Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 38
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The work concerns the influence of the method of numerical modelling of the connections of the roof truss and vaults with the walls of historic masonry objects structures on the local stress distribution in the walls. At the outset, the need to search for rational modelling was justified due to the large size of the calculation models and the erroneous results obtained with oversimplification of the model. Four methods of modelling the connections between the walls and roof truss and vaults were analysed. The first method was to describe the elements of walls and foundations as solid elements, the ribs of the vaults and the roof truss as beam elements, and the vaulting webs as shell elements. The remaining methods 2–4 describe the walls as shell elements. In places where the walls join with the roof truss and vaults, fictitious/fictional elements in the form of rigid horizontally-oriented shells were used in model No. 2. In model No. 3, fictitious rigid horizontally-oriented shell elements in addition to local rigid vertically-oriented shells were used, while in model No. 4, only fictitious rigid vertically-oriented shell elements with stepwise decreasing protrusions were introduced. The best solution in terms of local stress distribution turned out to be the description of connections with fictitious shell elements in the case of model No. 4. This approach slightly increases the number of unknowns, and makes the results of stresses in the connection areas realistic in relation to full modelling with solid finite elements.
Go to article

Authors and Affiliations

Czesław Miedziałowski
1
ORCID: ORCID
Marcin Szkobodziński
2
ORCID: ORCID
Krzysztof Robert Czech
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A, 15-351 Bialystok, Poland
  2. Energoprojekty sp. z o.o., Opolska 15, 15-549 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, direct shear tests were carried out on cement mortar specimens with singleladder, single-rectangular, and double-rectangular step joints. Consequently, the shear strength, and crack shape of specimens with these through-step joints were analyzed, for understanding the influence of the through-step joint’s shape on the direct shear mechanical properties. The results of the investigation are as follows: (1) Under the same normal stress, any increases in the height ℎ of the step joint causes an initial-increase-decrease in the shear strengths of specimens with single-ladder and double-rectangular step joints, causing a type-Wvariation pattern for the specimens with single-rectangular step joint. More essentially, when normal stress and ℎ are constant, the shear strength of specimens with a single-ladder step joint is the greatest, followed by specimens with a double-rectangular step joint, and then specimens with a single-rectangular step joint is the least. (2) Furthermore, given a smallℎ and low normal stress, specimen with a single-ladder step joint mainly experiences shear failure, whereas specimens with single-rectangular and double-rectangular step joints mainly generate extrusion milling in the step joints.
Go to article

Authors and Affiliations

Liangxiao Xiong
1
ORCID: ORCID
Haijun Chen
2
ORCID: ORCID
Haogang Guo
3
ORCID: ORCID
Songhua Mei
1
ORCID: ORCID
Zhongyuan Xu
4
ORCID: ORCID
Bin Liu
5
ORCID: ORCID

  1. Hunan Provincial Key Laboratory of Hydropower Development Key Technology, Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
  2. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
  3. Civil and Environmental Engineering Department, Carnegie Mellon University, Pittsburgh 15289, United States
  4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
  5. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
Download PDF Download RIS Download Bibtex

Abstract

Worker absenteeism is identified as the greatest threat to not meeting the completion date of a construction project. The purpose of this paper is to quantify the impact of employee absenteeism risk on the probabilistic lead time of a construction project. Calculations of employee absenteeism risk values were performed using data from the Central Statistical Office (Big Data). Probabilistic schedules with probability density functions (Normal, Exponential, Reyleigh, Triangle, Gamma, Cauchy) with and without calculated employee absenteeism risk were prepared. Student’s t-test and MAPE analysis of mean absolute percentage errors were performed to determine differences between groups. It was found that with respect to the probability of completing the task in the range of 75 to 95% for all functions, an unacceptable MAPE error of 32.82% to 69.23% arises. Therefore, the authors postulate that the risk of worker absenteeism should be considered in every construction process when performing probabilistic scheduling, i.e., in the Building Information Modeling BIM methodology.
Go to article

