Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article is a continuation of the topic of artificial water bodies in Ukraine, which was started in our previous publication in 2020. It was devoted to accounting and monitoring of ponds at the local and national levels. Reservoirs play important role in water supply for various sectors of the economy. For this reason, much more attention is paid to reservoirs by the State Agency of Water Resources of Ukraine (Ukr. Derzhavne ahentstvo vodnykh resursiv Ukrainy), the Ministry of Ecology and Natural Resources of Ukraine (Ukr. Ministerstvo ekolohii ta pryrodnykh resursiv Ukrainy), scientists and specialists. The main tasks of the article are: to establish patterns of territorial distribution of reservoirs in administrative regions and river basins districts; to identify the role of large and small reservoirs in the balance of river runoff regulation. There are 1054 reservoirs in Ukraine, so it can be considered a country rich in reservoirs. The volume of the cascade of six reservoirs on the Dnieper River and the Dniester Reservoir is 85%, other reservoirs – 15% of the total number. At the same time, there are 1047 other reservoirs (middle, small and very small), which provide for regional needs and which have their own patterns of distribution throughout the country. The main trend in their creation was water supply of industrial regions, in particular Kharkiv, Donetsk, Dnipropetrovsk and others. About 28% of reservoirs are leased. These reservoirs also require clear accounting and monitoring at the national level, attention from water management and environmental organizations.
Go to article

Bibliography

AVAKYAN A.B., SALTANKIN V.P., SHARAPOV V.A. 1987. Vodohranilischa [Reservoirs]. Moskva. Myisl pp. 326.
BAHROUN S., CHAIB W. 2017. The quality of surface waters of the dam reservoir Mexa, Northeast of Algeria. Journal of Water and Land Development. No. 34 p. 11–19. DOI 10.1515/jwld-2017-0034.
DENISOVA A.I., TIMCHENKO V.M., NAHSHINA E.P., NOVIKOV B.I., RYABOV A.K., BASS YA.I. 1989. Gidrologiya i gidrohimiya Dnepra i ego vodohranilisch [Hydrology and hydrochemistry of the Dnieper and its reservoirs]. Kiev. Naukova dumka. ISBN 5-12-000805-4 pp. 216.
DUBNYAK S., TIMCHENKO V. 2000. Ecological role of hydrodynamic processes in the Dnieper reservoirs. Ecological Engineering. Vol. 16(1) p. 181–188. DOI 10.1016/S0925-8574(00)00103-8. FAO undated. Aquastat [online]. [Access 30.04.2020]. Available at: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
HREBIN V.V., KHILCHEVSKYI V.K., STASHUK V.A., CHUNAROV O.V., YAROSHEVYCH O.IE. 2014. Vodnyi fond Ukrainy. Shtuchni vodoimy – vodoskhovyshcha i stavky [Water fund of Ukraine: Artificial body of water – reservoirs and ponds]. Eds V.K. Khilchevskyi, V.V. Hrebin. Kyiv. Interpres. ISBN 978- 96501-098-2 pp. 164.
ICOLD 2020. World register of dams. General synthesis [online]. International Commission on Large Dams [Access 01.04.2020]. Available at: https://www.icold-cigb.org/GB/world_register/general_synthesis.asp
KHIL’CHEVSKIY V.K. 1994. Effect of agricultural production on the chemistry of natural waters: A survey. Hydrobiological Journal. Vol. 30(1) p. 82–93.
KHIL’CHEVSKII V.K., KHIL’CHEVSKII R.V., GOROKHOVSKAYA M.S. 1999. Environmental aspects of chemical substance discharge with river flow into water bodies of the Dnieper River basin. Water Resources. Vol. 26(4) p. 453–458.
