Malla Reddy Engineering College, Hyderabad, India
  3. Manager, UCIL Mine, Kadapa , India
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper was to develop a methodology for diagnosing the causes of die-casting defects based on advanced modelling, to correctly diagnose and identify process parameters that have a significant impact on product defect generation, optimize the process parameters and rise the products’ quality, thereby improving the manufacturing process efficiency. The industrial data used for modelling came from foundry being a leading manufacturer of the high-pressure die-casting production process of aluminum cylinder blocks for the world's leading automotive brands. The paper presents some aspects related to data analytics in the era of Industry 4.0. and Smart Factory concepts. The methodology includes computation tools for advanced data analysis and modelling, such as ANOVA (analysis of variance), ANN (artificial neural networks) both applied on the Statistica platform, then gradient and evolutionary optimization methods applied in MS Excel program’s Solver add-in. The main features of the presented methodology are explained and presented in tables and illustrated with appropriate graphs. All opportunities and risks of implementing data-driven modelling systems in high-pressure die-casting processes have been considered.
Go to article

Bibliography

[1] Paturi, R.U.M., Cheruki S. (2020). Application, and performance of machine learning techniques in manufacturing sector from the past two decades: A review. Materials Today: Proceedings. 38(5), 2392-2401. DOI: https://doi.org/10.1016/j.matpr.2020.07.209
[2] Campbell, J. (2003). Castings, the new metallurgy of cast materials, second edition. Elsevier Science Ltd., ISBN: 9780750647908, 307-312.
[3] Kochański, A.W. & Perzyk, M. (2002). Identification of causes of porosity defects in steel castings with the use of artificial neural networks. Archives of Foundry. 2(5), 87-92. ISSN 1642-5308.
[4] Falęcki, Z. (1997). Analysis of casting defects. Kraków: AGH Publishers.
[5] Kim, J., Kim, J., Lee, J. (2020). Die-Casting defect prediction and diagnosis system using process condition data. Procedia Manufacturing. 51, 359-364. DOI: 10.1016/j.promfg.2020.10.051.
[6] Lewis, M. (2018). Seeing through the Cloud of Industry 4.0. In 73rd WFC, 23-27, (pp. 519-520). Krakow, Poland: Polish Foundrymen’s Association.
[7] Perzyk, M., Dybowski, B. & Kozłowski, J. (2019). Introducing advanced data analytics in perspective of industry 4.0. in die casting foundry. Archives of Foundry Engineering. 19(1), 53-57.
[8] Perzyk, M., Kozłowski, J. & Wisłocki, M., (2013). Advanced methods of foundry processes control. Archives of Metallurgy and Materials. 58(3), 899-902. DOI: 10.2478/amm-2013-0096
[9] Makhlouf, M.M., Apelian, D. & Wang, L. (1998). Microstructures and properties of aluminum die casting alloys. North American Die Casting. https://doi.org/10.2172/751030
[10] Tariq, S., Tariq, A., Masud, M. & Rehman, Z. (2021). Minimizing the casting defects in high pressure die casting using taguchi analysis. Scientia Iranica. DOI: 10.24200/sci.2021.56545.4779.
[11] Fracchia, E., Lombardo, S., & Rosso, M. (2018). Case study of a functionally graded aluminum part. Applied Sciences. 8(7), 1113.
[12] Dargusch, M.S., Dour, G., Schauer, N., Dinnis, C.M. & Savage, G. (2006). The influence of pressure during solidification of high pressure die cast aluminium telecommunications components. Journal of Materials Processing Technology. 180(1-3), 37-43.
[13] Bonollo, F., Gramegna, N., Timelli, G. High pressure die-casting: contradictions and challenges. JOM: the journal of the Minerals, Metals & Materials Society. 67(5), 901-908. DOI: 10.1007/s11837-015-1333-8.
[14] Adamane, A.R., Arnberg, L., Fiorese, E., Timelli, G., Bonollo, F. (2015). Influence of injection parameters on the porosity and tensile properties of high-pressure die cast Al-Si alloys: A Review. International Journal of Meterials. 9(1), 43-53.
[15] Gramegna, N. & Bonollo, F. (2016). HPDC foundry competitiveness based on smart Control and Cognitive system in Al-alloy products. La Metallurgia Italiana. 6, 21-24.
[16] Łuszczak, M. & Dańko, R. (2013). State the issues in the casting of large structural castings in aluminium alloys. Archives of Foundry Engineering. 13(3), 113-116. ISSN (1897-3310).
[17] Davis, J.R. (1990). ASM handbook. ASM, Metals Park, OH. 123-151, 166-16.
[18] Perzyk, M., Biernacki, R. & Kozłowski, J. (2008). Data mining in manufacturing: significance analysis of process parameters. Journal of Engineering Manufacture. 222(11), 1503-1516. DOI: 10.1243/09544054JEM1182.
[19] Koronacki, J., Mielniczuk J. Statistics for students of technical and natural sciences. WNT (209-210, 458). (in Polish).
[20] Okuniewska, A., Methods review of advanced data analysis tools, in process control and diagnostics. Piech K. (red.) Issues Actually Addressed by Young Scientists, 17, 2020, Krakow, Poland, Creativetime, 328 p., ISBN 978-83-63058-97-5
[21] Lawrence, S., Giles, C.L., Tsoi, A.C. (1996). What size neural network gives optimal generalization? Convergence Properties of Backpropagation. Technical Report UMIACS-TR-96-22 and CS-TR-3617. Institute for Advanced Computer Studies, University of Maryland. College Park, MD 20742.
[22] Tadeusiewicz, R. (2005). First electronic brain model.
[23] https://natemat.pl/blogi/ryszardtadeusiewicz/129195,pierwszy-dzialajacy-techniczny-model-mozgu

Go to article

Authors and Affiliations

A. Okuniewska
1
M.A. Perzyk
1
J. Kozłowski
1

  1. Institute of Manufacturing Technologies, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Casting is one method of making metal components that are widely used in industry and up to date. The sand casting method is used due to its simplicity, ease of operation, and low cost. In addition, the casting method can produce cast products in various sizes and is well-suited for mass production. However, the disadvantage of casting, especially gravity casting, is that it has poor physical and mechanical properties.
Tin bronze Cu20%wt.Sn is melted in a furnace, then poured at a temperature of 1100°C into a sand mold. The cast product is a rod with 400 mm in length, 10 mm in thickness, and 10 mm in width. The heat treatment mechanism is carried out by reheating the cast specimen at a temperature of 650°C, holding it for 4 hours, and then rapid cooling. The specimens were observed microstructure, density, and mechanical properties include tensile strength and bending strength. The results showed that there was a phase change from α + δ to α + β phase, an increase in density as a result of a decrease in porosity and a coarse grain to a fine grain. In addition, the tensile strength and bending strength of the Cu20wt.%Sn alloy were increased and resulted in a more ductile alloy through post-cast heat treatment.
Go to article

Bibliography

[1] C.D. Association, (1992). Copper Development Association Equilibrium Diagrams the major types of phase transformation.
[2] He, Z., Jian, C.A.O. & Ji-cai, F. (2009). Microstructure and mechanical properties of Ti6Al4V / Cu-10Sn bronze diffusion-bonded joint. Transaction Nonferrous Metals Society of China. 19, 414-417.
[3] Chen, X., Wang, Z., Ding, D., Tang, H., Qiu, L., Luo, X. & Shi, G. (2015). Strengthening and toughening strategies for tin bronze alloy through fabricating in-situ nanostructured grains. Material and Design. 1-31. ISSN: 0261-3069.
[4] Kohler, F., Campanella, T., Nakanishi, S. & Rappaz, M. (2008). Application of single pan thermal analysis to Cu – Sn peritectic alloys. Acta Materialia. 56, 1519-1528.
[5] Taslicukur, Z., Altug, G.S., Polat, S., Atapek, Ş.H., Turedi E. (2012). A Microstructural study on CuSn10 bronze produced by sand and investment casting techniques. In 21st International Conference on Metallurgy and Materials METAL 2012, 23-25 May 2012 . Brno, Czech Republic, EU.
[6] Goodway M (1992). Metals of Music. Materials Characterization. 29, 177-184.
[7] Audy J, Audy K (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5, 199-204.
[8] Debut, V., Carvalho, M., Figueiredo, E., Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Jurnal of Cultural Heritage. 19, 544-554.
[9] S.Slamet, Suyitno & Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu(20-24)wt.%Sn by sand casting on fluidity and mechanical properties, Journal of Mechanical Engineering and Science. 13(4), 6022-6035.
[10] S. Slamet, Suyitno and Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu-Sn alloys on the fluidity and microstructure by investment casting. IOP Conf. Series: Materials Science and Engineering. 547, 1-8.
[11] S. Slamet, Suyitno, Kusumaningtyas, I. & Miasa, I.M. (2021). Effect of high-tin bronze composition on physical, mechanical, and acoustic properties of gamelan materials. Archives of Foundry Engineering. 21(1), 137-145.
[12] Fletcher, N. (2012). Materials and musical instruments. Acoustics Australia. 40, 30-134.
[13] Sumarsam, (2002). Introduction to javanese gamelan (Javanese Gamelan-Beginners). Syllabus. 451, 1-28.
[14] Salonitis. K., Jolly. M. & Zeng, B. (2017). Simulation based energy and resource efficient casting process chain selection. A case study. Procedia Manufacturing. 8, 67-74.
[15] Sulaiman, S. & Hamouda, A.M.S. (2001). Modeling of the thermal history of the sand casting process. Journal of Materials Processing Technology. 113, 245-250.
[16] Kim, E., Cho, G., Oh, Y. & Junga, Y. (2016). Development of a high-temperature mold process for sand casting with a thin wall and complex shape. Thin Solid Films. 620, 70-75.
[17] S. Slamet, Suyitno, Kusumaningtyas, I. (2019). Forging process on gamelan bar tin bronze Cu-25 wt. % Sn post casting deformation to changes in microstructure, density, hardness, and acoustic properties. IOP Conf. Series: Materials Science and Engineering. 673, 1-9.
[18] S. Slamet, Suyitno, & Kusumaningtyas, I. (2020). Comparative study of bonang gamelan musical instrument between hot forging and Post Cast Heat Treatment / PCHT on microstructure and mechanical properties. IOP Conf. Series: Materials Science and Engineering. 1430, 1-9.
[19] Morando, C., Fornaro, O., Garbellini, O. & Palacio, H. (2015). Fluidity on metallic eutectic alloys. Procedia Materials Science. 8, 959-967.
[20] Pang, S., Wu, G., Liu, W., Sun, M., Zhang, Y., Liu, Z. & Ding, W. (2013). Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg-10Gd-3Y-0.5 Zr magnesium alloy. Materials Science Engineering A. 562, 152-160.
[21] Chuaiphan, W. & Srijaroenpramong, L. (2013). The Effect of Tin and heat treatment in brass on microstructure and mechanical properties for solving the cracking of nut and bolt. Applied Mechanics and Materials. 389, 237-244.
[22] Sláma, P., Dlouhý, J. & Kövér, M. (2014). Influence of heat treatment on the microstructure and mechanical properties of aluminium bronze. Materials and Technology. 48(4), 599-604.
[23] Hanson. D, Pell-Walpole, W.T. (1951). Chill-Cast Tin Bronzes. 1-368
[24] Sanchez, J.A.B.F., Bolarin, A.M. , Tello, A. & Hernandez, L.E. (2006). Diffusion at Cu / Sn interface during sintering process. Materials Science of Technology. 22, 590-596.
[25] Gupta, R., Srivastava, S., Kishor, N. & Panthi, S.K. (2016). High leaded tin bronze processing during multi-directional forging : Effect on microstructure and mechanical properties. Materials Science Engineering A. 654, 282-291.

Go to article

Authors and Affiliations

S. Slamet
1
S. Suyitno
2
I. K. Indraswari Kusumaningtyas
3

  1. Universitas Muria Kudus, Indonesia
  2. Universitas Tidar Magelang, Indonesia
  3. Universitas Gadjah Mada, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on GX120Mn13 modification performed with the SiZr38 inoculant. The microstructure of Hadfield cast steel in as-cast condition was studied through optical microscopy before and after inoculant introduction into the liquid steel. After heat treatment, mechanical properties and wear resistance tests were conducted to analyse the influence of the inoculant. The wear rate was determined according to the Standard Test Method for Determination of Slurry Abrasivity (ASTM G-75). The results show that average grain diameter, area of eqiuaxed grains crystallization and secondary dendrite arm spacing were lower after inoculation. After inoculation, the ultimate tensile strength and proof strength were higher by 8% and 4% respectively, in comparison to the initial state. The results of abrasion wear tests show that the introduction of 0.02 wt. % of zirconium significantly improved wear resistance, which was 34% better in comparison to steel without zirconium.
Go to article

Bibliography

[1] Zambrano, O.A., Tressia, G. & Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: 10.1016/j.engfailanal.2020.104621
[2] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI: 10.1016/j.msea.2018.05.059.
[3] Fujikura, M. (1986). Récents développements au Japon d’aciers austénitiques au Mn destinés aux applications amagnétiques. Matériaux & Techniques. 74, 341-353. DOI: 10.1051/mattech/198674070341.
[4] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering A. 679, 95-103. DOI: 10.1016/j.msea.2016.09.106.
[5] Pribulová, A., Babic, J. & Baricová, D. (2011) Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
[6] Kasińska, J. (2020). The Morphology of Impact Fracture Surfaces in Manganese Cast Steel Modified by Rare Earth Elements. Archives of Foundry Engineering. 20, 89-94. DOI: 10.24425/afe.2020.131308.
[7] Guzman, Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/0370-44672019730023.
[8] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel Transl. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
[9] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1
[10] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011. Volume 2, 763-771, Indianapolis, USA. ISBN: 978-1-935117-19-3
[11] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway H. (2014). Eliminating heat treatment of hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569.
[12] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
[13] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
[14] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0.

