Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study tried to assess the impact of climate change on water resources of the upper Awash River sub- basin (Ethiopia) using a statistical downscaling model (SDSM). The future climatic parameters (rainfall, maximum and minimum temperatures) were generated by downscaling outputs of HadCM3 (Hadley Centre Coupled Model, ver-sion 3) general circulation model to watershed level for A2a (medium-high) and B2a (medium-low) emission scenarios at representative stations (Addis Ababa, Ginchi and Bishoftu). These SDSM generated climatic data were used to develop current/baseline period (1971–2010) and future climate change scenarios: 2020s (2011–2040), 2050s (2041– 2070) and 2080s (2071–2099). The projected future rainfall and mean monthly potential evapotranspiration at these stations were weighted and fed to HBV hydrological model (Hydrologiska Byråns Vattenbalansavdelning model) for future stream flow simulation. These simulated future daily flow time series were processed to monthly, seasonal and annual time scales and the values were compared with that of base period for impact assessment. The simulation result revealed the possibility for significant mean flow reductions in the future during Summer or “Kiremt” (main rainy season) and apparent increase during “Belg” or winter (dry season). Autumn flow volume showed decreasing trend (2020s), but demonstrated increasing trend at 2050s and 2080s. A mean annual flow reduction (ranging from 13.0 to 29.4%) is also expected in the future for the three studied benchmark periods under both emission scenarios. Generally, the result signals that the water resources of upper Awash River basin will be expected to be severely affected by the changing climate. Therefore, different adaptation options should be carried out in order to reduce the likely impact and ensure water security in the sub-basin.
Go to article

Authors and Affiliations

Eshetu Ararso Heyi
1
Megersa Olumana Dinka
2
ORCID: ORCID
Girma Mamo
3
ORCID: ORCID

  1. Oromia Agricultural Research Institute, Agricultural Engineering Research Directorate, Addis Ababa, Ethiopia
  2. University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
  3. Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

Drought is regarded as one of the environmental constraints threatening agriculture worldwide. Melatonin is a pleiotropic molecule prevalent in plants capable of promoting plant endogenous resilience to many environmental challenges including drought. Banana is an important staple food consumed in developing countries especially in Africa. In this research, we studied the role of melatonin in the growth of bananas subjected to drought under the Egyptian semi-arid conditions. To achieve this objective, a field experiment on banana (Musa spp., cv. Williams) mother plants and first ratoon was conducted on a private farm for two seasons - 2019 and 2020. Three irrigation treatments, 100, 90 and 80% irrigation water requirements (IWR) were used in conjunction with four concentrations of melatonin as a foliar spray (0 μmol, 40 μmol, 60 μmol, and 80 μmol) to determine the effect of both treatments on banana plant performance under drought. The results showed that there was a substantial difference between treatments, with the foliar application of melatonin at 80 μmol concentration improving most of the yield attributes, relative water content, total chlorophyll and proline with water deficit. However, the foliar application of the molecule lowered the biochemical characteristics mostly at 80% IWR under the Egyptian semi-arid conditions. Overall, there was a concentration-dependent response with regards to IWR for the two seasons 2019 and 2020.
Go to article

Authors and Affiliations

Islam F. Hassan
1
ORCID: ORCID
Maybelle S. Gaballah
1
ORCID: ORCID
Chukwuma C. Ogbaga
2
ORCID: ORCID
Soha A. Murad
3
ORCID: ORCID
Adam Brysiewicz
4
ORCID: ORCID
Basem M.M. Bakr
5
ORCID: ORCID
Amany Mira
6
ORCID: ORCID
Shamel M. Alam-Eldein
6
ORCID: ORCID