KHILCHEVSKYI V.K., GREBIN V.V. 2020. Hydrographic monitoring of ponds in Ukraine and their classification by morphometric parameters. Proceedings XIV International Scientific Conference: Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers p. 1–5. DOI 10.3997/2214-4609.202056004.
KHILCHEVSKIY V.K., GREBIN V.V., ZABOKRYTSKA M.R. 2019. Abiotic typology of the rivers and lakes of the Ukrainian section of the Vistula River Basin and its comparison with results of Polish investigations. Hydrobiological Journal. Vol. 55(3) p. 95–102. DOI 10.1615/HydrobJ.v55.i3.110.
KHILCHEVSKYI V., GREBIN V., ZABOKRYTSKA M., ZHOVNIR V., BOLBOT H., PLICHKO L. 2020a. Hydrographic characteristic of ponds distribu-tion in Ukraine – basin and regional features. Journal of Water and Land Development. No. 46 (VII–IX) p. 140–145. DOI 10.24425/jwld.2020.134206.
KHILCHEVSKYI V.K., OLIINYK YA.B., ZATSERKOVNYI V.I. 2020b. Global problems of water resources scarcity. Proceedings XIV Interna-tional Scientific Conference: Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers p. 1–5. DOI 10.3997/2214-4609.202056001.
MANATUNGE J., PRIYADARSHANA T., NAKAYAMA M. 2008. Environmental and social impacts of reservoirs: Issues and mitigation. Oceans and Aquatic Ecosystems. Vol. 1 p. 212–255.
OSCE 2019. Analysis of the effects of the Dniester reservoirs on the state of the Dniester river. Report of the Moldovan-Ukrainian expert group [online]. Vienna–Geneva–Kyiv–Chisinau. Organization for Security and Cooperation in Europe pp. 53. [Access 30.04.2020]. Available at: https://zoinet.org/wp-content/uploads/ 2018/01/hydropower-effects_final_ENG.pdf
PALAMARCHUK M.M., ZAKORCHEVNA N.B. 2006. Vodnyi fond Ukrainy: Dovidnyk [Water fund of Ukraine. Directory]. Kyiv. Nika- Tsentr. ISBN 966-521-412-8 pp. 320.
Pravyla ekspluatatsii vodoskhovyshch Dnistrovskoho kaskadu HES i HAES pry NPR 77,10 m bufernoho vodoskhovyshcha [Rules for the operation of the Dniester cascade of HPS and PHES reservoirs at NPR 77.10 m buffer tank] 2017 [online]. Kharkiv. Ukrvodproekt pp. 106. [Access 10.04.2020]. Available at: https://uhe.gov.ua/sites/default/files/2018-11/732-39-%D0%A248_ua% 20%281%29.pdf
ROMANENKO V.D. 2018. The Dnieper reservoirs, their significance and problems. Hydrobiological Journal. Vol. 30(1) p. 3–9. DOI 10.1615/HydrobJ.v54.i3.10.
SHAPAR A.H., SKRYPNYK O.O., CHILIY D.V. 2013. Mozhlyvi tekhnichni rishennia dlia povernennia tekhnoekosystemy r. Dnipro do pryrodnoho stanu [Possible technical solutions for returning techecosystem Dnieper to the natural state]. Ekolohiia i Pryro-dokorystuvannia. No. 16 p. 83–91.
SOJKA M., JASKUŁA J., WICHER-DYSARZ J., DYSARZ T. 2016. Assessment of dam construction impact on hydrological regime changes in lowland river – a case of study: The Stare Miasto Reservoir located on the Powa River. Journal of Water and Land Development. No. 30 p. 119–125. DOI 10.1515/jwld-2016-0028.
Vodnyi kodeks Ukrainy 1995 (zi zminamy protiahom 2000–2017 rr.) [Water Code of Ukraine 1995 (with changes during 2000–2017)] [online]. Zakonodavstvo Ukrainy [Access 10.04.2020]. Available at: https://zakon.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80#Text
YATSYK A.V., TOMILTSEVA A.I. 2018. Obgruntuvannia neobkhidnosti perspektyvnykh naukovykh doslidzhen na Dniprovskykh i Dnis-trovskykh vodoskhovyshchakh [Justification of the need for promising scientific research on the Dnieper and Dniester reservoirs]. Hidroenerhetyka Ukrainy. Vol. 1–2 p. 79–81.
YATSYK A.V., TOMILTSEVA A.I., TOMILTSEV M.H., VOLOSHKINA O.S. 2003. Pravyla ekspluatatsii vodoskhovyshch Dniprovskoho kaskadu [Rules for the operation of the Dnieper Cascade reservoirs]. Kyiv. Heneza. ISBN 966-504-377-3 pp. 176.
Go to article

