Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Spitsbergen is the largest island in the Svalbard Archipelago (Norway) that has been permanently populated. The harsh Arctic climate prevents development of large vascular plants such as trees. A two-year aerobiological survey was conducted within the framework of two consecutive polar expeditions (2014 and 2015) in Spitsbergen (Calypsobyen, Bellsund). The air quality was measured continuously from June/July to August using a 7-day volumetric air sampler, Tauber trap and moss specimens. Collected air samples and gravimetric pollen deposits were processed following transfer to sterile laboratory conditions and analyzed with the aid of light microscopy. Days when pine pollen grains were detected in the air were selected for further analysis. Clusters of back-trajectories, computed using the Hybrid Single Particle Lagrangian Integrated Trajectory model in combination with ArcGIS software as well as the Flextra trajectory model, showed the movement of air masses to the sampling location at Hornsund, and thus indicated the likely origin of pollen grains. The GlobCover 2009 and CORINE Land Cover 2012 datasets were employed to establish the distribution of coniferous forests in the areas of interest. Conclusions were drawn based on the analyses of the circulation of air masses, using visualization of global weather conditions forecast to supercomputers. For the first time we have demonstrated that pine pollen grains occurring in pine-free Spitsbergen, could originate from numerous locations, including Scandinavia, Iceland, Siberia and northern Canada. Pollen grains were transported via air masses for distances exceeding ~2000 km. Both air samples and gravimetric pollen deposits revealed the same pattern of Pinus pollen distribution.
Go to article

Authors and Affiliations

Małgorzata Jędryczka
1
ORCID: ORCID
Beata Żuraw
2
ORCID: ORCID
Piotr Zagórski
3
Jan Rodzik
3
Karolina Mędrek
3
Irena Agnieszka Pidek
3
ORCID: ORCID
Weronika Haratym
4
ORCID: ORCID
Joanna Kaczmarek
1
ORCID: ORCID
Magdalena Sadyś
5
ORCID: ORCID

  1. Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479 Poznań, Poland
  2. Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-295 Lublin, Poland
  3. Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, al. Kraśnicka 2D, 20-718 Lublin, Poland
  4. Paderewski Private Grammar School, Symfoniczna 1, 20-853 Lublin, Poland
  5. Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
Download PDF Download RIS Download Bibtex

Abstract

Studying the reaction of glaciers to climate warming and the interactions of ice masses with the atmosphere is cognitively highly significant and contributes to understanding the climate change. The results from the modelling of glacier surface ablation by the temperature–index and energy balance models as well as the results of meteorological and glaciological studies on Werenskioldbreen (south Spitsbergen, Svalbard) in 2011 have been analysed to improve the understanding of the glacier system’s functioning in the High Arctic. The energy balance modelling results showed that the radiation balance (58%) and sensible heat (42%) are the main factors influencing surface ablation on the glacier. The energy balance model offers a better fit to the measured ablation than the temperature–index model. These models have to be validated and calibrated with data from automatic weather stations, which provide the relevant gradient and calibration and validation. Presented models are highly suited for calculating ablation in Svalbard and other areas of the Arctic.
Go to article

Authors and Affiliations

Dariusz Ignatiuk
1
ORCID: ORCID

  1. University of Silesia in Katowice, Bankowa 12, 40-007 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to demonstrate for the first time the results of hydrogeochmical studies carried out in the Steinvik River catchment, in order to provide detailed information regarding the chemical composition of groundwater in the Hornsund region, SW Spitsbergen. The water chemistry in the non-glaciated Steinvik River catchment is largely controlled by hydrological processes related to thaw of the near surface permafrost. Groundwater runoff is generated from the fast flow through well-permeable active layer. Recharge from melting snow, permafrost and rain, together with short residence time of groundwater, favors the forming of low-mineralized water, reaching 41 and 50 μS/cm for surface and groundwater, respectively, with the dominance of HCO3−, Cl−, Mg2+, Ca2+ and Na+ ions. In some water samples, increased concentrations of aluminum (up to 268 μg/L ) were found. The highest concentrations of phosphate, nitrite and ammonium in water seem to be related to the presence of bird colonies. Groundwater of active layer in the studied catchment belongs to young meteoric water with the age limited to one summer season.
Go to article

Authors and Affiliations

Michał Rysiukiewicz
1
ORCID: ORCID
Henryk Marszałek
1
ORCID: ORCID
Mirosław Wąsik
1
ORCID: ORCID

  1. Department of Applied Hydrogeology, Institute of Geological Sciences, Wrocław University, Pl. Maksa Borna 9, 50-204 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Humic substances are ubiquitous materials found in terrestrial and aquatic ecosystems. Humic acids, a diagenetic product can interact with various components present in aquatic sediments. The present research is on the evaluation of sedimentary humic acids from the Krossfjorden glacial fjord situated within the Svalbard archipelago. The results of this study are needed to understand the structural characteristics of humic acids isolated from the fjord. Surface sediment samples were collected from four stations throughout the fjord during a summer period in 2018. Various spectroscopic techniques such as UV-visible, Fourier-transform infrared spectroscopy (FTIR), and Nuclear magnetic resonance spectroscopy (NMR) were applied for studying the humic acids. The elemental composition as well as the presence of tannin and lignin were also analyzed. The results of this study revealed the variation in the structure of humic acids from aliphatic to aromatic from the outer to the inner region of the fjord. This change in humic acids was well supported by the FTIR and NMR results with differences in the spectrums.
Go to article

Authors and Affiliations

Aswathy Shaji
1
ORCID: ORCID
Anu Gopinath
2
ORCID: ORCID
Anoop Krishnan
3
ORCID: ORCID
Sabu Prabhakaran
4
ORCID: ORCID

  1. School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, India
  2. Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, India
  3. Biogeochemistry Group, National Centre for Earth Science Studies, Trivandrum, 695011, India
  4. Ocean Science Group, National Centre for Polar and Ocean Research, Goa, 403804, India
Download PDF Download RIS Download Bibtex

Abstract

This study reports on the accumulation rates and 210Pb fluxes in Spitsbergen, Svalbard archipelago, wetlands. Six peat cores were collected in the Hornsund region, SW Spitsbergen (77°N) in 2007. The ages of peat layers were obtained with the Constant Flux/Constant Sedimentation and Constant Rate of Supply models based on the 210Pb-dating technique. The obtained 210Pb flux values ranged from 28 to 50 Bq m –2 y –1, which was consistent with the level of 222Rn emanation estimated for northern latitudes. The values of vertical and mass accumulation rates were slightly lower than reference data for peatlands of 50°−70°N. Furthermore, the vertical variations of peat accumulation rates exhibited the highest values in the upper part of the examined cores. The increasing tendency may be due in part to low compaction and low decomposition in the youngest peat layers. The analysis of the peat accumulation rate as a function of organic matter content and bulk density revealed positive and negative correlations, respectively, rather strong in both cases. The air temperature and precipitation gradients in the last few decades may have affected peat growth rates, which should be thoroughly investigated in future projects. Undoubtedly, the reported findings have provided a valuable addition to the relatively sparse dataset on recent peat deposits in Spitsbergen.
Go to article

Authors and Affiliations

Anna Cwanek
1
ORCID: ORCID
Edyta Łokas
1
ORCID: ORCID

  1. Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland

This page uses 'cookies'. Learn more