  1. National Research Centre (NRC), Agriculture and Biology Research Institute, Water Relations and Field Irrigation Department, Postal Code, 12622, 33 El Buhouth St, Dokki, Giza, Egypt
  2. Nile University of Nigeria, Department of Microbiology and Biotechnology, Abuja, Nigeria
  3. National Research Centre (NRC), Agriculture and Biology Research Institute Plant BioChemistry Department, Dokki, Giza, Egypt
  4. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  5. National Research Centre (NRC), Agriculture and Biology Research Institute, Pomology Department, Dokki, Giza, Egypt
  6. Tanta University, Faculty of Agriculture, Department of Horticulture, Tanta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The subject of the study was to evaluate the stability and reliability of the sewage treatment plant in Nowy Sącz. The scope of the analysed indicators included the main indicators of wastewater contamination: BOD5 (biochemical oxygen demand), CODCr (chemical oxygen demand), total suspended solids (TSS), total nitrogen (Ntot), and total phosphorus (Ptot). The operation stability of the sewage treatment plant in Nowy Sącz was determined on the basis of control cards x for 24 observations made in the period 2018–2019 (2 years). Moreover, the technological reliability of the tested sewage treatment plant (WN) was determined based on the values of the analysed pollution indicators in treated sewage and their permissible values. On the basis of the conducted analyses, full stability of the removal process of most of the analysed contaminants was found. In no case was there any crossing of the control lines, only a single grouping of samples above the help line in the case of total nitrogen, which could indicate a periodical disturbance in the stability of the removal process of this compound. On the basis of the obtained values of the reliability coefficient, which were below WN = 1.00, reliable operation of the analysed facility was found, with a high degree of reduction (ƞ) of the analysed pollutants. The method of determining the technological reliability and stability of the treatment plant with the use of control cards is an effective and easy tool for detecting any disturbances and instabilities in the processes taking place in the tested facility. It enables the operator to take quick action to remove them, thus ensuring a safe wastewater treatment process for the environment and human health.
Go to article

Authors and Affiliations

Paulina Śliz
1
ORCID: ORCID
Piotr Bugajski
2
ORCID: ORCID

  1. Cracow University of Economics, Rakowicka 27, 31-510 Cracow, Poland
  2. University of Agriculture in Krakow, Department of Engineering Sanitary and Water Management, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The rainfall irregularity in the Al-Hoceima area places the Ghis-Nekor coastal aquifer as a primary resource for water supply. However, it is of paramount priority to adopt management and optimization plans that can mitigate the effects of the irrational use of the resource and the deterioration of its quality in the region of our study. In order to study the alteration aspects of this aquifer, 26 wells were sampled and their suitability for irrigation was assessed. The sodium adsorption rate (SAR) values indicate that most groundwater samples fall into the risk classes of high salinity and low sodium (C3-S1) and high salinity and medium sodium (C3-S2). The results also show a medium to high alkalinity risk due to the high concentration of HCO3–. The excess of salts is largely due to the intensive exploitation of groundwater and to the phenomenon of salt-water intrusion into the coastal karst aquifer. As a result, the quality of groundwater is not adapted to sustainable agricultural production and soil balance, which requires controlled monitoring to ensure its rational use with a view to the sustainable development of the region.
Go to article

Authors and Affiliations

Said Benyoussef
1 2
ORCID: ORCID
Mourad Arabi
3
ORCID: ORCID
Hossain El Ouarghi
2
ORCID: ORCID
Mohammad Ghalit
4
ORCID: ORCID
Yassine El Yousfi
2
ORCID: ORCID
Maryam Azirar
1
ORCID: ORCID
Ali Ait Boughrous
1
ORCID: ORCID