Authors and Affiliations

Valentyn Khilchevskyi
1
ORCID: ORCID
Vasyl Grebin
1
ORCID: ORCID
Sergiy Dubniak
2
ORCID: ORCID
Myroslava Zabokrytska
3
ORCID: ORCID
Hanna Bolbot
4
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine
  2. Institute of Hydrobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
  3. Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
  4. Ukrainian Hydrometeorological Institute, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this study is to determine the optimum water consumption for achieving water savings and obtaining good yields in cotton production, which has been expanding in Central Asia and Turkmenistan since the 1960s. In the last few decades, water resources in the region have been difficult to access, due to the expansion of agricultural activity and population growth. The oscillation of the amount of water released from dams of the Amudarya River to obtain energy for the upper countries in the winter season has been causing crises in countries of Central Asia.
An experiment was carried out in an agricultural field at a cotton research centre in the Yolöten district of Turkmenistan. The experiment led to the observation that it is possible to achieve higher efficiency and lower water consumption in cotton production. At the same time, the water savings that can be achieved as a result of using the drip irrigation method in cotton production throughout the country have been calculated. The calculations have provided the basis for recommending irrigation as a solution to the problems in question.
Go to article

Bibliography

ALIMOVA M. 2021. Agropromyshlennyy kompleks [Agro-industrial complex]. Neytral’nyy Turkmenistan. Gosudarstvennaya gazeta Turkmenistana. No. 49 (29742) 25.02.2021 p. 4.
BERDIMYRADOV D. 2014. Ýyllyk hasabat [Annual report]. Mary welaýatynyň Ýolöten şäherindäki ylmy-tohumçylyk merkezi. Yoloten pp. 6.
IBRAGIMOV N., EVETT S.R., ESANBEKOV Y., KAMILOV B.S., MIRZAEV L., LAMERS J.P. 2007. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management. Vol. 90(1–2) p. 112–120. DOI 10.1016/j.agwat.2007.01.016
KULMEDOV B., SHCHERBAKOV V.I. 2014. Ispol’zovaniye kapel’nogo orosheniya sel’skokhozyaystvennykh zemel’ v basseyne reki Amudar’ya. V: Tekhnologii ochistki vody «TEKHNOVOD- 2014». Materialy VIII mezhdunarodnoy nauchno-prakticheskoy konferentsii «TEKHNOVOD» [Use of drip irrigation of agri-cultural lands in the Amu Darya river basin. In: Water purification technologies “TECHNOVOD-2014”. Materials of the VIII International Scientific and Practical Conference “TECHNOVOD”]. 23–24.10.2014 Sochi. Novocherkatstsk. Lik p. 29–33.
KURTOVEZOV G.D., TAGANOV CH.K., KURTOVEZOV B. 2019. Rekomendatsii po proyektirovaniyu sistem kapel’nogo orosheniya sel’skokho-zyaystvennykh kul’tur, vinogradnikov, sadov i lesnykh nasazhde-niy dlya usloviy Turkmenistana [Recommendations for the design of a drip irrigation system for crops, vineyards, orchards and forest plantations for the conditions of Turkmenistan]. Ashgabat pp. 242.
LIU S., LUO G., WANG H. 2020. Temporal and spatial changes in crop water use efficiency in Central Asia from 1960 to 2016. Sustainability. Vol. 12(2), 572 pp. 18. DOI 10.3390/su12020572.
NARBAYEV M., ISMAILOVA G.K., NARBAYEVA K.T. 2014. Ekologicheskiye voprosy oroshayemogo zemledeliya v Tsentral’noy Azii. Mezh-dunarodnyy forum «Inzhenernoye obrazovaniye i nauka v XXI veke: Problemy i perspektivy» posvyashchennoy [Environmental issues of irrigated land in Central Asia. International Forum “Engineering Education and Science in the XXI Century: Problems and Prospects”]. 22–24.10.2014. Almaty. Kazakhskiy natsional’nyy tekhnicheskiy universitet p. 627–633.
REDDY J.M., MUHAMMEDJANOV S., JUMABOEV K., ESHMURATOV D. 2012. Analysis of cotton water productivity in Fergana Valley of Central Asia. Agricultural Sciences. Vol. 3(6) p. 822–834. DOI 10.4236/as.2012.36100.
SHCHERBAKOV V.I., KULMEDOV B. 2017. Ratsional’noye ispol’zovaniye i okhrana vodnykh resursov basseyna reki Amudar’ya. V: Yakovlevskiye chteniya: sbornik dokladov XII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy pamyati akademika
RAN S.V. Yakovleva [Rational use and protection of water resources of the Amu Darya river basin. In: Yakovlev Readings: A collection of reports of the XII International Scientific and Technical Conference dedicated to the memory of Academician of the Russian Academy of Sciences S.V. Yakovlev]. Moscow. NIU MGTSU p. 241–247. STANCHIN I., LERMAN Z. 2017. Wheat production in Turkmenistan: Reality and expectations. In: The Eurasian wheat belt and food security: Global and regional aspects. Eds. S.G. Paloma, S. Mary, S. Langrell, P. Ciaian. Cham. Springer p. 215–228. Turkmen Stat 2020. Türkmenistanyň ýyllyk statistik neşiri 2019 [Statistical yearbook of Turkmenistan 2019]. Ashgabat. Türkme-nistanyň Statistika baradaky döwlet komiteti pp. 182.
UNDP, WHO 2009. The Energy Access Situation In Developing Countries. A Review Focusing on the Least Developed Countries and Sub-Saharan Africa [online]. New York, NY. United Nations Development Programme, World Health Organization. [Access 28.10.2019] Available at: http://www.undp.org/content/dam/ undp/library/Environment%20and%20Energy/Sustainable%20Energy/energy-access-situation-in-developing-countries.pdf
ZHUPANKHAN A., TUSSUPOVA K., BERNDTSSON R. 2017. Could changing power relationships lead to better water sharing in Central Asia? Water. Vol. 9(2), 139. DOI 10.3390/w9020139.
ZONN I.S., KOSTIANOY A.G. 2013. The Turkmen Lake Altyn Asyr and water resources in Turkmenistan. Ser. The Handbook of Environmental Chemistry. Vol. 28. Berlin, Heidelberg Springer. ISBN 978-3-642-38607-7 pp. XII+123.
Go to article

Authors and Affiliations

Begmyrat Kulmedov
1
ORCID: ORCID
Vladimir I. Shcherbakov
2
ORCID: ORCID

  1. Nile University of Nigeria, Department of Civil Engineering, Plot 681, Cadastral Zone C-OO, Research & Institution Area, Jabi Airport Bypass, Abuja FCT, 900001, Nigeria
  2. Voronezh State Technical University, Department of Hydraulics, Water Supply and Water Disposal, Voronezh, Russia
Download PDF Download RIS Download Bibtex

Abstract

The construction of the Keuliling Reservoir aims to accommodate and utilise water for agricultural purposes. In this research, soil erosion modelling using the USLE method showed that the level of erosion hazard for each Keuliling Reservoir sub-watershed was classified into low-moderate. Land erosion occurred in the area around the reservoir inundation is the most significant contribution to the magnitude of erosion (38.62 Mg∙ha–1∙y–1. Based on the point of sediment sampling in the Keuliling reservoir, the sediment volume was 1.43 Mg∙m–3. So, the volumetric sediment input from the Keuliling reservoir watershed is 20.918,32 m3∙y–1. The degradation of reservoir function due to sedimentation can affect reservoir services. The ability to estimate the rate of watershed surface erosion and sediment deposition in the reservoir is vital for reservoir sustainability. Besides the land erosion in the Keuliling Reservoir, there are also other potential sources of erosion that can reduce the capacity of the reservoir, i.e. the rate of sedimentation from a reservoir cliff landslide. The USLE estimation results show that the soil erosion analysis provides important and systematic information about nature, intensity and spatial distribution in the watershed and sediment volume in the Keuliling Reservoir. This finding allows the identification of the most vulnerable areas and the type of erosion dominant for long-term land management.
Go to article