Go to article

Authors and Affiliations

S. Sobula
1
ORCID: ORCID
S. Kraiński
2

  1. AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  2. PGO S.A. Pioma Odlewnia, Oddział w Piotrkowie Trybunalskim, ul. Romana Dmowskiego 38, 97-300 Piotrków Trybunalski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of calorimetric tests of segment elements of fireplace inserts. The aim of the work was to optimize their thermal power by replacing the previously used gray cast iron with flake graphite with gray iron with vermicular graphite and replacing the existing geometry of the heat transfer surface with a more developed one. It turned out that the thermal power of the test segments made of cast iron with vermicular graphite was higher compared to the segments of the same shape made of gray cast iron with flake graphite. It was found that the use of segments made of vermicular cast iron with a ferritic matrix allowed for an increase in the thermal power value by dozen percent, compared to segments of the same shape made of vermicular cast iron with a pearlitic matrix. The test results showed that the thermal power of the test segments depends on the variant of the development of both the heat receiving surface and the heat giving off surface. The highest value of the thermal power was obtained when ribbing in the form of a lattice was used on both of these surfaces, and the lowest when using flat surfaces.
Go to article

Bibliography

[1] Directive (2005/32/EC) EUPS Eco-design.
[2] European energy policy (2007). Bruksela 10.02.2007, COM 2007.
[3] Kubica, K. (2010). Conditions for cleaner combustion of solid fuels in domestic thermal energy production installations. Gliwice: Projekt FEWE.
[4] Research report no. 317OA314 (2014). Built-in fireplace insert for solid fuel. Performance tests. Kraków: Instytut Nafty i Gazu. Zespół Laboratoriów Badawczych Sieci, Instalacji i Urządzeń Gazowych. (in Polish).
[5] Podrzucki, Cz., Wojtysik A. (1988). Plastic unalloyed cast iron. Kraków: Part II, AGH Kraków. (in Polish).
[6] Holmgren, D., Dioszegi, A. & Svensson, I.L. (2008). Effect of carbon content and solidification rate on the thermal conductivity of grey cast iron. Tsinghua Science and Technology. 13(2), 170-176.
[7] Greig, G. (1996). Modern ingot mould production. 33 I.F.C., Paper No. 12, New Delhi.
[8] Kinal, G. & Paczkowska M. (2002). The comparison of grey cast irons in the aspects of the possibility of their laser heat treatment. Journal of Research and Applications in Agricultural Engineering. 57(1), 7376.
[9] Dobrzański, L.A. (2000). A lexicon of materials science. Verlag Dashofer, version 1.03.2000 .
[10] Monroe, R.W. & Bates, C.E. (1982). Some thermal and mechanical properties of compacted graphite iron. AFS Trans. 90, 615-619.
[11] Orłowicz, A.W. (2000). Ultrasonic method in foundry industry. Solidification of Metals and Alloys. 2(45). (in Polish).
[12] Mróz, M., Orłowicz, A.W., Tupaj, M., Jacek-Burek, M., Radoń, M., Kawiński, M. (2019). Improvement of operating performance of a cast-iron heat exchanger by application of a copper alloy coating. Archives of Foundry Engineering. 19(3), 84-87.
Go to article

Authors and Affiliations

Marek Mróz
ORCID: ORCID
A.W. Orłowicz
1
ORCID: ORCID
M. Tupaj
1
ORCID: ORCID
M. Lenik
1
ORCID: ORCID
M. Kawiński
2
M.. Kawiński
2

  1. Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  2. Cast Iron Foundry KAWMET, ul. Krakowska 11, 37-716 Orły, Poland
Download PDF Download RIS Download Bibtex

Abstract

Simulation is used today in many contexts, such as simulating technology to tune or optimize performance, safety engineering, testing, training, education, and entertainment. In some industries, simulations are commonly used, but in heat treatment this is rather an exception. The paper compares the simulation of carburization and nitrocementation of 16MnCr5 steel with a practical application. The aim was to determine the applicability of chemical heat treatment simulation. We were looking for an answer to the question: to what extent can we rely on the technological design of heat treatment? The software designed the heat treatment technology. He drew the technological process of chemical-thermal treatment of 16MnCr5 steel. The thickness of the cementite layer was 1 mm and the nitrocementation 1.2 mm. Changes in mechanical properties were observed. Cementing, nitrocementing, hardness, microhardness, metallography, and spectral analysis were practically performed. This article describes the benefits of simulation, speed and accuracy of the process. The only difference was in determining the carbon potential. The simulation confirmed the practical use and its contribution in the technological process.
Go to article

Bibliography

[1] Atraszkiewicz, R., Januszewicz, B., Kaczmarek, Ł., Stachurski, W., Dybowski, K., Rzepkowski, A. (2012). High pressure gas quenching: Distortion analysis in gears after heat treatment. Materials Science & Engineering A. 558, 550-557.
[2] Mallener, H. (1990). Maß- Und Formänderungen beim Einsatzhärten. Journal of Heat Treatment and Materials. 45(1), 66-72. (in German)
[3] Jurči, P., Stolař, P. (2006). Distortion behavior of gear parts due to carburizing and quenching with different quenching media. BHM Berg - und Hüttenmännische Monatshefte. 151, 437–441. DOI: 10.1007/BF03165203
[4] Rajan, T.V., Sharma, C.P., Sharma, A. (2001). Heat treatment Principles and Techniques. New Delhi.
[5] Farokhzadeh, K., Edrisy A. (2017). Surface Hardening by Gas Nitriding. Materials Science and Materials Engineering. 2, 107-136. https://doi.org/10.1016/B978-0-12-803581-8.09163-3
[6] NITREX. (2021). Simulation software for carburizing, carbonitriding, nitriding, & nitrocarburizing processes. Retrieved September 2021 from https://www.nitrex.com/en/solutions/process-flow-controls/products/production-software/ht-tools-pro-simulator/
[7] EN 10084. 1.7131/1.7139. Cr-Mn-legierter Einsatzstahl. (2011)
[8] Parrish, G. (1999). Carbuzing: Microstructures and Properties. (pp. 55-57). ASM International.
[9] Somers, M., Christiansen, T. (2020). Nitriding of Steels. Encyclopedia of Materials: Metals and Alloys. 2, 173-189. https://doi.org/10.1016/B978-0-12-819726-4.00036-3
[10] Llewellyn, D.T. & Cook, W.T. (1977). Heat-treatment distortion in case-carburizing steels. Metals Technology. 4(1), 265-278. https://doi.org/10.1179/030716977803292385
[11] Bepari M.M.A. (2017). Carburizing: A method of case hardening of steel. Materials Science and Materials Engineering. 2, 71-106. https://doi.org/10.1016/B978-0-12-803581-8.09187-6
[12] Skočovský, P., Bokůvka, O., Konečná, R., Tillová, E. (2014). Materials science. Edis – vydavateľstvo Žilinskej university, 343. ISBN 978-80-554-0871-2. (in Slovak).

Go to article

Authors and Affiliations

E. Kantoríková
1
ORCID: ORCID
P. Fabian
1
M. Sýkorová
1

  1. Department of Technological Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Authors and Affiliations

Jan Domaradzki
1
ORCID: ORCID

  1. Uniwersytet Medyczny im. Karola Marcinkowskiego
Download PDF Download RIS Download Bibtex

Abstract

This article explores the dynamics of personal relationships within a geographically mobile, large peer group (PG) over time. Based on a case-study of a PG examined within the broader Qualitative Longitudinal Study (QLS) on ‘Peer Groups & Migration’ in Poland, the analysis focuses on the transformations of friendships from early adolescence to adulthood. The paper sheds light on friendship relationships and gauges strength of bonds over fifteen years from a spatial perspective. By specifically examining three critical moments of the PG formation (ca. age 15), leaving home (ca. 18–19), and the current transition to mid-adulthood (ca. 27–29), a retrospective and temporally dynamic portrait of friendships continuously affected by mobility is proposed. We demonstrate the entanglement of youth friendships in space (mobility) and time, arguing that a rise of transnationalism did not alleviate the preference for having one’s friends in close spatial proximity.
Go to article