  1. University of Moulay Ismaïl, Faculty of Science and Technology Errachidia, Department of Biology, Research team: Biology, Environment and Health, Meknes, Morocco
  2. Abdelmalek Essaadi University, National School of Applied Sciences, Laboratory of Applied Sciences, Al Hoceima, Morocco
  3. Mohamed First University, Faculty of Sciences, Department of Biology, Laboratory of the Agricultural Production Improvement, Biotechnology, and Environment, P.B. 717, Oujda, Morocco
  4. Mohammed Premier University, Faculty of Science, Department of Chemistry, Laboratory of Mineral and Analytical Solid Chemistry, Oujda, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The control of water erosion is an important economic and societal challenge. Reduction of the agronomic potential of the parcels, muddy flows, siltation of dams are harmful consequences that mobilize farmers, water managers, local authorities and scientific researchers. This study focuses on mapping and quantifying seasonal soil losses in the territory of the former Nord-Pas-de- Calais administrative region, using the Revised Universal Soil Loss Equation (RUSLE) which incorporates five factors: rainfall erosivity, soil erodibility, topography, land use and erosion control practices. The seasonal (3-months) time scale is chosen to better account for the parameters governing the soil water erosion, especially rainfall and vegetation cover, that show great asynchronous intra-annual variability. Also, high resolution data concerning agricultural plots allows to evaluate which type of culture are the more subject to soil losses. In Nord-Pas-de-Calais, water erosion occurs almost ubiquitously, but the areas characterized by steep slopes are the most at risk (Artois Hills and Flanders), with loss rates up to 54 t∙ha–1∙y–1. The majority of erosion occurs during fall (46% of the computed annual losses of 1.69∙Mt), on plots left bare after harvest (especially corn and beets crops). The study also demonstrates that extending the intercrop technique over the region, and therefore maintaining a fall and winter cover, could reduce the soil losses by 37%.
Go to article

Authors and Affiliations

Wafae Nouaim
1
ORCID: ORCID
Dimitri Rambourg
2
ORCID: ORCID
Mohamed Merzouki
1
ORCID: ORCID
Abderrazak El Harti
1
ORCID: ORCID
Ismail Karaoui
1
ORCID: ORCID

  1. Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, University Sultan Moulay Slimane, Av Med V, BP 591 Beni-Mellal 23000, Maroc
  2. Institut Terre et Environnement de Strasbourg, University of Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg Cedex, France
Download PDF Download RIS Download Bibtex

Abstract

Water is becoming a scarce resource due to the immense intensification of agricultural activity, climate change, and demographic pressure. Hence, information on water use/management and their associated management practices is essential for selecting, planning, implementing, and monitoring schemes that optimise water use to meet the increasing demand related to basic human needs and welfare. This study presents the farmers’ perception of climate change from a gender sensitive perspective to promote adaptation and optimise irrigation/agricultural productivity in a compound surface-ground water system within the Anger sub-basin (Ethiopia). The study results showed that climate change affects water demand and supply routes in which more than 65% of the decrease in lake water level is due to climate change and overuse of surface water. The research findings show that women’s recognition and apprehension of climate change is much greater than men’s. Thus, women’s role in farming is important for ensuring food security at the household level. Gender sensitivity and can play a role in preventing the change in climate through optimising irrigation efficiency and suggesting the need for further research on its application to science. The study demonstrates that women’s participation in agricultural tasks, crisis management, and informal institutions is more vigorous than men’s.
On the other hand, the understanding and communication of farmers is based on experience and concerns about the climate impact. Moreover, studies showed that climate change has a potential impact on the access to water supply for agriculture, urbanisation, and the environment. Therefore, there is a need to assess the dynamics of surface- groundwater interaction as affected by climate change and gender inequality to optimise the irrigation system.
Go to article

Authors and Affiliations

Meseret Dawit
1
ORCID: ORCID
Megersa Olumana Dinka
2
ORCID: ORCID
Afera Halefom
3
ORCID: ORCID

  1. Haramaya University, Institute of Technology, Department of Water Resources and Irrigation Engineering, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
  2. University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, Johannesburg, South Africa
  3. Debre Tabor University, Department of Hydraulic and Water Resources Engineering, Debre Tabor, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

The objective of this research was to evaluate the adsorption capacity of the shell biomass ( Dioscorea rotundata), taking into account the impact of temperature, bed height, and particle size on the removal of nickel(II) ions in aqueous solution in a continuous fixed-bed column system; performing the modelling of the break curve. The biomass was characterised by SEM-EDS analysis. The analysis found that it represents a rough, heterogeneous structure, rich in carbon and oxygen, with mesopores, and is suitable for removing heavy metals. It also determined the optimum parameters of the bed height, particle size, and temperature, keeping the pH and the initial concentration of the solution constant. The results revealed that the bed height and the particle size are the two most influential variables in the process. Ni(II) removal efficiencies range between 85.8 and 98.43%. It was found that the optimal conditions to maximise the efficiency of the process are temperature of 70°C, 1.22 mm particle size, and 124 mm bed height. The break curve was evaluated by fitting the experimental data to the Thomas, Adams–Bohart, Dose–Response, and Yoon– Nelson models, with the Dose–Response model showing the best affinity with a coefficient of determination R2 of 0.9996. The results obtained in this research showed that yam shell could be suggested as an alternative for use in the removal of Ni(II) ions present in an aqueous solution in a continuous system.
Go to article