Bibliography

ADEDIJI A., TUKUR A.M., ADEPOJU K.A. 2010. Assessment of Revised Universal Soil Loss Equation (RUSLE) in Katsina Area, Katsina State of Nigeria using Remote Sensing (RS) and Geographic Information System (GIS). Iranian Journal of Energy and Environment. Vol. 1(3) p. 255–264.
ALEXAKIS D.D., HADJIMITSIS D.G., AGAPIOU A. 2013. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmospheric Research. Vol. 131 p. 108–124. DOI 10.1016/j.atmosres.2013.02.013.
ARIF A. 2013. Study of erodibility level of several land types in Baturagung Mountains Putat Village and Nglanggeran District Patuk Gunungkidul Regency. Information. Vol. 39. No. 2 p. 15– 31. DOI 10.21831/informasi.v0i2.4441.
ARMIDO A., AZMERI A., FATIMAH E., NURBAITI N., YOLANDA S.N. 2020. The sedimentation datasets of Keuliling Reservoir. Data in Brief. Vol. 32, 106181. DOI 10.1016/j.dib.2020.106181.
ARNOLDUS H.M.J. 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. In: Assessment of erosion. Eds. M. De Boodt, D. Gabriels. Chichester, UK. Wiley p. 127–132.
ARSYAD S. 2012. Conservation of Land and Water. Second edition. IPB Press, Bogor. ISBN 979-493-003-2 pp. 96. ASDAK C. 2014. Hydrology and watershed management. 3rd edition. Yogyakarta. Gajah Mada University Press. ISBN 979-420-737-3 pp. 625.
AZMERI A., LEGOWO S., REZKYNA N. 2020. Interphase modeling of soil erosion hazard using a Geographic Information System and the Universal Soil Loss Equation. Journal of Chinese Soil and Water Conservation. Vol. 51(2) p. 65–75. DOI 10.29417/JCSWC.202006_51(2).0003.
AZMERI, HADIHARDAJA I.K., VADYA R. 2016. Identificationof flashfloodhazard zones in the small mountainous watershed of Aceh Besar Regency, Aceh Province, Indonesia. The Egyptian Journal of Remote Sensing and Space Sciences. Vol. 19 p. 143–160. DOI 10.1016/j.ejrs.2015.11.001.
BENZER N. 2010. Using the geographical information system and remote sensing techniques for soil erosion assessment. Polish Journal of Environmental Study. Vol. 19(5) p. 881–886.
BISWAS S. 2012. Estimation of soil erosion using remote sensing and GIS and prioritization of catchments. International Journal of Emerging Technology and Advanced Engineering. Vol. 2(7) p. 124–128.
BWS Sumatera I. 2018. Report of Survey and Sedimentation Study of Keuliling Reservoir. Balai Wilayah Sungai Sumatera I. Banda Aceh pp. 181.
CHATTERJEE S., KRISHNA A.P., SHARMA A.P. 2014. Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences. Vol. 71(1) p. 357–374.
DABRAL P.P., BAITHURI N., PANDEY A. 2008. Soil erosion assessment in a hilly catchment of North eastern India using USLE, GIS and remote sensing. Water Resources Management. Vol. 22(12) p. 1783–1798. DOI 10.1007/s11269-008-9253-9.
DEMIRCI A., KARABURUN A. 2012. Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, Northwest Turkey. Environmental Earth Sciences. Vol. 66 p. 903–913.
DUTA S. 2016. Soil erosion, sediment yield and sedimentation of reservoir: A review. Modeling Earth Systems and Environment. Vol. 2, 123. DOI 10.1007/2Fs40808-016-0182-y.
DOUCET-BEER E. 2011. Modelling alternative agricultural scenarios using RUSLE and GIS to determine erosion risk in the Chippewa River Watershed, Minnesota [online]. PhD Thesis. University of Michigan pp. 87. [Access 10.03.2021]. Avalable at: http://hdl.handle.net/2027.42/88166.https://deepblue.lib.umich.edu/bit-stream/handle/2027.42/88166/EDoucetBeer_MS_Practicum_F-inal.pdf?sequence=1&isAllowed=y
FU B.J., ZHAO W.W., CHEN L.D., ZHANG Q.J., LU Y.H., GULINCK H., POESEN J. 2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation & Development. Vol. 16, 7385. DOI 10.1002/ldr.646.
HAREGEWEYN N., POESEN J., NYSSEN J., GOVERS G., VERSTRAETEN G., DECKERS J., MOEYERSONS J., HAILE M., DE VENTE J. 2008. Sediment yield variability in Northern Ethiopia: A quantitative analysis of its controlling factors. Catena. Vol. 75 p. 65–76. DOI 10.1016/j.catena.2008.04.011.
HOYOS N. 2005. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena. Vol. 63 (1) p. 85–108. DOI https://doi.org/10.1016/j.catena.2005.05.012.
IONUŞ O., BOENGIU S., LICURICI M., POPESCU L., SIMULESCU D. 2013. Mapping soil erosion susceptibility using GIS techniques within the Danube Floodplain, the Calafat – Turnu Măgurele Sector (Romania). Journal of the Geographical Institute “Jovan Cvijic”, SASA 2013. Vol. 63. Iss. 3. Conference Issue: International Conference Natural Hazards – Link between Science and Practice p. 73–82. DOI 10.2298/IJGI1303073I.
ISSA L.K., LECH-HAB K.B.H., RAISSOUNI A., EL ARRIM A. 2016. Cartographie quantitative du risque d’erosion des sols par approche SIG/USLE au niveau dubassin versant Kalaya (Maroc Nord Occidental) [Quantitative mapping of soil erosion risk using GIS/USLE approach at the Kalaya Watershed (North Western Morocco)]. Journal of Materials and Environmental Science. Vol. 7(8) p. 2778–2795.
JIANG B. 2013. GIS-based time series study of soil erosion risk using the Revised Universal Soil Loss Equation (RUSLE) model in a microcatchment on Mount Elgon, Uganda. MSc Thesis. Department of Earth and Ecosystem Sciences Physical Geography and Ecosystems Analysis Lund University, Sweden pp. 51.
KALSUM U., YUNUS Y., FERIJAL T. 2017. Meureudu Watershed Conservation Directive using Geographic Information Systems. Vol. 2. No. 2. p. 423–429.
KAMUJU N. 2016. Soil erosion and sediment yield analysis using prototype & enhanced SATEEC GIS system models. International Journal of Advanced Remote Sensing and GIS. Vol. 5(1) p. 1471– 1482. DOI 10.23953/cloud.ijarsg.39
KIRONOTO B.A. 2003. Sediment Transpor. Civil Engineering Graduate Program UGM, Yogyakarta pp. 100.
KOTHYARI U.C., JAIN S.K. 1997. Sediment yield estimation using GIS. Hydrology Science Journal. Vol. 42 p. 833–843. DOI 10.1080/0262666970949208.