Authors and Affiliations

Magdalena Rogalska
1
ORCID: ORCID
Zdzisław Hejducki
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  2. Wrocław University of Science and Technology, Faculty of Civil Engineering, Plac Grunwaldzki 11, 50-384 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study was conducted to assess and substantiate the key systemic problems of the national engineering of different countries in the context of economic globalization. To achieve this goal, the study used the author’s method to assess the dependence of mechanical engineering in Ukraine, Poland and Germany on imports of intermediate goods. According to the results, it was determined that in the periods of increasing economic globalization of mechanical engineering in Ukraine, Poland and Germany has undergone systemic destructive changes and is in a threatening state, from the standpoint of economic security. In particular, in Ukrainian and Polish mechanical engineering, the dependence on imports of high-tech intermediate goods is excessively high. In contrast, German engineering, unlike Ukraine’s and Poland’s, is less dependent on imports of high-tech products, but requires much more resource-intensive intermediate goods. It is analytically substantiated that the identified problems with the import dependence of mechanical engineering in Ukraine, Poland and Germany are the result of irrational, one-sided perception of economic globalization by the main economic entities of these countries.
Go to article

Authors and Affiliations

Svitlana Ishchuk
1
ORCID: ORCID
Lyubomyr Sozanskyy
1
ORCID: ORCID

  1. Department of Problems of the Real Sector of the Regional Economy, Institute of Regional Research named after M.I. Dolishniy of the NAS of Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article is to present the application of genetic algorithm in production scheduling in a production company. In the research work the assumptions of the methodology were described and the operation of the proposed genetic algorithm was presented in details. Genetic algorithms are useful in complex large scale combinatorial optimisation tasks and in the engineering tasks with numerous limitations in the production engineering. Moreover, they are more reliable than the existing direct search algorithms. The research is focused on the effectivity improvement and on the methodology of scheduling of a manufacturing cell work. The genetic algorithm used in the work appeared to be robust and fast in finding accurate solutions. It was shown by experiment that using this method enables obtaining schedules suitable for a model. It
Go to article

Authors and Affiliations

Marcin Matuszny
1
ORCID: ORCID

  1. University of Bielsko-Biala, Bielsko-Biała, Poland
Download PDF Download RIS Download Bibtex

Abstract

The manufacturing industry has been reshaping its operations using digital technologies for a smart production towards a more customized demand. Nevertheless, the flexibility to attend the production plan changes in real time is still challenging. Although the Internet of Services (IoS) has been addressed as a key element for Industry 4.0, there is still a lack of clarity about the IoS contribution for advanced manufacturing. Through a case study, the paper aims to validate the adherence of a theoretical model named Service-Oriented Manufacturing Architecture (SOMA) in two manufacturing companies that have been already engaged in Industry 4.0. As main results, it was concluded that IoS could suit in one case of Industry 4.0 flexible production process but not in a mass production one. Considering the scarcity of research that exemplifies the IoS contribution, the present paper brings an important assessment on a real manufacturing scenario.
Go to article

Authors and Affiliations

Jacqueline Zonichenn Reis
1
Rodrigo Franco Goncalves
1
Marcia Terra Silva
1

  1. Graduate Studies in Production Engineering, Universidade Paulista, Brazil
Download PDF Download RIS Download Bibtex

Abstract

FMEAs have been prioritized using RPN; however, a new standard has introduced AP for prioritization. This study seeks to determine if the number of required improvement actions increases, decreases, or stays the same when using AP in place of RPN. Statistical software was used to simulate 10,000 combinations of severity, occurrence, and detection. Both AP and RPN were calculated for the 10,000 combinations. Statistical hypothesis testing was performed to determine if there was a difference between RPNs when sorted by AP and to determine if there was a difference in actions required using RPN or AP. There is a statistically significant difference between RPNs when sorted by high, medium, and low AP. Using an RPN threshold equal to or greater than 100 would result in no change in the number of actions required if prioritizing by high and medium, but would result in fewer actions required if only high is used.
Go to article

Authors and Affiliations

Matthew Barsalou
1
ORCID: ORCID

  1. Automotive Industry, Germany
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the paper is to analyze the positioning of Ukraine in the global indices of innovative development and competitiveness, to evaluate the indicators of innovation activity and, based on the outcomes of the research, to determine the place of Ukraine in the global innovation space. The dynamics of innovation activity on an international scale based on the consolidated indicators of the Global Innovation Index are presented. Ukraine’s position in it and progress in achieving goals to better understand the processes that stimulate or constrain innovation are determined. Econometric methods to generalize the positioning of Ukraine in the global innovation space and the DEA method to study the relative individual effectiveness of the innovation environment and innovation activities in Europe are used.
Go to article