Bibliography

1. Abrams, Laura S., Diane Terry. 2017. Everyday Desistance: The Transition to Adulthood Among Formerly Incarcerated. New Brunswick: Rutgers University Press.
2. Adams, Rebecca G., Rosemary Blieszner, Brian De Vries. 2000. Definitions of friendship in the third age: Age, gender, and study location effects. Journal of Aging Studies, 14, 1: 117–133. DOI 10.1016/S0890-4065(00)80019–5.
3. Allan, Graham. 1998. Friendship, sociology and social structure. Journal of Social and Personal Relationships, 15(5): 685–702. DOI 10.1177/0265407598155007.
4. Allan, Graham. 2008. Flexibility, friendship, and family. Personal Relationships, 15: 1–16. DOI 10.1111/j.1475-6811.2007.00181.x.
5. Argyle, Michael. 1999. Causes and correlates of happiness. In: D. Kahneman, E. Diener, N. Schwarz, eds. Well‐Being: The Foundations of Hedonic Psychology. New York: Russell Sage Foundation, 353–373.
6. Arnett, Jeffrey J. 2014. Adolescence and emerging adulthood. Boston, MA: Pearson.
7. Barry, Carolyn M., Stephanie D. Madsen, Larry J. Nelson, Jason S. Carrol, Sarah Badger. 2009. Friendship and Romantic Relationship Qualities in Emerging Adulthood: Differential Associations with Identity Development and Achieved Adulthood Criteria. Journal of Adult Development, 16, 209. DOI 10.1007/s10804-009-9067-x.
8. Bell, Justyna, Paula Pustułka. 2017. Multiple masculinities of Polish migrant men. Norma, 12, 2: 127–143.
9. Berndt, Thomas J. 1992. Friendship and friends’ influence in adolescence. Current directions in psychological science, 1, 5: 156–159.
10. Botterill, Kate. 2011. Mobility and immobility in the European union: experiences of young Polish people living in the UK. Studia Migracyjne – Przegląd Polonijny, 37, 1(139): 47–70.
11. Boyd, Monica. 1989. Family and Personal Networks in International Migration: Recent Developments and New Agendas. International Migration Review, 23, 3: 638–670. DOI 10.2307/2546433.
12. Cairns, David. 2014. ‘I Wouldn’t Stay Here’: Economic Crisis and Youth Mobility in Ireland. International Migration, 52, 3: 236–249. DOI 10.1111/j.1468-2435.2012.00776.x.
13. Chow, Man Chow, Holly Roelse, Duane Buhrmester, Marion K. Underwood. 2011. Transformations in friend relationships across the transition into adulthood. Relationship pathways: From adolescence to young adulthood. In: Brett Laursen, W. Andrew Collins, eds. Relationship Pathways. From Adolescence to Young Adults, Thousand Oaks, CA, US: Sage Publications, Inc, 91–113.
14. Corsaro, William A., Donna Eder. 1990. Children’s Peer Cultures. Annual Review Sociology, 16: 197–220. DOI 10.1146/annurev.so.16.080190.001213.
15. Crosnoe, Robert, Shannon Cavanagh, Glen H. Elder Jr. 2003. Adolescent friendships as academic resources: the intersection of friendship, race, and school disadvantage. Sociological Perspectives, 3, 46: 331–352. DOI 10.1525/sop.2003.46.3.331.
16. Décieux, Jean P., Andreas Heinen, Helmut Willems. 2018. Social Media and Its Role in Friendship-driven Interactions among Young People: A Mixed Methods Study. Young, 27, 1: 18–31. DOI 10.1177/1103308818755516.
17. Donovan, Catherine, Brian Heaphy, Jeffrey Weeks. 2001. Same sex intimacies: Families of choice and other life experiments. Routledge.
18. Eisenstadt, Samuel N. 1965. From Generation to Generation. Routledge.
19. Furlong, Andy, Daan Woodman, Johanna Wyn. 2011. Changing times, changing perspectives: Reconciling ‘transition’ and ‘cultural’ perspectives on youth and young adulthood. Journal of Sociology, 47, 7: 55–370. DOI 10.1177/1440783311420787.
20. Gill, Nick, Paula Bialski. 2011. New friends in new places: Network formation during the migration process among Poles in the UK. Geoforum, 42, 2: 241–249. DOI 10.1016/j.geoforum.2011.01.001.
21. Grabowska, Izabela, Paula Pustułka, Justyna Sarnowska, Natalia Juchniewicz, Marta Buler. 2017. Peer groups and Migration. Dialoguing Theory and Empirical Research. Youth Working Paper. DOI 10.23809/2.
22. Harrington, Brooke, Gary A. Fine. 2000. Opening the ‘Black Box’: Small Groups and Twenty-First-Century Sociology. Social Psychology Quarterly, 63, 4: 312–323. DOI 10.2307/2695842.
23. Harris, Judith R. 1995. Where is the child’s environment? A group socialization theory of development. Psychological review, 102, 3: 458. DOI 10.1037/0033-295X.102.3.458.
24. Hiller, Harry H., Tara M. Franz. 2004. New ties, old ties and lost ties: the use of the internet in diaspora. New Media & Society, 6, 6: 731–752. DOI 10.1177/146144804044327.
25. Humenny, Grzegorz, Paweł Grygiel. 2017. Częstość i struktura relacji przyjacielskich wśród dzieci kończących szkołę podstawową. Hejnał Oświatowy, 8–9, 175: 18–24.
26. Jaźwińska, Ewa, Marek Okólski. 2001. Ludzie na huśtawce. Migracje między peryferiami Polski i Zachodu. Warszawa: Wydawnictwo Naukowe Scholar.
27. Jones, Gill. 1999. The same people in the same places? Socio-spatial identities and migration in youth. Sociology, 33, 1: 001–022. DOI 10.1177/S0038038599000012.
28. Kandel, Denise B. 1978. Homophily, selection, and socialization in adolescent friendships. American Journal of Sociology, 84, 2: 427–436. DOI 10.1086/226792.
29. King, Russel, Aija Lulle, Laura Morosanu, Allan Williams. 2016. International youth mobility and life transitions in Europe: questions, definitions, typologies and theoretical approaches. Sussex Centre for Migration Research, Working Paper no. 86.
30. Laniado, David, Yana Volkovich, Salvatore Scellato, Cecilia Mascolo, Andreas Kaltenbrunner. 2017. The Impact of Geographic Distance on Online Social Interactions. Information Systems Frontiers, 1–19. DOI 10.1007/s10796-017-9784-9.
31. McCabe, Janice. 2016. Friends with Academic Benefits. Contexts, 15, 3: 22–29. DOI 10.1177/1536504216662237.
32. Miles, Matthew B., Michael A. Huberman. 1994. Qualitative data analysis: An expanded sourcebook. Sage.
33. Neale, Bren. 2018. What Is Qualitative Longitudinal Research? London: Bloomsbury.
34. Pahl, Ray E. 2000. On friendship. Cambridge: Polity Press.
35. Pahl, Ray E., Liz Spencer. 2004. Personal communities: not simply families of ‘fate’or ‘choice’. Current sociology, 52, 2: 199–221. DOI 10.1177/0011392104041808.
36. Pahl, Ray, Liz Spencer. 2006. Rethinking friendship: Hidden solidarities today. Princeton University Press.
37. Prusiński, Tomasz. 2017. Z badań nad przyjaźnią. Kompetencje społeczne a jakość relacji przyjacielskich. Studia Psychologica: Theoria et praxis. 17(1): 23–46.
38. Pustułka, Paula, Justyna Sarnowska. 2021. Educational choices of Polish youth in an intergenerational perspective. Journal of Education and Work, 34, 4: 414–428. DOI 10.1080/13639080.2021.1943332.
39. Pustułka, Paula, Justyna Sarnowska, Marta Buler. 2021. Resources and pace of leaving home among young adults in Poland. Journal of Youth Studies, early view: doi.org /10.1080/13676261.2021.1925638.
40. Pustułka, Paula, Natalia Juchniewicz, Izabela Grabowska. 2017. Participant recruitment challenges in researching peer groups and migration retrospectively. Przegląd Socjologii Jakościowej, 13, 4: 48–69.
41. Pustułka, Paula, Dominika Winogrodzka, Marta Buler. 2019. Mobilne pokolenie wyboru? Migracje międzynarodowe a płeć i role rodzinne wśród Milenialsek. Studia Migracyjne – Przegląd Polonijny, 174, 4: 139–164. http://www.ejournals.eu/Studia-Migracyjne/2019/4(174)/art/15321/
42. Roseneil, Sasha, Shelley Budgeon. 2004. Cultures of Intimacy and Care beyond ‘the Family’: Personal Life and Social Change in the Early 21st Century. Current Sociology, 52, 2: 135–159. DOI 10.1177/0011392104041798.
43. Ryan, Allison M. 2000. Peer groups as a context for the socialization of adolescents’ motivation, engagement, and achievement in school. Educational Psychologist, 35, 2: 101–111. DOI 10.1207/S15326985EP3502_4.
44. Ryan, Louise. 2015. Friendship-making: Exploring network formations through the narratives of Irish highly qualified migrants in Britain. Journal of Ethnic and Migration Studies, 41, 10: 1664–1683.
45. Sinanan, Jolynna, Catherine Gomes. 2020. ’Everybody needs friends’: Emotions, social networks and digital media in the friendships of international students. International Journal of Cultural Studies, 23, 5: 674–691.
46. Stake, Robert E. 2008. Qualitative case studies. In: N.K. Denzin, Y.S. Lincoln, eds. Strategies of qualitative inquiry. Thousand Oaks, CA, US: Sage Publications, Inc, 119–149.
47. Szafraniec, Krystyna. 2019. Młodzi 2018: cywilizacyjne wyzwania: edukacyjne konieczności. Warszawa: A PROPOS Serwis Wydawniczy Anna Sikorska-Michalak.
48. Szarota, Piotr. 2014. Przyjaźń pod mikroskopem. Problemy metodologiczne w badaniach nad funkcjonowaniem relacji przyjacielskich. Psychologia Społeczna, 28: 28–37.
49. Szczepańska, Mariola, Elżbieta Gaweł-Luty. 2010. Przyjaźń jako wartość w relacjach społecznych dzieci i młodzieży. Kraków: Oficyna Wydawnicza Impuls.
50. Thomson, Rachel, Robert Bell, Janet Holland, Sheila Henderson, Sheena McGrellis, Sue Sharpe. 2002. Critical moments: Choice, chance and opportunity in young people’s narratives of transition. Sociology, 36, 2: 335–354.
51. Urberg, Kathryn A., Serdar M. Değirmencioğlu, Colleen Pilgrim. 1997. Close friend and group influence on adolescent cigarette smoking and alcohol use. Developmental Psychology, 33, 5: 834–844. DOI 10.1037/0012-1649.33.5.834.
52. Valkenburg, Patti M., Jochen Peter. 2009. The Effects of Instant Messaging on the Quality of Adolescents’ Existing Friendships: A Longitudinal Study. Journal of Communication, 59, 1: 79–97. DOI 10.1111/j.1460-2466.2008.01405.x.
53. Wasilewska, Halina. 2013. Znaczenie przyjaźni w rozwoju psychospołecznym dzieci i młodzieży. Nauczyciel i Szkoła, 1, 53: 83–101.
54. Weber, Max. 1994. Political writings. Cambridge: Cambridge University Press.
55. White, Anne. 2010. Young people and migration from Poland. Journal of Youth Studies, 13, 5: 565–580. DOI 10.1080/13676261.2010.487520.
56. Wiśniewska, Zuzanna. 2008. Is a friend in need always a friend indeed? Attitude towards emotional support in friendship: a cross-cultural study. Psychological Studies, 46, 2: 5–18.
Go to article

Authors and Affiliations

Marta Buler
1
ORCID: ORCID
Paula Pustułka
1
ORCID: ORCID

  1. SWPS Uniwersytet Humanistycznospołeczny
Download PDF Download RIS Download Bibtex

Abstract

Polski rynek dostaw jedzenia na żądanie klienta (food delivery) to wschodzący sektor w ramach gospodarki cyfrowej, który doświadczył przyspieszenia w czasie pandemii Sars-Cov-2. Praca kurierów w ramach globalnych, korporacyjnych platform typu Uber Eats, Glovo czy Wolt nigdy wcześniej nie miała tak dużego społecznego znaczenia. Jednak za hasłem pracy platformowej kryje się wiele negatywnych zjawisk (niskie zarobki, długie godziny pracy czy algorytmiczne zarządzanie, na które kurier nie ma wpływu). Wykorzystując teorię przyspieszenia społecznego jako inspirację teoretyczną, w artykule staram się odpowiedzieć na pytanie, czy platformowe kooperatywy mogą być w Polsce alternatywą dla globalnych platform cyfrowych. Istotnym kontekstem jest tutaj pandemia Sars-Cov-2. W artykule wykorzystano wyniki wywiadów pogłębionych z kurierami, partnerami flotowymi oraz założycielami/właścicielami kooperatyw platformowych z branży dostaw jedzenia na żądanie w Polsce.
Go to article