KOURGIALAS N.N., KOUBOURIS G.C., KARATZAS G.P., METZIDAKIS I. 2016. Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Natural Hazards. Vol. 83(1) p. 65–81. DOI 10.1007/s11069-016-2354-5.
KURNIA U., SUWARDJO H. 1984. Erosion sensitivity of several soil types in Java according to the USLE Method. Pemberitaan Penelitian Tanah dan Pupuk. No. 3 p. 17–20.
LAL R. 2001. Soil degradation by erosion. Land Degradation and Development. Vol. 12(6) p. 519–539. DOI 10.1002/ldr.472.
LEGOWO S., HADIHARDAJA I.K., AZMERI 2009. Estimation of bank erosion due to reservoir operation in cascade (Case study: Citarum cascade reservoir). ITB ITB Journal of Engineering Science. Vol. 41(2) p. 148–166. DOI 10.5614/itbj.eng.sci.2009.41.2.5
LIM J.K., SAGONG M., ENGEL B.A., TANG Z., CHOI J., KIM K. 2005. GIS based sediment assessment tool. Catena. Vol 64 p. 61–80. DOI 10.1016/J.CATENA.2005.06.013.
MERRITT W.S., LETCHER R.A., JAKEMAN A.J. 2003. A review of erosion and sediment transport models. Environmental Modelling and Software. Vol. 18 p. 761–799. DOI 10.1016/S1364-8152(03)00078-1.
MEUSBURGER K., BÄNNINGER D., ALEWELL C. 2010. Estimating vegeta-tion parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery. International Journal of Applied Earth Observation and Geoinformation. Vol. 12 p. 201–207. DOI 10.1016/j.jag.2010.02.009.
NAMR K.I., MRABET R. 2004. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco. Journal of African Earth Sciences. Vol. 39 p. 485–489. DOI 10.1016/j.jafrearsci.2004.07.016.
PANDEY A., CHOWDARY V.M., MAL B.C. 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management. Vol. 21(4) p. 729–746. DOI 10.1007/s11269-006-9061-z.
PARK S., OH C., JEON S., JUNG H., CHOI C. 2011. Soil erosion risk in Korean watershed, assessed using Revised Universal Soil Loss Equation. Journal Hydrology. Vol. 399(3–4) p. 263–273. DOI 10.1016/j.jhydrol.2011.01.004.
PEROVIĆ V., ŽIVOTIĆ L., KADOVIĆ R., ĐORĐEVIĆ A., JARAMAZ D., MRVIĆ V., TODOROVIĆ M. 2013. Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environmental Earth Sciences. Vol. 68 p. 115–128. DOI 10.1007/s12665-012-1720-1.
PRASANNAKUMAR V., VIJITH H., ABINOD S., GEETHA N. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers. Vol. 3(2) p. 209–215. DOI 10.1016/j.gsf.2011.11.003.
RAHMAN M.R., SHI Z.H., CHONGFA C. 2009. Soil erosion hazard evaluation – An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling. Vol. 220. Iss. 13–14 p. 1724–1734. DOI 10.1016/j.ecolmodel.2009.04.004.
SAHU A., BAGHEL T., SINHA M.K., AHMAD I., VERMA M.K. 2017. Soil erosion modeling using Rusle and GIS on Dudhawa catchment. International Journal of Applied Environmental Sciences. Vol. 12. No. 6 p. 1147–1158.
SHEIKH A.H., PALRIA S., ALAM A. 2011. Integration of GIS and Universal Soil Loss Equation (USLE) for soil loss estimation in a Himalayan watershed. Recent Research in Science and Technology. Vol. 3(3) p. 51–57.
Peraturan Direktur Jenderal Bina Pengelolaan Daerah Aliran Sungai dan Perhutanan Sosial nomor: P. 3/V-SET/2013 tentang pedoman identifikasi karakteristik daerah aliran sungai [The Regulation of the Director-General of Watershed Management and Social Forestry of the Republic of Indonesia number P. 3/V-SET/2013 regarding guidelines for identifying watershed characteristics] [online]. [Access 15.02.2020]. Available at: https://www.course-hero.com/file/44617251/P3-V-SET-2013-PEDOMAN-IDENTI-FIKASI-KARAKTERISTIK-DAERAH-ALIRAN-SUNGAIpdf/
Peraturan Menteri Kehutanan Republik Indonesia nomor: P. 61 /Menhut-II/2014 tentang monitoring dan evaluasi pengelolaan daerah aliran sungai [Regulation of the Minister of Forestry of the Republic of Indonesia number: P. 61 /Menhut-II/2014 regarding monitoring and evaluation of watershed management] [online]. [Access 15.02.2020]. Available at: http://satudata.semarangkota.go.id/adm/file/20171004150653PERMENKEMENHUTNo-morP.61-MENHUT-II-2014Tahun2014kemenhutnop.61-menhut-II-2014.pdf
Qanun Kabupetan Aceh Besar nomor 4 tahun 2013 tentang rencana tata ruang Willayah Kabupaten Aceh Besar tahun 2012–2032 [The Regulation of the spatial plan for the Aceh Besar Regency, 2012– 2032] [online]. [Access 15.02.2020]. Available at: http://bappeda.acehbesarkab.go.id/?p=820
TATIPATA W.H., SOEKARNO I., SABAR A., DAN LEGOWO S. 2015. Analysis of settle sediment volumes after t-year reservoirs in operation (Case study: Cirata Reservoir). Journal of Civil Engineering Theoretical and Applied Journal of Civil Engineering. Vol. 22(3) p. 235–242. DOI 10.5614/jts.2015.22.3.7.
UDDIN K., MURTHY M.S.R., SHAHRIAR M., WAHID MIR A., MATIN 2016. Estimation of Soil Erosion Dynamics in the Koshi Basin Using GIS and Remote Sensing to Assess Priority Areas for Conserva-tion. PLOS ONE. Vol. 1(3), e0150494. DOI 10.1371/journal.pone.0150494.
VERSTRAETEN G., POESEN J. 2001. Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yield. Earth Surface Processes and Landforms. Vol. 26 p. 375–394. DOI 10.1002/esp.186.
VIJITH H., MADHU G. 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environmental Geology. Vol. 55(7) p. 1397–1405. DOI 10.1007/s00254-007-1090-2.
WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses – A guide to conservation planning. Agriculture Handbook. No. 537. Washington, DC, USA. US Department of Agriculture Science and Education Administration pp. 168.
XU Y., SHAO X., KONG X., PENG J., CAI Y. 2008. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment. Vol. 141 p. 275–286. DOI 10.1007/s10661-007-9894-9.
ZARFL C., LUCIA A. 2018. The connectivity between soil erosion and sediment entrapment in reservoirs. Current Opinion in Environ-mental Science & Health. Vol. 5 p. 53–59. DOI https://dx.doi.org/10.1016/j.coesh.2018.05.001.
ZHANG K., SHU A., XU X., YANG Q., YU B. 2008. Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environments. Vol. 72 p. 1002–1011. DOI 10.1016/j.jaridenv.2007.11.018.
Go to article