Authors and Affiliations

Ángel Villabona-Ortíz
1
ORCID: ORCID
Candelaria Tejada-Tovar
1
ORCID: ORCID
Rodrigo Ortega-Toro
2
ORCID: ORCID
Keily Peña-Romero
1
ORCID: ORCID
Ciro Botello-Urbiñez
1

  1. Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  2. Universidad de Cartagena, Department of Food Engineering, Carrera 6, Cl. de la Universidad 36-100, Cartagena de Indias, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Modern construction standards, both from the ACI, EN, ISO, as well as EC group, introduced numerous statistical procedures for the interpretation of concrete compressive strength results obtained on an ongoing basis (in the course of structure implementation), the values of which are subject to various impacts, e.g., arising from climatic conditions, manufacturing variability and component property variability, which are also described by specific random variables. Such an approach is a consequence of introducing the method of limit states in the calculations of building structures, which takes into account a set of various factors influencing structural safety. The term “concrete family” was also introduced, however, the principle of distributing the result or, even more so, the statistically significant size of results within a family was not specified. Deficiencies in the procedures were partially supplemented by the authors of the article, who published papers in the field of distributing results of strength test time series using the Pearson, ��-Student, and Mann–Whitney U tests. However, the publications of the authors define neither the size of obtained subset and their distribution nor the probability of their occurrence. This study fills this gap by showing the size of a statistically determined concrete family, with a defined distribution of the probability of its isolation.
Go to article