Bibliography

1. Alvarez-Palau, Eduard, Marta Viu-Roig, Josep Reixach Molet. 2020. How do food delivery platforms affect urban logistics? The case of Glovo in Barcelona as a preliminary Study. W: I. Ramos de Luna, À. Fitó-Bertran, J. Lladós-Masllorens, F. Liébana-Cabanillas, eds. Sharing Economy and the Impact of Collaborative Consumption. Hershey, PA:IGI Global, 221–236.
2. Borkin, Simon. 2019. Platform co-operatives – solving the capital conundrum. Raport. Nesta and Co-operatives UK.
3. Burnicka, Anna, Jan Zygmuntowski. 2019. #CoopTech: Platformowy kooperatyzm jako silnik solidarnego rozwoju. Warszawa: Instrat.
4. Cant, Callum. 2019. Riding for Deliveroo: Resistance in the New economy. Cambridge: Polity.
5. Cramer, Jude, Alan Krueger. 2016. Disruptive change in the taxi business: the case of Uber. American Economic Review: Papers & Proceedings, 106, 5: 177–82.
6. Czaja, Izabela, Robert Śliwa. 2019. Kooperatywy – przedsiębiorcze formy organizacyjne w gospodarce lokalnej. Przedsiębiorczość – Edukacja, 15, 1: 126–143.
7. De Araujo Leão, Alessandro, Luciano Dos Santos Cabral, Rilmar Pereira Gomes, Bruno Pereira Gonçalves, Jean Lobo de Oliveira, David Barbosa de Alencar. 2019. Shared economy: A uber-eats case study in Manaus City. International Journal for Innovation Education and Research, 7, 11: 450–466.
8. De Groen, Willem, Zachary Kilhoffer, Karolien Lenaerts, Irene Mandl. 2018. Employment and Working Conditions of Selected Types of Platform Work. Luxembourg: Publications Office of the European Union.
9. De Stefano, Valerio. 2015. The rise of the ‘just-in-time workforce’: on-demand work, crowd work and labour protection in the “gig-economy”. SSRN Electronic Journal, 71: 1–51.
10. Drahokoupil, Jan, Agnieszka Piasna. 2019. Work in the Platform Economy: Deliveroo Riders in Belgium and the SMart Arrangement. ETUI Working Paper 2019.01, Bruksela: ETUI.
11. Dunn, Michael. 2020. Making gigs work: Digital platforms. Job quality and worker motivations. New Technology, Work and Employment, 35, 2: 232–249.
12. Falcón-Pérez, Carmen, Juana Fuentes-Perdomo. 2019. Improving social well-being through platform cooperativism. CIRIEC-España, Revista de Economía Pública, Social y Cooperativa, 95: 161–190.
13. Harmon, Ellie, M. Six Silberman. 2019. Rating Working Conditions on Digital Labor Platforms, Computer Supported Cooperative Work, 28: 911–960.
14. Hua, Julietta, Kasturi Ray. 2018. Beyond the Precariat: Race, Gender, and Labor in the Taxi and Uber Economy. Social Identities, 24, 2: 271–289.
15. Huws, Ursula, Neil Spencer, Simon Joyce. 2016. Crowd Work in Europe. Foundation for European Progressive Studies, Hertfordshire Business School.
16. Ivanova, Mirela, Joanna Bronowicka, Eva Kocher, Anne Degner. 2018. The App as a Boss? Control and Autonomy in Application-Based Management. Work in Progress interdisziplinärer Arbeitsforschung, 2. Frankfurt: Viadrina.
17. Jackson, Sam, Kathleen Kuehn. 2016. Open Source, Social Activism and “Necessary Trade-offs” in the Digital Enclosure: A Case Study of Platform Co-operative, Loomio.org. TripleC, 14, 2: 413–427.
18. Kashyap, Rina, Anjali Bhatia. 2018. Taxi drivers and taxidars: a case study of Uber and Ola in Delhi. Journal of Developing Societies, 34, 2: 1–26.
19. Kenner, Jeff. 2019. Uber drivers are workers: the expanding scope of the worker concept in the UKs gig economy. W: J. Kenner, I. Florczak, M. Otto, eds. Precarious work: the challenge for labour law in Europe. Edward Elgar Publishing, 197–221. 20. Kessler, Sarah. 2019. Fuchy, dzieła, zlecenia: praca przyszłości czy przyszłość pracy? Warszawa: PWN.
21. Kołtan, Jacek. 2020. Świat wysokich prędkości. Późna nowoczesność i teoria krytyczna Harmuta Rosy. W: H. Rosa. Przyspieszenie, wyobcowanie, rezonans: projekt krytycznej teorii późnonowoczesnej czasowości. Gdańsk: Europejskie Centrum Solidarności.
22. Kulik, Wojciech. 2020. Bolt Food startuje w Polsce. Kto (i za ile) może z niego skorzystać? Dostęp 21.06.2021. https://www.benchmark.pl/aktualnosci/bolt-food-w-polsce-ile-kosztuje-i-gdzie-juz-dziala.html.
23. McCann, Duncan, Edanur Yazici. 2018. Disrupting together: the challenges (and opportunities) for platform cooperatives. Raport. The New Economics Foundation.
24. Monty, Renata. 2018. Creative economy: how the interface of Uber Eats and iFood could change your menu. Brazilian Journal of Operations & Production Management, 15, 3: 413–419.
25. Munn, Luke. 2019. Cash burning machine: Uber’s logic of planetary expansion. TripleC, 17, 2: 1–17.
26. Muszyński, Karol, Valeria Pulignano, Markieta Domecka, Adam Mrozowicki. 2021. Coping with precarity during COVID-19: A study of platform work in Poland. International Labour Review. First published: 10.06.2021.
27. Parker, Geoffrey, Marshall van Alstyne, Sangeet Choundary. 2016. Platform revolution. How networked markets are transforming the economy and how to make them work for you. New York: Norton & Company.
28. Pérotin, Virginie. 2015. What do we really know about worker co-operatives? Raport. Co-operatives UK.
29. Pichault, François, Tui McKeown. 2019. Autonomy at work in the gig economy: analysing work status, work content and working conditions of independent professionals. New Technology, Work and Employment, 34, 1: 59–72.
30. Piasna, Agnieszka, Jan Drahokoupil. 2019. Digital Labour in Central and Eastern Europe: Evidence from the ETUI Internet and Platform Work Survey. ETUI Research Paper – Working Paper 2019.12. Dostępne: www.etui.org/publications (28.04.2020).
31. Polkowska, Dominika. 2019a. Uber jako socjo-techniczna sieć. Zastosowanie teorii aktora-sieci do analizy pracy platformowej. Studia Socjologiczne, 4, 235: 245–272. DOI 10.24425/sts/2019.126162.
32. Polkowska, Dominika. 2019b. Does the App Contribute to the Precarization of Work? A Case of Uber Drivers in Poland. Partecipazione e Conflitto, 12, 3: 717–741.
33. Polkowska, Dominika. 2021. Platform work during the COVID-19 pandemic: a case study of Glovo couriers in Poland. European Societies, 23, sup1: S321-S331. DOI 10.1080/14616696.2020.1826554.
34. Rainie, Lee, Barry Wellman. 2012. Networked: The New Social Operating System. MIT Press: Cambridge, MA.
35. Raj, Manav, Arun Sundararajan, Calum You. 2020. COVID-19 and Digital Resilience: Evidence from Uber Eats. SSRN 30.06.2020: https://ssrn.com/abstract=3625638.
36. Rosa, Hartmut. 2012. Przyspieszenie społeczne. Etyczne i polityczne konsekwencje desynchronizacji społeczeństwa wysokich prędkości (przekład Dorota Chabrajska). Ethos. Kwartalnik Instytutu Jana Pawła II KUL, 25, 3 (99): 78–116.
37. Rosa, Hartmut. 2020. Przyspieszenie, wyobcowanie, rezonans: projekt krytycznej teorii późnonowoczesnej czasowości. Przekład Jacek Kołtan. Gdańsk: Europejskie Centrum Solidarności.
38. Rosenblat, Alex, Luke Stark. 2016. Algorithmic labor and information asymmetries: a case study of Uber’s drivers. International Journal of Communication, 10: 3758–3784.
39. Rozwadowska, Adriana, Piotr Szostak. 2020. Wyzyskują i kurierów, i restauratorów. W pandemii pieniądze płyną do Ubera, Wolta czy Pyszne.pl, nie do polskiej gastronomii. Gazeta Wyborcza, 23 listopada 2020 https://wyborcza.biz/bizne-s/7,159911,26528002,wyzyskuja-i-kurierow-i-restauratorow-w-pandemii-pienia-dze.html?fbclid=IwAR27tWcxphNWrzIKwVVStf2B89nnlKTrgZaOR71uz6PjjxixVNlbk__vYUI.
40. Schneider, Nathan. 2016. The meanings of words. W: T. Scholz, N. Schneider, eds. Ours to Hack and to Own: The Rise of Platform Cooperativism, A New Vision for the Future of Work and a Fairer Internet. New York-London: OR Books.
41. Scholz, Trebor. 2014. Platform Cooperativism vs. the Sharing Economy, https://medium.com/@trebors/platform-cooperativism-vs-the-sharing-economy-2ea737f1b5ad, dostęp 21.06.2021.
42. Scholz, Trebor. 2016. How Platform Cooperativism can unleash the network. W: T. Scholz, N. Schneider, eds. Ours to Hack and to Own: The Rise of Platform Cooperativism, A New Vision for the Future of Work and a Fairer Internet. New York-London: OR Books.
43. Scholz, Trebor. 2018. Own This! A portfolio of platform co-operativsm, in progress. Dostęp 20.05.2021 https://s3.ap-southeast-2.amazonaws.com/hdp.au.prod.app. vic-engage.files/4215/5669/4856/Platform_Cooperativism_Consortium.pdf.
44. Schoukens, Paul. 2020. Digitalisation and social security in the EU. The case of platform work: from work protection to income protection? European Journal of Social Security, 22, 4: 434–451.
45. Sędek, Marcin. 2017. Sukces z dostawą do domu – historia Pyszne.pl. Marketing Biznes, dostęp 23.02.2021 https://marketingibiznes.pl/start-up-zone/sukces-dostawa-domu-historia-pyszne-pl/.
46. Stewart, Andrew, Jim Stanford. 2017, Regulating Work in the Gig Economy: What Are the Options? Economic and Labour Relations Review, 28, 3: 420–37.
47. Szczepański, Jan. 1961. Uwagi o przedmiocie i zadaniach socjologii pracy. W: B. Biegeleisen-Żelazowski, T. Tomaszewski, A. Sarapata, J. Rosner, red. Jak pracuje człowiek. Z badań polskich psychologów, socjologów i ekonomistów. Warszawa: Książka i Wiedza.
48. Śledziewska, Katarzyna, Renata Włoch. 2020. Gospodarka cyfrowa. Jak nowe technologie zmieniają świat. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego.
49. Umer, Hamza. 2021. Illusory freedom of physical platform workers: Insights from Uber Eats in Japan. The Economic and Labour Relations Review, Online first, 1–16.
50. Wood, Alex, Mark Graham, Vili Lehdonvirta, Isis Hjorth. 2019. Good gig, bad gig: autonomy and algorithmic control in the global gig economy. Work, Employment and Society, 33, 1: 56–75.
51. Zhu, Jiang, Olivera Marjanovic. 2021. A Different Kind of Sharing Economy: A Literature Review of Platform Cooperatives. Proceedings of the 54th Hawaii International Conference on System Sciences, https://hdl.handle.net/10125/71119 978-0-9981331-4-0, 4128-4137.
52. Zwick, Austin. 2018. Welcome to the Gig Economy: Neoliberal Industrial Relations and the Case of Uber. GeoJournal, 83, 4 :679–91.
53. Zygmuntowski, Jan. 2018. Commoning in the Digital Era: Platform Cooperativism as a Counter to Cognitive Capitalism. Praktyka Teoretyczna, 1, 27: 168–192.
54. Zygmuntowski, Jan. 2020. Kapitalizm sieci. Warszawa: Rozruch.

Go to article

Authors and Affiliations

Dominika Polkowska
1
ORCID: ORCID

  1. Uniwersytet Marii Curie-Skłodowskiej
Download PDF Download RIS Download Bibtex

Abstract

Artykuł przedstawia wyniki badania poświęconego ilościowej eksploracji odmian tożsamości narodowej Polaków oraz analizuje, jak wyróżnione rodzaje tożsamości narodowej przekładają się na postawy wobec różnych mniejszości i innych narodów. W tym celu wykorzystuje dane z ilościowego badania kwestionariuszowego przeprowadzonego na próbie dorosłych Polaków (15 lat i starszych) losowanej z operatu adresowego (N=1005). Na podstawie analizy skupień metodą k-średnich wyróżnia trzy kategorie tożsamości narodowej: narodowych apatrydów, dążących do obywatelskości oraz kredencjonalistów. Wyniki badania pokazują również, że wyróżnione odmiany polskiej tożsamości narodowej w sposób istotny statystycznie różnicują i przewidują postawy wobec mniejszości etnicznych, religijnych i seksualnych oraz wobec innych narodów. Badanie potwierdza istnienie pewnych uniwersalnych wzorów definiowania tożsamości narodowej oraz zależności pokazujących wpływ kryteriów etnicznych, jak i posługiwania się większą liczbą kryteriów w definiowaniu tożsamości narodowej na bardziej wykluczające postawy. Bazując na reprezentatywnej próbie oraz polegając na metodzie analizy umożliwiającej zidentyfikowanie rozłącznych kategorii artykuł weryfikuje istniejące typologizacje polskiej tożsamości narodowej.
Go to article