Authors and Affiliations

Azmeri Azmeri
1
ORCID: ORCID
Nurbaiti Nurbaiti
2
Nurul Mawaddah
1
Halida Yunita
1
ORCID: ORCID
Faris Zahran Jemi
3
ORCID: ORCID
Devi Sundary
1
ORCID: ORCID

  1. Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  2. Ministry of Public Works and Housing (PUPR) BWS Sumatera-I, Indonesia
  3. Universitas Syiah Kuala, Engineering Faculty, Electrical Engineering Department, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Soil erosion is an important factor that should be considered when planning renewable natural resource projects, effects of which can be measured by modelling techniques. Therefore, disintegration models determine soil loss intensity and support soil conservation practices. This study estimates soil loss rates by water erosion using the Erosion Potential Method (EPM) in the Kebir Rhumel Watershed located in Northeast Algeria. The area is north to south sub-humid to semi-arid, receives irregular rainfall, and has steep slopes and low vegetation cover which makes it very vulnerable to erosion. The main factors in the EPM (soil erodibility, soil protection, slope, temperature, and rainfall) were evaluated using the Geographical Information System (GIS) and data provided by remote sensing technologies. The erosion intensity coefficient Z was 0.60, which indicates medium erosion intensity. While the results showed the average annual soil erosion of 17.92 Mg∙ha–1∙y–1, maximum and minimum losses are 190.50 Mg∙ha–1∙y–1 and 0.21 Mg∙ha–1∙y–1, respectively. The EPM model shows satisfactory results compared to some studies done in the basin, where the obtained results can be used for more appropriate management of land and water resources, sustainable planning, and environmental protection.
Go to article