Bibliography

[1] A. Sarja, “Durability design of cocnrete structures – Committee report 130-CSL”, Materials and Structures, 2017, vol. 33, pp. 14–20, DOI: 10.1007/BF02481691.
[2] Concrete according to standard PN EN 206-1 – commentary – collective work supervised by prof. Lech Czarnecki. Kraków: Polski Cement, 2004.
[3] I. Skrzypczak,W.Kokoszka, J. Zieba, A. Lesniak, D. Bajno, Ł. Bednarz, “AProposal of a Method for Ready- Mixed Concrete Quality Assessment Based on Statistical-Fuzzy Approach”, Materials, 2020, vol. 13, no. 24, DOI: 10.3390/ma13245674.
[4] I. Skrzypczak, L. Buda-Ozóg, J. Zieba, “Dual CUSUM chart for the quality control of concrete family”, Cement Wapno Beton, CWB, 2019, vol. 24, no. 4, pp. 276–285, DOI: 10.32047/CWB.2019.24.4.3.
[5] I. Skrzypczak, L. Buda-Ozóg, T. Pytlowany, “Fuzzy method of conformity control for compressive strength of concrete on the basis of computational numerical analysis”, Meccanica, 2016, vol. 51, pp. 383–389, DOI: 10.1007/s11012-015-0291-0.
[6] J. Jasiczak, “Probabilistic Criteria for the Control of Compressive Strength Stabiilization in Concrete”, Foundations of Civil and Environmental Engineering, 2011, no. 14, pp. 47–61.
[7] J. Jasiczak, M. Kanoniczak, Ł. Smaga, “Standardized concept of a concrete family on the example of continuous Spiroll board production”, Budownictwo i Architektura, 2014, vol. 13, no. 2, pp. 99–108.
[8] J. Jasiczak, M. Kanoniczak, Ł. Smaga, “Statistical division of compressive strength results on the aspect of concrete family concept”, Computers and Concrete, 2014, vol. 14, no. 2, pp. 145–161.
[9] J. Jasiczak, M. Kanoniczak, L. Smaga, “Stochastic identity of test result series of the compressive strength of concrete in industrial production conditions”, Archives of Civil and Mechanical Engineering, 2015, vol. 15, pp. 584–592.
[10] J. Jasiczak, M. Kanoniczak, Ł. Smaga, “Division of Series of Concrete Compressive Strength Results into Concrete Families in Terms of Seasons within Annual Work Period”, Journal of Computer Engineering& Information Technology, 2017, vol. 6, no. 3, pp. 1–9, DOI: 10.4172/2324-9307.1000198.
[11] J. Jasiczak, M. Kanoniczak, “Justified adoption of normative values ������ and ������ in the estimation of concrete classification for small samples”, Journal of Civil Engineering, Environment and Architecture, JCEEA, 2017, vol. XXXIV, no. 64 (3/I/17), pp. 203–212, DOI: 10.7862/rb.2017.115.
[12] J. Jasiczak, “The concept of ’over-strength of concrete’ in the tender procedure for concrete objects of communication infrastructure”, BTA, 2017, no. 1, pp. 64–68 (in Polish).
[13] L. Taerwe, “Basic aspect of quality control of concrete”, in “Utilizing Redy Mix Concrete and Mortar”, Proceedings of the International Conference. UK, Scotland, 1999, pp. 221–235.
[14] N.K. Nagwani, “Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques”, The Scientific World Journal, 2014, vol. 2014, DOI: 10.1155/2014/381549.
[15] R. Caspeele, L. Taerwe, “Conformity control of concrete based on the ’concrete family’ concept”, in Proceedings of the 5th International Probabilistic Control, 28–29 Nov.2007. Ghent, 2007, pp. 241-252.
[16] R Core Team: A language and environment for statistical computing.RFoundation for Statistical Computing, Vienna, Austria, 2015. [Online]. Available: http://www.R-project.org/.
[17] S.Wolinski, “Evaluating the quality of concrete using standardized methods and according to fuzzy logic”, in “Dni Betonu” Conference, Kraków: Polski Cement, 2006, pp. 1121–1131 (in Polish).
[18] T. Górecki, Basics of statistics with examples in R. Legionowo: BTC, 2011.
[19] Z. Kohutek, “Concrete family – concept genesis, terminology, criteria and general creation principles”, Przeglad Budowlany, 2010, no. 10, pp. 26–31 (in Polish).
[20] EN 1992:2008 Eurocode 2: Design of concrete structures.
[21] ISO 2394:2000 General principles on reliability for structures.
[22] PN–EN 206–1: 2003 Concrete. Part 1: Requirements, properties, production and conformity.
[23] PN-EN 206¸A1:2016-12. Concrete. English version.
Go to article

Authors and Affiliations

Józef Jasiczak
1
ORCID: ORCID
Marcin Kanoniczak
1
ORCID: ORCID
Łukasz Smaga
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5, 60-965 Poznan, Poland
  2. Adam Mickiewicz University, Faculty of Mathematics and Computer Science, 61-614 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Idea to travel faster and faster is as old as human civilization. Different ways were used to move from point to point over centuries. The railways, cars, air-plains and rockets were invented. Each of them have limitations and advantages. Therefore, people always look for other, better solutions. One of them is “vacuum rail” moving inside a tube, known also as a Hyperloop. The number of problems to be solved is extremely high. This paper is devoted to civil engineering problems only e.g. viaducts, tunnels, stations. It is necessary to consider the kind of sub- and superstructure supporting the tube, influence of changes of ambient temperature and solar radiation, the way to ensure safety and structural integrity of the structures in case of fire, decompression of a structural tube and air-tightening, occurrence of accidents etc. Taking into account the fact that bridge and tunnel standards do not include information relating to above mentioned problems it is interesting to determine rules for design, construction and maintenance of such structures.
Go to article