Bibliography

1. Anderson, Benedict. 1983. Imagined Communities: Reflections on the Origin and Spread of Nationalism. London: Verso.
2. Ariely, Gal. 2012. Globalisation and the decline of national identity? An exploration across sixty‐three countries. Nations and Nationalism, 18, 3: 461–482.
3. Balogun, Bolaji. 2020. Race and racism in Poland: Theorising and contextualising ‘Polish-centrism’. The Sociological Review, 68, 6: 1196–1211. DOI: 10.1177/0038026120928883.
4. Billig, Michael. 1995. Banal Nationalism. London: Sage.
5. Bokszański, Zbigniew. 2002. Polacy o Polsce. Duma narodowa Polaków w perspektywie porównań międzynarodowych. Przegląd Socjologiczny, 52, 2: 89–108.
6. Bokszański, Zbigniew. 2005. Tożsamości zbiorowe. Warszawa: Wydawnictwo Naukowe PWN.
7. Bonikowski, Bart; Paul DiMaggio. 2016. Varieties of American popular nationalism. American Sociological Review, 81, 5: 949–980.
8. Breton, Raymond. 1988. From ethnic to civic nationalism: English Canada and Quebec. Ethnic and Racial Studies, 11, 1: 85–102. 9. Budyta-Budzyńska, Małgorzata. 2010. Socjologia narodu i konfliktów etnicznych. Warszawa: Wydawnictwo Naukowe PWN.
10. Brubaker, Rogers. 1999. The Manichean myth: rethinking the distinction between ‘civic’ and ‘Ethnic’ nationalism. W: H. Kriesi, K. Armington, H. Siegrist, A. Wimmer, red. Nation and National Identity: The European Experience in Perspective. Chur and Zürrich: Verlag Rüegger, 55–71.
11. CBOS. 2015. Tożsamość narodowa i postrzeganie praw mniejszości narodowych i etnicznych. Komunikat z badań nr 106/2015. https://cbos.pl/SPISKOM.PO-L/2015/K_106_15.PDF. Dostęp 15.07.2021.
12. CBOS. 2018. Stosunek Polaków i Czechów do przyjmowania uchodźców. Komunikat z badań nr 87/2018. https://www.cbos.pl/SPISKOM.POL/2018/K_087_18.PDF. Dostęp 15.08.2021.
13. CBOS. 2019a. 15 lat członkostwa Polski w Unii Europejskiej. Komunikat z badań nr 59/2019. https://www.cbos.pl/SPISKOM.POL/2019/K_059_19.PDF. Dostęp 15.07.2021.
14. CBOS. 2019b. Stosunek Polaków do związków homoseksualnych. Komunikat z badań nr 90/2019. https://www.cbos.pl/SPISKOM.POL/2019/K_090_19.PDF. Dostęp 15.08.2021.
15. CBOS. 2020. Stosunek do innych narodów. Komunikat z badań nr 31/2020. https://www.cbos.pl/SPISKOM.POL/2020/K_031_20.PDF.
16. Conversi, Daniele. 2020. The ultimate challenge: Nationalism and climate change. Nationalities Papers, 48, 4: 625–636. DOI: 10.1017/nps.2020.18.
17. Duara, Prasenij. 2021. The Ernest Gellner Nationalism Lecture: Nationalism and the crises of global modernity. Nations and Nationalism, 27: 610–622. DOI: 10.1111/nana.12753.
18. Galent, Marcin; Kubicki, Pawel. 2012. New urban middle class and national identity in Poland. Polish Sociological Review, 179: 385.
19. Gellner, Ernest. 1997. Nationalism. New York: University Press.
20. Grodecki, Mateusz. 2021. Occasional Nationalists: The National Ideology of Ultras. Nationalities Papers, 49, 3: 562–575.
21. Green, Eva; Sarrasin, Oriane.; Fasel, Nicole; Staerklé, Christian. 2011. Nationalism and patriotism as predictors of immigration attitudes in Switzerland: A municipality‐level analysis. Swiss Political Science Review, 17, 4: 369–393.
22. Helbling, Marc; Reeskens, Tim; Wright, Matthew. 2016. The mobilisation of identities: A study on the relationship between elite rhetoric and public opinion on national identity in developed democracies. Nations and Nationalism, 22, 4: 744–767.
23. Hobsbawm, Eric J. 2007. Globalization, Democracy and Terrorism. London: Brown.
24. Jaskułowski, Krzysztof; Majewski, Piotr; Surmiak, Adrianna. 2018. Teaching the nation: History and nationalism in Polish school history education. British Journal of Sociology of Education, 39, 1: 77–91.
25. Jaskułowski, Krzysztof. 2019. The everyday politics of migration crisis in Poland: Between nationalism, fear and empathy. Cham: Palgrave Macmillan.
26. Jaskulowski, Krzysztof. 2020. The Politics of a National Identity Survey: Polishness, Whiteness, and Racial Exclusion. Nationalities Papers, 1–14. DOI: 10.1017/nps.2020.68.
27. Kantar Public. 2018. Społeczne kryteria polskości. Listopad 2018.
28. King, Anthony. (2000). Football fandom and post‐national identity in the New Europe. The British journal of sociology, 51, 3: 419–442.
29. Kilias, Jarosław. 2004. Wspólnota abstrakcyjna: Zarys socjologii narodu. Warszawa: Wydawnictwo IFiS PAN.
30. Kłoskowska, Antonina. 1996. Kultury narodowe u korzeni. Warszawa: Wydawnictwo Naukowe PWN.
31. Koseła, Krzysztof. 2003. Polak i katolik. Splątane tożsamości. Warszawa: Wydawnictwo IFiS PAN.
32. Kunovich, Robert 2009. The sources and consequences of national identification. American Sociological Review, 2009, 74, 4:573–593. DOI:10.1177/000312240907400404.
33. Kurczewski, Jacek. 2007. Self-identification structure in Opole Silesia and the Kashubia: A comparative analysis. Polish Sociological Review, 157, 1: 87–104.
34. Lemańczyk, Magdalena. 2010. Tożsamość narodowa pomorskich liderów mniejszości niemieckiej. Studia Socjologiczne, 198, 3: 99–110.
35. Lubbers, Marcel; Coenders, Marcel. 2017 Nationalistic attitudes and voting for the radical right in Europe. European Union Politics, 18, 1: 98–118.
36. Łuczewski, Michał. 2012. Odwieczny naród: Polak i katolik w Żmiącej. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
37. MacQueen, James. 1967. Some methods for classification and analysis of multivariate observations. W: L. M. Le Cam; J. Neyman, red. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Berkeley: University of California Press, 281–297.
38. Medrano, Juan Díez. 2005. Nation, Citizenship and Immigration in Contemporary Spain. International Journal on Multicultural Societies, 7: 133–56.
39. Nowicka, Ewa. 1990. Dystans wobec innych ras i narodów w społeczeństwie polskim. W: E. Nowicka, red. Swoi i obcy. Warszawa: Instytut Socjologii Uniwersytetu Warszawskiego, 155–210.
40. Nowicka, Ewa; Łodziński, Sławomir. 2001. U progu otwartego świata: poczucie polskości i nastawienia Polaków wobec cudzoziemców w latach 1988-1998. Kraków: Zakład Wydawniczy Nomos.
41. Pierzchała, Marcin. 2011. Społeczne kryteria polskości w opinii Polaków w latach 1988–2008 a problem włączania obcokrajowców do uczestnictwa w polskiej wspólnocie narodowej. Acta Universitatis Lodziensis. Folia Sociologica, 38: 149–167. 42. Smith, Anthony. 1991. National Identity. London: Penguin.
43. Smith, Anthony. 2009. Kulturowe podstawy narodów. Przekład Wojciech Usakiewicz. Kraków: Wydawnictwo UJ.
44. Sobolewski, Marek; Sokołowski, Andrzej. 2017. Grupowanie metodą k-średnich z warunkiem spójności. Prace naukowe uniwersytetu ekonomicznego we Wrocławiu, 468: 215–221.
45. Storm, Ingrid. 2018. When does religiosity matter for attitudes to immigration? The impact of economic insecurity and religious norms in Europe. European Societies, 20, 4: 595–620.
46. Szacki, Jerzy. 2004. O tożsamości (zwłaszcza narodowej). Kultura i Społeczeństwo, 48, 3: 9–40.
47. Ścigaj, Paweł. 2012. Tożsamość narodowa. Zarys problematyki. Kraków: Księgarnia Akademicka.
48. Triandafyllidou, Anna. 1998. National identity and the ‘other’. Ethnic and Racial Studies, 21, 4: 593–612.
49. Wagner, Urlich; Julia C., Becker; Oliver, Christ; Thomas F., Pettigrew; Peter, Schmidt. 2012. A longitudinal test of the relation between German nationalism, patriotism, and outgroup derogation. European Sociological Review, 28, 3: 319–332.
50. Wodak, Ruth; de Cillia, Rudolf; Reisigl, Martin; Liebhart, Karin. 2009. The Discursive Construction of National Identity. Edinburgh: Edinburgh University Press.
51. Wysocki, Artur. 2018. Stosunek społeczeństwa polskiego do przeszłości a tożsamość narodowa. Analiza badań sondażowych. Annales Universitatis Mariae Curie-Sklodowska, sectio I–Philosophia-Sociologia, 43, 1: 111–124.
52. Zwet van der, Arno. 2015. Operationalising national identity: the cases of the Scottish National Party and Frisian National Party. Nations and Nationalism, 21, 1: 62–82.
Go to article

Authors and Affiliations

Mateusz Grodecki
1
ORCID: ORCID

  1. Akademia Pedagogiki Specjalnej im. Marii Grzegorzewskiej
Download PDF Download RIS Download Bibtex

Abstract

Artykuł analizuje, często pomijany, ideologiczny wymiar klasy średniej. Jego celem jest zebranie rozproszonych spostrzeżeń na ten temat i wpisanie ich we współczesną dyskusję o kształcie, kondycji i znaczeniu klasy średniej. Tekst przedstawia obecną w polskiej socjologii w latach dziewięćdziesiątych ubiegłego wieku i po roku 2000 krytykę dominującego wówczas podejścia do analizy klasowej. Ukazuje klasę średnią jako postulat, typ idealny wzorowany na krajach rozwiniętych i część modernizacyjnego projektu czasów transformacji, a co za tym idzie obietnicę składaną zarówno państwom, jak i jednostkom. Wskazując na aktualność i ponadlokalny zasięg przytaczanej krytyki, autor dowodzi, że klasa średnia to część hegemonicznej, neoliberalnej ideologii. Tym samym definiuje klasę średnią jako przestrzeń intersubiektywności, społeczny konstrukt reprodukujący się w oparciu o własną wizję i centralną kategorię współczesnego systemu społeczno-ekonomicznego.
Go to article