Bibliography

ABDULWAHAB F., JASIM S. 2019. Building a model for the risk of water erosion in Kifri Basin by the use of fuzzy logic. Journal of Tikrit University for Humanities. Vol. 26. No. 9 p. 281–257. DOI 10.25130/hum.v26i9.819.
ABU HAMMAD A. 2011. Watershed erosion risk assessment and management utilizing revised universal soil loss equation- geographic information systems in the Mediterranean environments. Water and Environment Journal. Vol. 25 p. 149–162. DOI 10.1111/j.1747-6593.2009.00202.x.
AHMED A., ADIL D., HASNA B., ELBACHIR A., LAZAAR R. 2019. Using EPM Model and GIS for estimation of soil erosion in Souss Basin, Morocco. Turkish Journal of Agriculture – Food Science and Technology. Vol. 7 p. 1228–1232. DOI 10.24925/turjaf.v7i8.1228-1232.2562. BEHERA M., SENA D.R., MANDAL U., KASHYAP P.S., DASH S.S. 2020. Integrated GIS-based RUSLE approach for quantification of potential soil erosion under future climate change scenarios. Environmental Monitoring and Assessment. Vol. 192, 733 p. 1–18. DOI 10.1007/s10661-020-08688-2.
BOUGUERRA H., BOUANANI A., KHANCHOUL K., DERDOUS O., TACHI S.E. 2017. Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the revised universal soil loss equation through GIS. Journal of Water and Land Development. No. 32 p. 13–23. DOI 10.1515/jwld-2017-0002.
BOUHADEB C.E., MENANI M.R., BOUGUERRA H., DERDOUS O. 2018. Assessing soil loss using GIS based RUSLE methodology. Case of the Bou Namoussa watershed – North-East of Algeria. Journal of Water and Land Development. No. 36 p. 27–35. DOI 10.2478/ jwld-2018-0003.
BOU-IMAJJANE L., BELFOUL M.A., ELKADIRI R., STOKES M. 2020. Soil erosion assessment in a semi-arid environment: A case study from the Argana Corridor, Morocco. Environmental Earth Sciences. Vol. 79 p. 1–14. DOI 10.1007/s12665-020-09127-8.
CERDÀ A., DOERR S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena. Vol. 74 p. 256–263. DOI 10.1016/j.catena.2008.03.010.
CHAAOUAN J., FALEH A., SADIKI A., MESRAR H. 2013. Télédétection, sig et modélisation de l’érosion hydrique dans le bassin versant de l’oued Amzaz, Rif Central [Remote sensing, sig and modeling of water erosion in the watershed of Wadi Amzaz, Central Rif]. Revue française de photogrammétrie et de télédétection. No. 203 p. 19–25. DOI 10.52638/rfpt.2013.26.
DRAGIČEVIĆ N., KARLEUŠA B., OŽANIĆ N. 2017. Erosion potential method (Gavrilović method) sensitivity analysis. Soil and Water Research. Vol. 12 p. 51–59. DOI 10.17221/27/2016-SWR.
EFTHIMIOU N., LYKOUDI E., KARAVITIS C. 2017. Comparative analysis of sediment yield estimations using different empirical soil erosion models. Hydrological Sciences Journal. Vol. 62 p. 2674–2694. DOI 10.1080/02626667.2017.1404068.
EFTHIMIOU N., LYKOUDI E., PANAGOULIA D., KARAVITIS C. 2016. Assessment of soil susceptibility to erosion using the EPM and RUSLE models: The case of Venetikos River Catchment. Global NEST Journal. Vol. 18 p. 164–179. DOI 10.30955/gnj.001847.
FERNANDEZ C., WU J.Q., MCCOOL D.K., STÖCKLE C.O. 2003. Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation. Vol. 58 p. 128–136.
GAVRILOVIC Z. 1988. Use of an empirical method (erosion potential method) for calculating sediment production and transportation in unstudied or torrential streams. In: International Conference on River Regime. 18–20.05.1988 Wallingford, England. Oxon UK. Hydraulics Research Limited, Wallingford p. 411–422.
GITAS I.Z., DOUROS K., MINAKOU C., SILLEOS G.N., KARYDAS C.G. 2009. Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProceedings. Vol. 8 p. 40–52.
GLOBEVNIK L., HOLJEVIC D., PETKOVSEK G., RUBINIC J. 2003. Applicability of the Gavrilovic method in erosion calculation using spatial data manipulation techniques. Proceedings of symposium HS01 held during IUGG2003 at Sapporo, July 2003 International Association of Hydrological Sciences Publications. No. 279 p. 224–233.
HAAN C.T., BARFIELD, B.J., HAYES J.C. 1994. Design hydrology and sedimentology for small catchments. Elsevier. ISBN 978-0-12- 312340-4 pp. 588.
IGHODARO I.D., LATEGAN F.S., YUSUF S.F. 2013. The impact of soil erosion on agricultural potential and performance of Sheshegu community farmers in the Eastern Cape of South Africa. Journal of Agricultural Science. Vol. 5. No. 5 p. 140–147. DOI 10.5539/jas.v5n5p140. KOSTADINOV S., DRAGOVIĆ N., ZLATIĆ M., TODOSIJEVIĆ M. 2008. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. Vol. 4. No. 1, 012040.