Bibliography

[1] Z. Malecha, P. Krukowski, P. Pyrka, K. Skrzynecki, P. Prycinski, M. Palka, Analysis of technological rediness transportation system using high speed vehicles in limited space with reducted air preassure. Report for National research and Development Centre – Poland, 06.2018 (in Polish).
[2] M. Pawlik, M. Kycko, K. Zakrzewski, “Hyperloop vehicles spacing control challenges and possible solutions”, Archives of Civil Engineering, 2021, vol. 67, no. 2, pp. 261–274, DOI: 10.24425/ace.2021.137167.
[3] J. Piechna, Report on Conceptual Design of Hyperloop, internal material,Warsaw University of Technology, Poland, 2020 (in Polish).
[4] K. Polak, “Hyperloop technology and perspective of implementation”, Prace Instytutu Kolejnictwa, 2017, vol. 156, pp. 28–32 (in Polish).
[5] M. Rudowski, “Intermodal Transport of Hyperloop Capsules – Concept, Requirements, Benefits”, Problemy Kolejnictwa (Railway Reports), 2018, vol. 62, no. 178, pp. 55–62.
[6] R. Sabarinath, “Warsaw Hyperloop Station – Technical Challenges and Opportunities Overview”, MSc. Diploma, Warsaw University of Technology, Poland, 2020.
[7] K. Trzonski, A. Ostenda, “High speed railways – technical and social aspects – Hyperloop One”, Nowoczesne Budownictwo Inzynieryjne, 2017, no.6, pp. 86–90 (in Polish).
[8] J. Tamarit, Evacuated Tube Transportation. Sponsored by CEN/CENELEC, NEN, UNE, 12.2018.
[9] Report “Potential for the development and implementation of the vacuum rail technology in Poland in the social, technical, economic and legal context”, GOSPOSTRATEG, September 2020.
[10] Hyperloop – International Development Overview, Prepared by HARDT, HYPER POLAND, TRANSPOD, ZELEROS, 10.2018.
[11] Hyperloop Alpha by SpaceX, 2017.
Go to article

Authors and Affiliations

Henryk Zobel
1
ORCID: ORCID
Anna Pawlak
2
Marek Pawlik
3
ORCID: ORCID
Piotr Żółtowski
2
Radosław Czubacki
1
Thakaa Al-Khafaji
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. YLE Inzynierowie Co., Warsaw, Poland
  3. Railways Institute, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper is a continuation of part I – Theory and verification and presents some examples of application of the Extended Force Density Method. This method allows for form-finding of cable nets under self-weight and is based on the catenary cable element which assures high accuracy of the results and enables solving wide range of problems. Some essentials of the method are highlighted in this article. A computer program UC-Form was developed in order to perform the calculations and graphically present the results. Main advantages and features of the program are presented in this paper. Subsequently the program is used to perform calculations for a few practical examples with taut and slack cables. Input data is provided in order to enable reproducing calculations by other researchers. The outcomes are shown in the paper and prove that EFDM is an efficient tool for analysis of behaviour of cable nets under self-weight in different configurations.
Go to article

Bibliography

[1] M. Cuomo, L. Greco, “On the force density method for slack cable nets”, International Journal of Solids and Structures, 2012, vol. 49, pp. 1526–1540, DOI: 10.1016/j.ijsolstr.2012.02.031.
[2] H. Deng, Q.F. Jiang, A.S.K. Kwan, “Shape finding of incomplete cable-strut assemblies containing slack and prestressed elements”, Computers and structures, 2005, vol. 83, pp. 1767–1779, DOI: 10.1016/j.compstruc.2005.02.022.
[3] Eurocode 3 – Design of steel structures – Part 1–11: Design of structures with tension components EN 1993-1-1:2006.
[4] W.J. Lewis, Tension Structures. Form and Behaviour. London: Thomas Telford, 2003.
[5] F. Otto, Tensile structures. Cambridge: MIT Press, 1973.
[6] H.-J. Schek, “The Force Density Method for Form Finding and Computation of General Networks”, Computer Methods in Applied Mechanics and Engineering, 1974, vol. 3, pp. 115–134, DOI: 10.1016/0045-7825(74)90045-0.
[7] I.Wójcik-Grzaba, “Extended Force Density Method for cable nets under self-weight. Part I – Theory and verification”, Archives of Civil Engineering, 2021, vol. 67, no. 4, pp. 139–157, DOI: 10.24425/ace.2021.138491.
Go to article

Authors and Affiliations

Izabela Wójcik-Grząba
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more