Bibliography

1. Althusser, Louis. 1976. Ideologie i aparaty ideologiczne państwa. Wskazówki do badań. Przekład Andrzej Staroń. In: L. Althusser. Positions. Paris: Editions Sociales.
2. Atkinson, Anthony B., Andrea Brandolini. 2011. On the Identification of the “Middle Class”. Society for the Study of Economic Inequality. Working Paper Series. http://www.ecineq.org/milano/WP/ECINEQ2011-217.pdf. Dostęp 27.10.2020.
3. Banerjee, Abhijit V., Esther Duflo. 2008. What Is Middle Class about the Middle Classes around the World? Journal of Economic Perspectives, 22, 2: 3–28. DOI:10.1257/jep.22.2.3.
4. Barbehön, Marlon, Michael Haus. 2015. „Middle Class and Welfare State – Discursive Relations”. Critical Policy Studies, 9, 4: 473–84. DOI 10.1080/19460171. 2015.1009840.
5. Beck, Ulrich. 2002. Społeczeństwo ryzyka. W drodze do innej nowoczesności. Przekład Stanisław Cieśla. Warszawa: Wydawnictwo Naukowe Scholar.
6. Bell, Daniel. 1975. Nadejście społeczeństwa postindustrialnego. Próba prognozowania społecznego. Przekład zbiorowy. Warszawa: Instytut Badania Współczesnych Problemów Kapitalizmu.
7. Berger, Peter L., Thomas Luckmann. 1983. Społeczne tworzenie rzeczywistości. Przekład Józef Niżnik. Warszawa: Państwowy Instytut Wydawniczy.
8. Block, Fred, Margaret R. Somers. 2020. Karl Polanyi. Krytyka wolnorynkowego fundamentalizmu. Przekład Joanna Bednarek i Agnieszka Kowalczyk. Poznań: Wydawnictwo Ekonomiczne Heterodox.
9. Boltanski, Luc, Eve Chiapello. 2005. The New Spirit of Capitalism. Przekład Gregory Elliott. London: Verso.
10. Bourdieu, Pierre. 1996. Physical Space, Social Space and Habitus. Vilhelm Aubert Memorial Lecture. Oslo: University of Oslo, the Institute for Social Research.
11. Bourdieu, Pierre. 2006. Dystynkcja. Społeczna krytyka władzy sądzenia. Przekład Piotr Biłos. Warszawa: Wydawnictwo Naukowe Scholar.
12. Bourdieu, Pierre, Löic J.D. Wacquant. 2001. Zaproszenie do socjologii refleksyjnej. Przekład Anna Sawisz. Warszawa: Oficyna Naukowa.
13. Burris, Val. 1986. The Discovery of the New Middle Class. Theory and Society, 15, 3: 317–49.
14. Cannon, Lynn Weber. 1980. On the absolute or relative basis of perception: The case for middle class identification. Social Indicators Research, 8, 3: 347–63. DOI: 10.1007/BF00292645.
15. CBOS. 2020. Klasa niższa, średnia i wyższa. Charakterystyka w oparciu o autoidentyfikacje Polaków. Komunikat z badań 61/2020. Warszawa: Fundacja Centrum Badania Opinii Społecznej. https://www.cbos.pl/SPISKOM.POL/2020/K_061_20. PDF. Dostęp 28.07.2021.
16. Clarke, John, Tony Jefferson, Brian Roberts. 2003. Subcultures, Cultures and Class: a Theoretical Overview. In: T. Jefferson i S. Hall, eds. Resistance Through Rituals. Youth Subcultures in Post-War Britain. London: Taylor & Francis, 9–74.
17. Crăciun, Magdalena, Ștefan Lipan. 2020. Introduction: The Middle Class in Post-socialist Europe: Ethnographies of Its “Good Life”. East European Politics and Societies, 34, 2: 423–40. DOI: 10.1177/0888325420902509.
18. De Angelis, Massimo. 2010. The Production of Commons and the “Explosion” of the Middle Class. Antipode, 42, 4: 954–77. DOI: 10.1111/j.1467-8330.2010.00783.x.
19. Domański, Henryk. 1994. Społeczeństwa klasy średniej. Warszawa: Wydawnictwo IFiS PAN.
20. Domański, Henryk. 2002. Polska klasa średnia. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego.
21. Domański, Henryk. 2016. Omniworyzm jedzenia i stratyfikacja społeczna. Studia Socjologiczne 2, 221: 123–143.
22. Domański, Henryk. 2021. Klasa średnia i problem merytokracji. wszystkoconajwazniejsze.pl, 16 lipca 2021. https://wszystkoconajwazniejsze.pl/henryk-domanski-klasa-srednia-i-problem-merytokracji/. Dostęp 5.08.2021.
23. Donner, Henrike. 2017. The Anthropology of the Middle Class Across the Globe. Anthropology of This Century, 18 (1). http://aotcpress.com/articles/anthropology-middle-class-globe/. Dostęp 30.10.2020.
24. Drozdowski, Rafał. 1998. Kontrowersje wokół klasy średniej w Polsce lat dziewięćdziesiątych. Kultura i Społeczeństwo, 42, 1: 85–102.
25. Dunn, Elizabeth C. 2008. Prywatyzując Polskę. Przekład Przemysław Sadura. Warszawa: Wydawnictwo Krytyki Politycznej. 26. Eagleton, Terry. 1991. Ideology. An Introduction. London, New York: Verso.
27. Ehrenreich, Barbara, John Ehrenreich. 1977. The Professional Managerial Class. Radical America, 11, 2: 7–31.
28. Erikson, Robert, John H. Goldthorpe. 1992. The Constant Flux. A Study of Class Mobility in Industrial Societies. Oxford: Clarendon Press.
29. Fernandes, Leela. 2006. India’s New Middle Class. Minneapolis, MN: University of Minnesota Press.
30. Fisher, Mark. 2009. Capitalist Realism: Is There No Alternative? Winchester, UK; Washington, D.C.: Zero Press.
31. Gdula, Maciej, Przemysław Sadura, red. 2012a. Style życia i porządek klasowy w Polsce. Warszawa: Wydawnictwo Naukowe Scholar.
32. Gdula, Maciej, Przemysław Sadura, red. 2012b. Style życia jako rywalizujące uniwersalności. W: M. Gdula, P. Sadura, red. Style życia i porządek klasowy w Polsce. Warszawa: Wydawnictwo Naukowe Scholar, 15–70.
33. Giza-Poleszczuk, Anna. 2012. Znaczenie i przyszłość klasy średniej. Res Publica Nowa, 208, 18: 21–22.
34. Gouldner, Alvin Ward. 1979. The future of intellectuals and the rise of the new class. New York: Seabury Press.
35. Harvey, David. 2008. Neoliberalizm. Historia katastrofy. Przekład Jerzy Paweł Listwan. Warszawa: Instytut Wydawniczy Książka i Prasa.
36. Heiman, Rachel, Carla Freeman, Mark Liechty, eds. 2012. The Global Middle Classes: Theorizing through Ethnography. Santa Fe, NM: SAR Press.
37. Jacyno, Małgorzata. 1997. Iluzje codzienności. O teorii socjologicznej Pierre’a Bourdieu. Warszawa: Wydawnictwo IFiS PAN.
38. Jacyno, Małgorzata. 2004. Konsument jako romantyczny przedsiębiorca. Etos «nowej klasy średniej» w przekazie reklamowym w polskich mediach. W: H. Domański, A. Ostrowska, A. Rychard, red. Niepokoje polskie. Warszawa: Wydawnictwo IFiS PAN, 347–60.
39. Jaeger, Mads Meier, Tally Katz-Gerro. 2008. The Rise of the Cultural Omnivore 1964-2004. The Danish National Center for Social Research. Working Paper. https://pure.vive.dk/ws/files/444063/WP_09_2008.pdf. Dostęp 9.10.2021.
40. Jameson, Frederic. 1994. The Seeds of Time. New York, Chichester, West Sussex: Columbia University Press.
41. Jameson, Fredric. 1979. Reification and Utopia in Mass Culture. Social Text, 1: 130–48. DOI: 10.2307/466409.
42. Kallis, Giorgos, Vasilis Kostakis, Steffen Lange, Barbara Muraca, Susan Paulson, Matthias Schmelzer. 2018. Research On Degrowth. Annual Review of Environment and Resources, 43, 1: 291–316. DOI: 10.1146/annurev-environ-102017-025941.
43. Karwacki, Arkadiusz, Tomasz Szlendak. 2020. Fulfilled promise or a tool of political rhetoric? Analysis of the consequences of the Polish “500+ Family” Program. Problemy Polityki Społecznej, 51: 75–98. DOI: 10.31971/pps/131160.
44. Kharas, Homi. 2017. The Unprecedented Expansion of the Global Middle Class: an Update. Global Economy and Development Program. Washington, DC: The Brookings Institution. https://www.brookings.edu/wp-content/uploads/2017/02/global_20170228_global-middle-class.pdf. Dostęp 5.08.2021.
45. Kocejko, Bartosz. 2021. Nowy ład podatkowy “pogrzebie klasę średnią”? Uspokajamy: za wcześnie na taki nekrolog. Oko Press. 20 maja 2021. https://oko.press/nowy-lad-podatkowy-pogrzebie-klase-srednia-uspokajamy-za-wczesnie-na-takinekrolog/. Dostęp: 5.08.2021.
46. Kochhar, Rakesh. 2015. AGlobal Middle Class Is More Promise than Reality. Washington, DC: Pew Research Center. https://www.pewresearch.org/global/2015/07/08/a-global-middle-class-is-more-promise-than-reality/. Dostęp: 5.08.2021.
47. Kukołowicz, Paula. 2019. Klasa średnia w Polsce. Czy istnieje polski self-made man? Warszawa: Polski Instytut Ekonomiczny. https://pie.net.pl/wp-content/uplo-ads/2019/09/PIE-Raport_Klasa_srednia.pdf. Dostęp: 28.07.2021.
48. Laclau, Ernesto, Chantal Mouffe. 2007. Hegemonia i socjalistyczna strategia. Przekład Sławomir Królak. Wrocław: Wydawnictwo Naukowe Dolnośląskiej Szkoły Wyższej Edukacji TWP.
49. Lamont, Michèle. 1992. Money, Morals, and Manners : The Culture of the French and American Upper-Middle Class. Chicago: University of Chicago Press.
50. Liechty, Mark. 2003. Suitably Modern: Making Middle-Class Culture in a New Consumer Society. Princeton, Oxford: Princeton University Press.
51. Matthews, Peter, Annette Hastings. 2013. Middle-Class Political Activism and Middle-Class Advantage in Relation to Public Services: A Realist Synthesis of the Evidence Base. Social Policy & Administration, 47, 1: 72–92. DOI: 10.1111/j.1467-9515.2012.00866.x.
52. Mokrzycki, Edmund. 1994. Nowa klasa średnia? Studia Socjologiczne, 132, 1: 37–52.
53. Nissanov, Zoya. 2017. What Does the Middle Class Refer To? W: Z. Nissanov, Economic Growth and the Middle Class in an Economy in Transition. The Case of Russia. New York: Springer International Publishing.
54. Nunn, Alex, Daniela Tepe-Belfrage. 2017. Disciplinary Social Policy and the Failing Promise of the New Middle Classes: The Troubled Families Programme. Social Policy and Society, 16, 1: 119–29. DOI: 10.1017/S1474746416000452.
55. OECD. 2019. Under Pressure: The Squeezed Middle Class. Paris: OECD Publishing. DOI: 10.1787/689afed1-en.
56. Ost, David. 2010. Obrachunek z kategorią «klasy» w dyskursie politycznym postkomunistycznej polski. W: M. Czyżewski, S. Kowalski, T. Tobako, red. Retoryka i polityka. Dwudziestolecie polskiej transformacji. Warszawa: Wydawnictwa Akademickie i Profesjonalne, 249–72.
57. Ost, David. 2015. Stuck in the Past and the Future: Class Analysis in Postcommunist Poland. East European Politics and Societies, 29, 3: 610–24. DOI: 10.1177/0888325415602058.
58. Pakulski, Jan, Malcolm Waters. 1996. The Death of Class. London, Thousand Oaks, CA: SAGE.
59. Piwowarski, Radosław. 2017. Czy polski system podatkowy jest progresywny? Analiza rozkładu obciążeń w zależności od formy zatrudnienia. Gospodarka w Praktyce i Teorii, 42, 1: 33–50. DOI: 10.18778/1429-3730.42.03.
60. Pluciński, Przemysław. 2010. Dyskurs klasowy polskiej socjologii potransformacyjnej: niedyskretny urok klasy średniej. W: P. Żuk, red. Podziały klasowe i nierówności społeczne. Refleksje socjologiczne po dwóch dekadach realnego kapitalizmu w Polsce. Warszawa: Oficyna Naukowa, 101–16.
61. Pressman, Steven. 2015. Defining and Measuring the Middle Class. Working Paper. Great Barrington, MA: American Institute for Economic Research. https://www.aier.org/wp-content/uploads/2016/10/WP007-Middle-Class.pdf. Dostęp 27.10.2020.
62. Sawulski, Jakub. 2019. Kogo obciążają podatki w Polsce? IBS Policy Paper 1/2019. Warszawa: Instytut Badań Strukturalnych. https://ibs.org.pl/app/uploads/2019/03/ IBS_Policy_Paper_01_2019.pdf. Dostęp 5.08.2021.
63. Sosnowska, Anna. 1997. Tu, tam – pomieszanie. Studia Socjologiczne, 147, 4: 61–85.
64. Sowa, Jan. 2011. Fantomowe ciało króla. Peryferyjne zmagania z nowoczesną formą. Kraków: Universitas.
65. Staniszkis, Jadwiga. 2001. Postkomunizm. Próba opisu. Gdańsk: słowo/obraz terytoria.
66. Suh, Doowon. 2002. Middle-Class Formation and Class Alliance. Social Science History, 26, 1: 105–37. DOI: 10.1017/S014555320001230X.
67. Szcześniak, Magda. 2016. Normy widzialności. Tożsamość w czasach transformacji. Warszawa: Fundacja Bęc Zmiana, Instytut Kultury Polskiej UW.
68. Świrek, Krzysztof. 2018. Teorie ideologii na przecięciu marksizmu i psychoanalizy. Warszawa: Wydawnictwo Naukowe PWN.
69. Tittenbrun, Jacek. 2016. Klasa średnia: mit czy byt? Studia Krytyczne/Critical Studies, 2: 62–85.
70. Vaughan-Whitehead, Daniel, Rosalia Vazquez-Alvarez, Nicolas Maître. 2016. Is the World of Work behind Middle-Class Erosion? In: D. Vaughan-Whitehead, ed. Europe’s Disappearing Middle Class? Cheltenham, UK, Northampton, MA, Geneva, Switzerland: Edward Elgar Publishing, International Labour Office, 1–61. https://ideas.repec.org/h/elg/eechap/17301_1.html. Dostęp 29.10.2020.
71. Wacquant, Loïc J.D. 2009. Punishing the Poor. Durham, NC: Duke University Press. DOI: 10.2307/j.ctv11smrv3.
72. Wacquant, Löic J.D. 1992. Making Class: The Middle Class(es) in Social Theory and Social Structure. In: S. McNall, R. Levine, R. Fantasia, eds. Bringing Class Back In. Boulder: Westview Press, 39–64.
73. Wiedmann, Thomas, Manfred Lenzen, Lorenz T. Keyßer, Julia K. Steinberger. 2020. Scientists’ warning on affluence. Nature Communications, 11, 1: 3–107. DOI: 10.1038/s41467-020-16941-y.
74. Wright, Erik Olin. 1996. The Continuing Relevance of Class Analysis — Comments. Theory and Society, 25, 5: 693–716. DOI: 10.1007/BF00188102.
75. Wright, Erik Olin. 2015. Understanding Class. London: Verso.
76. Wróblewski, Michał. 2016. Hegemonia i władza. Filozofia polityczna Antonia Gramsciego i jej współczesne kontynuacje. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
77. Zagórski, Zdzisław. 2002. Klasa średnia transformacji postkomunistycznej. Wybrane problemy. W: Z. Zagórski, red. Socjologiczne portrety grup społecznych. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego, 61–88.
78. Zalewski, Dariusz. 2011. Klasa średnia a ukryte państwo opiekuńcze. Polityka Społeczna, 444, 3: 1–9.
79. Zhang, Li. 2010. In Search of Paradise. Ithaca, NY: Cornell University Press.


Go to article

Authors and Affiliations

Krzysztof Lepczyński
1
ORCID: ORCID

  1. Uniwersytet Mikołaja Kopernika w Toruniu
Download PDF Download RIS Download Bibtex

Abstract

In this text, I argue that sociology can only really understand the social impact of marketing by theorizing it as a powerful system of practices legitimized by a comprehensive cultural concept. In the first section, I discuss the specific time and place of the birth of marketing. In the second part, I discuss the essence of that truly Copernican revolution (Keith 1960). In the third section, I present the ‘need-related’ industry that emerged in the frame of the founding idea. Finally, I discuss a basic marketing tool: segmentation. Selecting the target group for a branded offer is one of the key marketing commandments and reaching that group is the key marketing task. Hence, marketing engages in (re) creating and bringing to light target groups, which it then supports, talks with, and listens to. This means that marketing has taken the role of advocating and mediating groups’ existence (Latour 2005), engaging in this task over one trillion US dollars annually.
Go to article