KUNTA K. 2009. Effects of geographic information quality on soil erosion prediction. ETH Zurich. ISBN 978-3-906467-84-9 pp. 153.
LENSE G.H.E., MOREIRA R.S., PARREIRAS T.C., SANTANA D.B., BOLELLI T. DE M., MINCATO R.L. 2020. Water erosion modeling by the Erosion Potential Method and the Revised Universal Soil Loss Equation: A comparative analysis. Revista Ambiente & Água. Vol. 15(4). DOI 10.4136/ambi-agua.2501.
MAROUF N., REMINI B. 2011. Temporal variability in sediment concentration and hysteresis in the Wadi Kebir Rhumel Basin of Algeria. HKIE Transactions. Vol. 18 p. 13–21. DOI 10.1080/1023697X.2011.10668219.
MAZOUR M., ROOSE E. 2002. Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans les bassins versants du Nord-ouest de l’Algérie. En: Techniques traditionnelles de GCES en milieu méditerranéen [Influence of plant cover on runoff and soil erosion on erosion plots in the watersheds of northwestern Algeria. In: Traditional GCES techniques in the Mediterranean environment]. Eds. E. Roose, M. Sabir, G. De Noni. Bulletin – Réseau Erosion. No. 21 p. 320– 330.
MEDDI M., TOUMI S. 2015. Spatial variability and cartography of maximum annual daily rainfall under different return periods in Northern Algeria. Journal of Mountain Science. Vol. 12 p. 1403– 1421. DOI 10.1007/s11629-014-3084-3.
MEGHRAOUI M., HABI M., MORSLI B., REGAGBA M., SELADJI A. 2017. Mapping of soil erodibility and assessment of soil losses using the RUSLE model in the Sebaa Chioukh Mountains (northwest of Algeria). Journal of Water and Land Development. No. 34 p. 205–213. DOI 10.1515/jwld-2017-0055.
MOSTEPHAOUI T., MERDAS S., SAKAA B., HANAFI M.T., BENAZZOUZ M.T. 2013. Cartographie des risques d’érosion hydrique par l’applica-tion de l’équation universelle de pertes en sol à l’aide d’un système d’information géographique dans le bassin versant d’El hamel (Boussaâda) Algérie [Mapping of water erosion risks by applying the universal soil loss equation using a Geographical Information System in El Hamel (Boussaâda) watershed]. A Journal algérien des régions arides. No. Special p. 131–147.
NEARING M.A., JETTEN V., BAFFAUT C., CERDAN O., COUTURIER A., HERNANDEZ M., LE BISSONNAIS Y., NICHOLS M.H., NUNES J.P., RENSCHLER C.S. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena. Vol. 61 p. 131–154. DOI 10.1016/j.catena.2005.03.007.
NEHAÏ S.A., GUETTOUCHE M.S. 2020. Soil loss estimation using the revised universal soil loss equation and a GIS-based model: A case study of Jijel Wilaya, Algeria. Arabian Journal of Geosciences. Vol. 13, 152. DOI 10.1007/s12517-020-5160-z.
NUNES A.N., DE ALMEIDA A.C., COELHO C.O. 2011. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Applied Geography. Vol. 31. No. 2 p. 687–699. DOI 10.1016/j.apgeog.2010.12.006.
PANAGOS P., STANDARDI G., BORRELLI P., LUGATO E., MONTANARELLA L., BOSELLO F. 2018. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development. Vol. 29 p. 471–484. DOI 10.1002/ldr.2879.
ROOSE E. 1994. Introduction à la gestion conservatoire de l’eau, de la biomasse et de la fertilité des sols (GCES) [Introduction to the conservation management of water, biomass and soil fertility (GCES)]. Bulletin pédologique de la FAO. No. 70. ISBN 92-5- 203451-X pp. 420.
ROUSEL J.W., HAAS R.H., SCHELL J.A., DEERING D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of the Third Earth Resources Technology Satellite – 1 Symposium; NASA SP-351 p. 309–317.
SAHLI Y., MOKHTARI E., MERZOUK B., LAIGNEL B., VIAL C., MADANI K. 2019. Mapping surface water erosion potential in the Soummam watershed in Northeast Algeria with RUSLE model. Journal of Mountain Science. Vol. 16 p. 1606–1615. DOI 10.1007/s11629-018-5325-3.
SAKUNO N.R.R., GUIÇARDI A.C.F., SPALEVIC V., AVANZI J.C., SILVA M.L.N., MINCATO R.L. 2020. Adaptation and application of the erosion potential method for tropical soils. Revista Ciência Agronômica. Vol. 51 p. 1–10.
SEKERTEKIN A., BONAFONI S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox imple-mentation. Remote Sensing. Vol. 12 p. 294. DOI 10.3390/rs12020294.
SHARDA V.N., MANDAI D., OJASVI P.R. 2013. Identification of soil erosion risk areas for conservation planning in different states of India. Journal of Environmental Biology. Vol. 34 p. 219–226.
SHARPLEY A.N., WILLIAMS J.R. (eds.) 1990. EPIC-Erosion/Productivity Impact Calculator. I: Model documentation. II: User manual. USDA. Technical Bulletin. No. 1768 pp. 127.
SOLAIMANI K., MODALLALDOUST S., LOTFI S. 2009. Investigation of land use changes on soil erosion process using geographical information system. International Journal of Environmental Science & Technology. Vol. 6 p. 415–424. DOI 10.1007/BF03326080.
TAMRABET Z., MAROUF N., REMINI B. 2019. Quantification of suspended solid transport in Endja watercourse [Dehamecha basin-Algeria]. GeoScience Engineering. No. 4 p. 71–91. DOI 10.35180/gse-2019-0025.
TANG Q., XU Y., BENNETT S.J., LI Y. 2015. Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences. Vol. 73 p. 1715–1724. DOI 10.1007/s12665-014-3523-z.
TOUMI A., REMINI B. 2018. Perte de la capacité de stockage d’eau au barrage de Beni Haroun, Algérie [Loss of water storage capacity at the Beni Haroun dam, Algeria]. Systèmes Agraires et Environnement. Vol. 2 p. 80–97.
ZAHNOUN A.A., MAKHCHANE M., CHAKIR M., AL KARKOURI J., WATFAE A. 2019. Estimation and cartography the water erosion by integra-tion of the Gavrilovic “EPM” model using a GIS in the Mediterranean watershed: Lower Oued Kert watershed (Eastern Rif, Morocco). International Journal of Advance Research, Ideas and Innovations in Technology. Vol. 5 p. 367–374.
ZAKERINEJAD R., MAERKER M. 2015. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards. Vol. 79 p. 25–50. DOI 10.1007/s11069-015-1700-3.
ZANTER K. 2019. Landsat 8 (L8) data users handbook. Version 5.0. Sioux Falls, SD. EROS pp. 106.
ZEMLJIC M. 1971. Calcul du debit solide – Evaluation de la vegetation comme un des facteurs antierosif [Calculation of the solid flow – Evaluation of the vegetation as one of the anti-erosive factors]. In: International Symposium Interpraevent. Villaco. Vol. 2 p. 379– 391.
ZORN M., KOMAC B. 2008. The response of soil erosion to land-use change with particular reference to the last 200 year (Julian Alps, Western Slovenia). [24th Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management]. [02–06.2008 Bled, Slovenia].

Go to article

Authors and Affiliations

Amer Zeghmar
1
ORCID: ORCID
Nadir Marouf
1
ORCID: ORCID
Elhadj Mokhtari
2
ORCID: ORCID

  1. University of Larbi-Ben-M’hidi, Faculty of Sciences and Applied Sciences, Department of Hydraulic, Laboratory of Functional Ecology and Environment, Laboratory of Natural Resources and Management of Sensitive Environments, PO Box 358, 04000 Oum El Bouaghi, Algeria
  2. University Mohamed Boudiaf M’sila, Faculty of Technology, Department of Hydraulic, Algeria

This page uses 'cookies'. Learn more