Bibliography

1. Appudarai, Arjun. 2006. The Thing Itself. Public Culture, 18, 1: 15–22. DOI: 10.1215/08992363-18-1-15.
2. Arnould, Eric J., Thompson, Craig J. 2005. Consumer Culture Theory (CCT): Twenty Years of Research. Journal of Consumer Research, 31, 4: 868–882. DOI: 10.1086/426626.
3. Arvidsson, Adam. 2005. Brands: A critical perspective. Journal of Consumer Culture, 5, 2: 235–58. DOI: 10.1177/1469540505053093.
4. Bauman, Zygmunt. 2001. Community: Seeking Safety in an Insecure World. Oxford: Polity.
5. Beane T.P., Ennis D.M. 1987. Market Segmentation: A Review. European Journal of Marketing, 21, 5: 20–42. DOI: 10.1108/EUM0000000004695.
6. Belk, Russell W., Costa, Janeen Arnold. 1998. The Mountain Man Myth: A Contemporary Consuming Fantasy. Journal of Consumer Research, 25 (December), 218–240. DOI: 10.1086/209536.
7. Billig, Michael, Tajfel, Henry. 1973. Social categorization and similarity in intergroup behavior. European Journal of Social Psychology, 3: 27–52. DOI: 10.1002/ ejsp.2420030103.
8. Boorstin, Daniel J. 1973. The Americans: The democratic experience. New York: Random House.
9. Bourdieu, Pierre 2006. O dystynkcji. Społeczna krytyka władzy sądzenia. Trans. Piotr Biłos. Warszawa: Wyd. Naukowe Scholar.
10. Bullmore, Jeremy 1998. Behind the Scenes in Advertising. London: NTC Publications.
11. Chwe, Michael Suk-Young. 2013. Rational Ritual: Culture, Coordination, and Common Knowledge. Princeton University Press.
12. Cook, Karen S., ed. 2001. Trust in Society. New York: Russell Sage.
13. Corstjens, Judith, Corstjens, Marcel. 1995. Store Wars: The Battle for Mindspace and Shelfspace. Chichester: J. Wiley.
14. Cova, Bernard. 1997. Community and consumption: Towards a definition of the “linking value” of product or services. European Journal of Marketing, 31, 3/4: 297–316. DOI: 10.1108/03090569710162380.
15. Dichter, Eric. 1964. Handbook of Consumer Motivations: The Psychology of the World of Objects. New York: McGraw Hill.
16. Douglas, Mary. 2007. Czystość i zmaza. Trans. Marta Bucholc. Warszawa: PIW.
17. Douglas, Mary, Isherwood, Baron. 2021. The World of Goods: Toward an anthropology of consumption. London and New York: Routledge.
18. Drucker, Peter Ferdinand. 1957. Landmarks of tomorrow: A report on the new. NY: Harper &Brothers.
19. Drucker, Peter Ferdinand. 1973. Management: Tasks, Responsibilities, Practices. New York: Harper & Row.
20. Durkheim, Emile. 1916/1965. The Elementary Forms of the Religious Life. New York: The Free Press.
21. Durkheim, Emile. 1982. The Rules of Sociological Method. New York: The Free Press.
22. Edelstein, Michael. 2008. War and the American Economy in the Twentieth Century. Cambrodge: Cambridge University Press.
23. Elias, Norbert. 1980. Przemiany obyczajów w cywilizacji Zachodu. Trans. Tadeusz Zabłudowski. Warszawa: PWN.
24. Feldwick, Paul. 2002. What is Brand Equity, Anyway? London: NTC Publications.
25. Foedermayr, Eva K., Diamantopoulos, Adamantios. 2008. Exploring the construct of segmentation effectiveness: Insights from international companies and experts. Journal of Strategic Marketing, 16, 2: 129–156. DOI: 10.1080/09652540801981579.
26. Fogel, Gyonguyi Konyu, Hailey, Victoria. 2011. Segmentation Strategies for Targeting Subcultures with Value Proposition. In: Roy D.P., Trimble C., Singh M., eds. The Impact of Technology on Marketing’s Value Proposition. Proceedings from the Annual Conference of the American Management Association.
27. Giza, Anna. 2017. Uczeń czarnoksiężnika, czyli społeczna historia marketingu. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego.
28. Gorbatov, Sergey, Khapova, Svetlana N., Lysova, Evgenia I. 2018. Personal Branding: Interdisciplinary Systematic Review and Research Agenda, Frontiers in Psychology, 9 (November): 1–17. DOI: 10.3389/fpsyg.2018.02238.
29. Grazia, Victoria de. 2005. Irresistible Empire. America’s Advance through Twentieth-Century Europe. Cambridge, Massachusets–London, England: The Belknap Press of Harvard University Press.
30. Halawa, Mateusz. 2013. Tylu Polaków naraz widzieć… O statystycznym wytwarzaniu społeczeństwa. In: Giza A., ed. Gabinet luster. O kształtowaniu samowiedzy Polaków w dyskursie publicznym. Warszawa: Wyd. Naukowe Scholar, 34–66.
31. Hernik, Joanna 2014. Refleksje nad rozwojem marketingu – ujęcie historyczne. Marketing i Rynek, 8: 82–90.
32. Igo, Sarah Elisabeth. 2008. The Averaged American. Surveys, Citizens, and the Making of a Mass Public. Harvard: Harvard University Press.
33. Kamiński, Jacek. 2014. Historyczne badania marketingu. Marketing i Rynek, 8: 98–104.
34. Kaufmann, Jean Claude. 2004. Ego. Socjologia jednostki. Trans. Krzysztof Wakar. Warszawa: Oficyna Naukowa.
35. Keith, Robert J. 1960. The Marketing Revolution. Journal of Marketing, 24, 3: 35–38. DOI: 10.1177/002224296002400306.
36. Kimmel, Allan J. 2012. Psychological Foundations of Marketing. London: Routledge.
37. Klein, Naomi. 2000. No Logo. London: Harper Collins.
38. Knorr-Cetina, Karen. 2006. The Market. Theory, Culture & Society, 23: 2–3. DOI: 10.1177/0263276406062702.
39. Kotler, Philip. 1972. Marketing Management: Analysis, Planning, and Control. Englewood Cliffs, NJ: Prentice Hall International.
40. Kotler, Philip, Armstrong, Gary. 2008. Principles of Marketing. Upper Saddle River, NJ: Pearson International Edition.
41. Kotler, Philip, Kartajaya, Hermawan, Setiawan, Iwan. 2010. Marketing 3.0. Trans. Dorota Gasper. Warszawa: Wyd. MT Biznes.
42. Kotler, Philip, Keller, Keven Lane. 2012. Marketing. Trans. Marek Zawiślak, Jacek Środa. Poznań: Rebis.
43. Kozielski, Robert. 2013. Ewolucja marketingu – wymiar historyczny i naukowy. In: Grzegorczyk W., ed. Marketing w obliczu nowych wyzwań rynkowych. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
44. Kozinets, Robert V. 1999. E-Tribalized Marketing? The Strategic Implications of Virtual Communities of Consumption, European Management Journal, 17, 3: 252–264. DOI: 10.1016/S0263-2373(99)00004-3.
45. Kozinets, Robert V. 2001. Utopian Enterprise: Articulating the Meanings of Star Trek’s Culture of Consumption. Journal of Consumer Research, 28, 1: 67–88. DOI: 10.1086/321948.
46. Kuhn, Thomas. 1962/1970. Structure of Scientific Revolutions. Chicago: University of Chicago Press. Lancaster, Kelvin J. 1966. A New Approach to Consumer Theory. Journal of Political Economy, 74: 132 –157. DOI: 10.1086/259131.
47. Latour, Bruno. 1993. The Pasteurization of France. Harvard: Harvard University Press.
48. Latour, Bruno. 2005. Reassembling the Social. An Introduction to Actor-Network-Theory. Oxford: Oxford University Press.
49. Lebow, Victor. 1955. Price Competition in 1955. Journal of Retailing 2 (spring). journal-of-retailing1955.pdf (ablemesh.co.uk).
50. Lepenies, Philippe. 2016. The Power of a Single Number: A Political History of GDP. New York: Columbia University Press.
51. Lindström, Martin 2005. Brand Sense: Build Powerful Brands through Touch, Taste, Smell, Sight and Sound. New York: Free Press.
52. Lotko, Aleksander. 2013. Marketing wobec ponowoczesności. Warszawa: Wyd. Ce-DeWu.
53. Luhmann, Niklas. 2017. Trust and Power. NY: Polity Press
54. Maffesoli, Michel. 1996. The Time of the Tribes: The Decline of Individualism in Mass Society. Thousand Oaks, CA: Sage.
55. Mark, Margaret, Pearson, Caroline. 2001. The Hero and The Outlaw. Building Extraordinary Brands Through the Power of Archetypes. New York: McGraw-Hill Education.
56. Marody, Mirosława. 2021. Individual after Modernity: A Sociological Perspective. London and New York: Routledge.
57. Mason, Katy J., Kjellber, Hans, Hagberg, Johan, eds. 2018. Marketing Performativity: theories, practices and devices. London: Routledge.
58. Moore, David W. 2008. The Opinion Makers. Boston: Beacon Press.
59. Muniz, Albert M, JR, O’Guinn, Thomas.C. 2001. Brand Community, Journal of Consumer Research, 27, 4: 412–431. DOI: 10.1086/319618.
60. Myers, James H. 1996. Segmentation and Positioning for Strategic Marketing Decisions. American Marketing Association. DOI: 10.2307/3151936.
61. Narojek, Winicjusz. 1980. Społeczeństwo otwartej rekrutacji: próba antropologii klimatu stosunków międzyludzkich we współczesnej Polsce. Warszawa: PWN.
62. Nelson, Jon P. 2005. Beer Advertising and Marketing Update: Structure, Conduct, and Social Costs. Review of Industrial Organization, 26, 3: 269–306. DOI: 10. 1007/s11151004-8113-x.
63. Noelle-Neumann, Elisabeth. 2004. Spirala milczenia. Trans. Joanna Gilewicz. Zysk i S-ka.
64. Ogilvy, David. 2011. Confessions of an Advertising Man. Southbank Publishing.
65. O’Guinn, Thomas, Muniz, Albert M. JR. 2004. Communal Consumption and the Brand. In: Mick D.G., Ratneshwar S., eds. Inside Consumption: Frontiers of Research on Consumer Motives, Goals, and Desires. London: Routledge.
66. Park, Robert. 1921. The Social Organism and the Collective Mind. The American Journal of Sociology, 27, 1: 1–21.
67. Reed, David. 2005. Airlines Try to Make Internet Work for them’ USA Today 31 May, URL (accessed 14 August 2007): http://www.usatoday.com/travel/2005-10-31 – airlines-web_x.htm
68. Ries, Al, Trout, Jack. 1992. Positioning: The Battle for Your Mind. New York: Warner Books.
69. Ries, Al, Trout, Jack. 1997. Marketing Warfare. New York: McGraw Hill Education.
70. Ritzer, George. 2004. The McDonaldization of Society (4th edn). Thousand Oaks, CA: Pine Forge Press.
71. Sartori, Giovanni. 2007. Homo videns. Telewizja i postmyślenie. Trans. Jerzy Uszyński. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego.
72. Schmitt, Bernd H. 1999. Experiential Marketing: How to Get Customers to Sense, Feel, Think, Act, Relate. New York, Free Press.
73. Sellers, Patricia, Erdman, Andrew. 1993. Fall for Phillip Morris, Fortune, 3.05.1993: http://archive.fortune.com/magazines/fortune/fortune_archive/1993/05/03/77805/ index.htm, accessed 31 December 2015.
74. Skrzypek, Andrzej. 2009. Historia społeczna Europy XIX i XX wieku. Poznań: Wydawnictwo Poznańskie.
75. Smith, Adam. 1989. Teoria uczuć moralnych. Warszawa: PWN.
76. Smith, Wendell R. 1956. Product Differentiation and Market Segmentation as Alternative Marketing Strategies. Journal of Marketing, 21, 1: 3–8. DOI: 10.1177/002224295602100102.
77. Sulkunen, Pekka. 2009. The Saturated Society: Governing Risk and Lifestyles in Consumer Culture. https://www.researchgate.net/publication/292737463_The_Saturated_Society_Governing_Risk_and_Lifestyles_in_Consumer_Culture/citation/download.
78. Sułek, Antoni. 2001. Sondaż polski. Przygarść rozpraw o badaniach ankietowych. Warszawa: Wydawnictwo IFiS PAN.
79. Sułek, Antoni. 2006. O badaniu i kreowaniu opinii publicznej. In: Żuk P., ed. Media i władza. Warszawa: Wyd. Naukowe Scholar.
80. Sułek, Antoni. 2010. Sedymenty sondażowe: o badaniu, tworzeniu i „kreowaniu” opinii publicznej. In: Sułek A., ed. Obrazy z historii i życia socjologii w Polsce. Warszawa: Oficyna Naukowa.
81. Szpakowska, Małgorzata. 2003. Chcieć i mieć. Samowiedza obyczajowa w Polsce czasu przemian. Warszawa: Wydawnictwo W.A.B.
82. Szwed, Robert. 2011. Reprezentacje opinii publicznej w dyskursie publicznym. Lublin: Wydawnictwo KUL.
83. Tadajewski, Mark. 2015. The Rotary Club and the Promotion of the Social Responsibilities of Business in the Early 20th Century. Business&Society, 56, 7: 13–24. DOI: 10.1177/0007650315609048.
84. Tedlow, Richard S. 1990. New and Improved: The Story of Mass Marketing in America. Basic Books, N.Y.
85. Tedlow, Richard S., Jones, Geoffrey, eds. 1993. The Rise and Fall of Mass Marketing. Routledge, N.Y.
86. Terranova, Tiziana. 2000. Free Labor: Producing Culture for the Digital Economy. Social Text, 63, 18, 2: 33–58. DOI: 10.1215/01642472-18-2_63-33.
87. Vigarello, Georges. 1996. Czystość i brud. Trans. Bella Szwarcman-Czarnota. Warszawa: W.A.B.
88. Venter, Peet, Wright, Alex, Dibb, Sally. 2018. Performing marketing segmentation: a performative perspective. In: Mason, K., Kjellber, H., Hagberg, J. eds. Marketing Performativity: Theories, Practices and Devices. London: Routledge.
89. Weber, Max. 1930/2001. Protestant Ethic and the Spirit of Capitalism. New York: Routledge.
90. Weber, Max. 1922, 1978. Economy and Society. Berkeley: University of California Press.
91. Wreden, Nick. 2005. Profit Brand: How to Increase Profitability, Accountability and Sustainability of Your Brand. London: Kogan Page.
92. Znaniecki, Florian. 1971. Nauki o kulturze: narodziny i rozwój. Warszawa: PWN.
93. Zwick, Detlev., Bonsu, Samuel K., Darmody, Aron. 2008. Putting Consumers to Work: `Co-creation` and new marketing govern-mentality. Journal of Consumer Culture, 8, 2: 163–196. DOI: 10.1177/1469540508090089.


Go to article

Authors and Affiliations

Anna Giza
1
ORCID: ORCID

  1. Wydział Socjologii Uniwersytetu Warszawskiego
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the article is to present a preliminary contextualization of transhumanism on the basis of some of the classical motifs in social theory. In the first section, I critically refer to the most popular definitions of transhumanism and comment on some of the inherent discrepancies within its own techno-progressive agenda. In the second section, I briefly scrutinize some of the critical reactions against the concept of biotechnological human enhancement with regard to its paradoxical appeal to religion, its ambivalent stance towards education, and to the concept of human nature. Finally, I confront the cultural implications of transhumanism by applying Émile Durkheim’s critique of modern humanism as well as Peter L. Berger’s and Thomas Luckmann’s theory of symbolic universes. In general, I interpret transhumanism as an anthropological paradigm shift that entails a cultural recentering of late-modern societies on the basis of a new, technology-centered symbolic universe.
Go to article

Bibliography

1. Annas, George J., Lori B. Andrews, Rosario M. Isasi. 2002. Protecting the Endangered Human: Toward an International Treaty Prohibiting Cloning and Inheritable Alterations. American Journal of Law & Medicine, 28, 2-3: 101–132.
2. Archer, Margaret S. 1995. Realist Social Theory: the Morphogenetic Approach. Cambridge: Cambridge University Press.
3. Archer, Margaret S. 1996. Culture and Agency. The Place of Culture in Social theory. Cambridge: Cambridge University Press.
4. Babich, Babette. 2017. Nietzsche’s Posthuman Imperative: On the “All-too-Human” of Transhumanism. In: Y. Tuncel, ed. N ietzsche and Transhumanism: Precursor or Enemy? Newcastle: Cambridge Scholars Publishing, 101–132.
5. Bardziński, Filip. 2014. Transhumanism and Evolution. Considerations on Darwin, Lamarck and Transhumanism. Ethics in Progress, 5, 2: 103–115.
6. Beck, Ulrich. 1992. Risk Society. Towards a New Modernity. M. Ritter (Trans.). London: Sage Publications.
7. Becker, Philipp V. 2015. Der neue Glaube and die Unsterblichkeit. Transhumanismus, Biotechnik und digitaler Kapitalismus. Wien: Passagen Verlag.
8. Berger, Peter L. Thomas Luckmann. 1991. The Social Construction of Reality. A Treatise in the Sociology of Knowledge. London: Penguin Books.
9. Bostrom, Nick. 2003. Human Genetic Enhancements: A Transhumanist Perspective. The Journal of Value Inquiry, 37, 4: 493–506.
10. Bostrom, Nick. 2004. Transhumanism: The World’s Most Dangerous Idea? Betterhumans. www.nickbostrom.com/papers/dangerous.html (retrieved: 19.02.2021).
11. Bostrom, Nick. 2005a. A History of Transhumanist Thought. Journal of Evolution and Technology, 14(1): 1-25.
12. Bostrom, Nick. 2005b. Transhumanist Values. Journal of Philosophical Research, 30 (Supplement): 3–14.
13. Bostrom, Nick. 2005c. In Defense of Posthuman Dignity. Bioethics, 19, 3: 202–214.
14. Bostrom, Nick. 2008. Why I Want to be a Posthuman when I Grow Up. In: B. Gordijn, R. Chadwick, eds. Medical Enhancement and Posthumanity. The International Library of Ethics, Law and Technology 2(1). Dordrecht: Springer, 107–136.
15. Bostrom, Nick. 2013. Existential Risk Prevention as Global Priority. Global Policy, 4, 1: 15–31.
16. Campa, Riccardo. 2009. Transhumanism and Epistemology. Swissfuture. Magazin für Zukunftsmonitoring, 2: 18–22.
17. Casey, Timothy K. 2005. Nature, Technology, and the Emergence of Cybernetic Humanity. In: H. W. Baillie, T. K. Casey, eds. Is Human Nature Obsolete? Genetics, Bioengineering, and the Future of the Human Condition. Cambridge: The MIT Press, 35–65. 18. Chernilo, Daniel. 2014. The idea of philosophical sociology. The British Journal of Sociology, 65, 2: 338–357.
19. Cole-Turner, Ronald. 1993. The New Genesis. Theology and the Genetic Revolution. Louisville: Westminster/John Knox Press. 20. Durkheim, Émile. 1995. T he Elementary Forms of Religious Life. K. E. Fields (Trans.). New York: The Free Press.
21. Durkheim, Émile. 2003. The Rules of Sociological Method and Selected Texts on Sociology and its Method. Translated by W. D. Halls. Basingstoke: Palgrave Macmillan.
22. Durkheim, Émile. 2005. The Evolution of Educational Thought. In: K. Thompson, ed. Readings from Emile Durkheim, M. A. Thompson (Trans.). London & New York: Routledge, 130–137.
23. Ferrando, Francesca. 2013. Posthumanism, Transhumanism, Antihumanism, Metahumanism, and New Materialisms. Existenz. An International Journal in Philosophy, Religion, Politics, and the Arts, 8, 2: 26–32.
24. Foucault, Michel. 2005. The Order of Things. An Archeology of the Human Sciences. London and New York: Routledge.
25. Fukuyama, Francis. 2002. Our Posthuman Future. Consequences of the Biotechnology Revolution. New York: Farrar, Straus and Giroux.
26. Fukuyama, Francis. 2004. Transhumanism. Foreign Policy, 144: 42–43.
27. Fuller, Steve. 2011. Humanity 2.0. What it Means to be Human Past, Present and Future. Basingstoke: Palgrave Macmillan.
28. Fuller, Steve. 2019. Nietzschean Meditations. Untimely Thoughts at the Dawn of the Transhuman Era. Basel: Schwabe Verlag.
29. Fuller, Steve, Veronika Lipińska. 2014. The Proactionary Imperative. A Foundation for Transhumanism. Basingstoke: Palgrave Macmillan.
30. Geraci, Robert. 2014. Technology and Religion. In: W. S. Bainbridge & M. C. Roco, eds. Handbook of Science and Technology Convergence. Cham: Springer International Publishing, 907–917.
31. Giddens, Anthony. 1971. “The ‘Individual’ in the Writings of Émile Durkheim.” European Journal of Sociology, 12, 2: 210–228.
32. Gilbert, Margaret. 1994. “Durkheim and social facts.” In:W. S. F. Pickering, H. Martins, eds. Debating Durkheim. London and New York: Routledge, 86–109.
33. Goldberg, Steven. 2009. “Does the Wall Still Stand? The Implications of Transhumanism for the Separation of Church and State.” Speech at the Workshop on Transhumanism and the Future of Democracy, Templeton Research Lectures at the Arizona State University Center for the Study of Religion and Conflict, 1–6.
34. Habermas, Jürgen. 1987. The Philosophical Discourse of Modernity. Twelve Lectures. F. Lawrence (Trans). Cambridge: Polity Press.
35. Habermas, Jürgen. 2003. The Future of Human Nature. Cambridge: Polity Press.
36. Harrison, Peter, Joseph Wolyniak. 2015. The History of «Transhumanism». Notes and Queries, 62, 3: 465–467.
37. Hefner, Philip, Ann M. Pederson, Susan Barreto. 2015. Our Bodies are Selves. Cambridge: The Lutterworth Press.
38. Hefner, Philip. 1993. The Human Factor. Evolution, Culture, and Religion. Minneapolis: Fortress Press.
39. Hughes, James. 2004. Citizen Cyborg. Why Democratic Societies Must Respond to the Redesigned Human of the Future. Cambridge: Westview Press.
40. Huxley, Julian. 1957. New Bottles for New Wine. London: Chatto & Windus.
41. Jones, Robert A. 2003. „Émile Durkheim.” In: G. Ritzer, ed. The Blackwell Companion to Major Classical Social Theories. Oxford: Blackwell Publishing, 194–238.
42. Jones, Susan S. 2001. Durkheim Reconsidered. Cambridge: Polity Press.
43. Klichowski, Michał. 2015. “The end of Education, or what do Trans-Humanists dream of,” Standard Journal of Educational Research and Essay, 3, 6: 136–138.
44. Leidenhag, Mikael. 2020. Saved through Technology: Exploring the Soteriology and Eschatology of Transhumanism. Religion Compass, 14: 1–9.
45. Lilley, Stephen J. 2013. Transhumanism and Society: The Social Debate Over Human Enhancement. Dordrecht: Springer.
46. Lindemann, Gesa. 2009. Das Soziale von seinen Grenzen her denken. Göttingen: Velbrück Wissenschaft.
47. Lukes, Steven. 1972. Émile Durkheim. His Life and Work – a Historical and Critical Study. New York: Harper & Row.
48. Manzocco, Roberto. 2019. Transhumanism: Engineering the Human Condition. History, Philosophy and Current Status. Chichester: Springer.
49. Matthewman, Steve. 2011. Technology and Social Theory. Basingstoke: Palgrave Macmillan.
50. More, Max. 1990. Transhumanism: Towards a Futurist Philosophy. Extropy, 6: 6–12.
51. More, Max. 1993. Technological self-transformation: Expanding personal extropy, Extropy, 10: 15–24.
52. More, Max. 2013. The Philosophy of Transhumanism. In: M. More, N. Vita-More, eds. T he Transhumanist Reader: Classical and Contemporary Essays on the Science, Technology, and Philosophy of the Human Future. Chichester: Wiley-Blackwell, 3–17.
53. Nahm, Torsten. 2013. Transhumanismus: Die letzte große Erzählung. In: M. J. Sun, ed. Reader zum Transhumanismus. Norderstedt: Books on Demand, 11–21.
54. Prisco, Giulio. 2013. Transcendent Engineering. In: M. More, N. Vita-More, eds. The Transhumanist Reader: Classical and Contemporary Essays on the Science, Technology, and Philosophy of the Human Future. Chichester: Wiley-Blackwell, 234–240.
55. Ranisch Robert, Stefan L. Sorgner. 2014. Introducing Post- and Transhumanism. In: R. Ranisch, S. L. Sorgner, eds. Post- and Transhumanism. An Introduction. Frankfurt am Main: Peter Lang, 7–27.
56. Rawls, Anne W. 1996. Durkheim’s Epistemology: The Neglected Argument. American Journal of Sociology, 102: 430–482.
57. Rosa, Hartmut. 2013. Social Acceleration. A New Theory of Modernity. J. Trejo-Mathys (Trans.). New York: Columbia University Press.
58. Ross, Jeremy A. 2016. Durkheim and the Homo Duplex: Anthropocentrism in Sociology. Sociological Spectrum, 37, 1: 1–9.
59. Ruhloff, Jörg. 2012. Nur durch Erziehung Mensch? Pädagogische Korrespondenz, 45: 7–19.
60. Sagoff, Mark. 2005. Nature and Human Nature. In: H. W. Baillie, T. K. Casey, eds. Is Human Nature Obsolete? Genetics, Bioengineering, and the Future of the Human Condition. Cambridge: The MIT Press, 67–98.
61. Sandberg, Anders. 2013. Morphological Freedom. In: M. More, N. Vita-More, eds. The Transhumanist Reader: Classical and Contemporary Essays on the Science, Technology, and Philosophy of the Human Future. Chichester: Wiley-Blackwell, 56–64.
62. Sandel, Michael J. 2007. The Case against Perfection. Ethics in the Age of Genetic Engineering. Cambridge: The Belknap Press of Harvard University Press.
63. Singer, Monika. 2002. Was vom Transhumanismus übrigbleibt. Virus, Naturbeherrschung und Technikphilosophie. Medien & Zeit, 2: 5–19.
64. Sorgner, Stefan L. 2014. Pedigrees. In: R. Ranisch, S. L. Sorgner, eds. Post- and Tran-shumanism. An Introduction. Frankfurt am Main: Peter Lang, 29–47.
65. Sorgner, Stefan L. 2015. The Future of Education: Genetic Enhancement and Metahumanities. Journal of Evolution and Technology, 25, 1: 31–48.
66. Sorgner, Stefan L. 2020. On Transhumanism. S. Hawkins (Trans.). University Park, Pennsylvania: The Pennsylvania State University Press.
67. Sovacool, Benjamin K., David J. Hess. 2017. Ordering theories: Typologies and conceptual frameworks for sociotechnical change. Social Studies of Science, 47, 5: 703–750.
68. Tuncel, Yunus, ed. 2017. Nietzsche and Transhumanism. Precursor or Enemy. Newcastle upon Tyne: Cambridge Scholars Publishing.
69. Weber, Max. 2005. The Protestant Ethic and the Spirit of Capitalism. T. Parsons (Trans.). London and New York: Routledge.
70. Winner, Langdon. 1986. The Whale and the Reactor. A Search for Limits in an Age of High Technology. Chicago and London: The University of Chicago Press.
71. Winner, Langdon. 1983. Technologies as Forms of Life. In: R. S. Cohen, M. W. Wartofsky, eds. Epistemology, Methodology, and the Social Sciences, Boston Studies in the Philosophy of Science, 71. Dordrecht: Springer, 249–263.


Go to article

Authors and Affiliations

Markus Lipowicz
1
ORCID: ORCID

  1. Jagiellonian University

This page uses 'cookies'. Learn more