Authors and Affiliations

Iryna Voronenko
1
ORCID: ORCID
Nataliia Klymenko
2
ORCID: ORCID
Olena Nahorna
3
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Department of Information Systems and Technologies, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine, Department of Economic Cybernetics, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, Department of Marketing and International Trade, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Supply Chain Management (SCM) is a very important part of the industrial world, especially in the manufacturing sector. The development of the business world affects the complexity of the supply chain due to the lack of logistics infrastructure, quality of materials and components, and much more. Supply chain disruption risk mapping needs to be done due to high uncertainty, which is overcome by implementing a decision support system. Based on the background of the problem, supply chain disruption mapping uses the help of the Six Sigma method, which consists of 5 stages: Define, Measure, Analyze, Improve, and Control (DMAIC). The measurement of disturbance also uses the Failure Mode and Effect Analysis (FMEA) approach to prioritize risk. Risks that have a high assessment and cause failure need to be prioritized for improvement. This study aims to map supply chain disruptions in the current manufacturing industry based on the barriers, resistances, and causes detected for making a decision support system prototype. By implementing a decision support system in the supply chain process, it is
Go to article

Authors and Affiliations

Johanes Fernandes Andry
1
Filscha Nurprihatin
2
Lydia Liliana
1

  1. Department of Information Systems, Universitas Bunda Mulia, Indonesia
  2. Department of Industrial Engineering, Sampoerna University, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Presently, digitalization is causing continuous transformation of industrial processes. However, it does pose challenges like spatially contextualizing data from industrial processes. There are various methods for calculating and delivering real-time location data. Indoor positioning systems (IPS) are one such method, used to locate objects and people within buildings. They have the potential to improve digital industrial processes, but they are currently underutilized. In addition, augmented reality (AR) is a critical technology in today’s digital industrial transformation. This article aims to investigate the use of IPS and AR in manufacturing, the methodologies and technologies employed, the issues and limitations encountered, and identify future research opportunities. This study concludes that, while there have been many studies on IPS and navigation AR, there has been a dearth of research efforts in combining the two. Furthermore, because controlled environments may not expose users to the practical issues they may face, more research in a real-world manufacturing environment is required to produce more reliable and sustainable results.
Go to article

Authors and Affiliations

Kuhelee Chandel
1
Julia Åhlén
1
Stefan Seipel
1 2

  1. Department of Computer and Geospatial Sciences, University of Gävle, Sweden
  2. Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Sweden
Download PDF Download RIS Download Bibtex

Abstract

History has shown different approaches to improving productivity the way of companies do business. Since the early 1900s, the development of different production systems has played an increasingly remarkable role in global manufacturing countries. It seems, that the growth of understanding has widened the ideology of production systems used up to current ones. This article examines the development path of business development. It evaluates the suitability of the key tools used to support change in a modern business model in a customer-driven project business environment.
Go to article

Authors and Affiliations

Jyri Vuorela
1
Mikael Ollikainen
1
Vesa Salminen
2
Juha Varis
1

  1. Energy Systems, LUT University, Finland
  2. Smart Research Center, Häme University of Applied Sciences, Finland
Download PDF Download RIS Download Bibtex

Abstract

This article presents a study of a wall cladding system composed of stainless steel subframe and composite, fibre-reinforced concrete cladding panels, which was been installed on a high-rise public building. The study focused on the assessment of strength, safety and durability of design through laboratory tests and numerical analyses. The laboratory tests were conducted using a threedimensional tests stand and a full-scale mock-up of the wall cladding system built at the laboratory using the actually used materials and cladding panels. The boundary conditions and the test loads corresponded to the values of actions determined during the engineering phase of the high-rise building under analysis. Noteworthy, wind actions were verified by supplementary wind tunnel testing. In addition, the stainless steel was also tested to determine the strength properties of the material actually used in construction. These test were carried out just before commencement of the curtain wall installation. The 3D model was constructed with the application of the finite element method (FEM) to obtain adequate representation of geometry, material performance and structural behaviour of the analysed wall cladding system. Particular attention was paid to determination of the parameters defining the behaviour of the cladding system sub-frame from the angle of plastic deformations of the stainless steel and the resulting failure mechanisms of the members of the structure itself. To this end, the stainless steel was subjected to appropriate performance tests to determine material properties including the values of the proportionality limit and yield strength.
Go to article

Authors and Affiliations

Maciej Cwyl
1
ORCID: ORCID
Stanisław Wierzbicki
1
ORCID: ORCID
Rafał Michalczyk
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The current design codes recommend designing the building structures based on the assumption avoiding the disproportionate to the initial cause damage during accidental situation. As a main strategy to mitigate a progressive collapse an alternative load path method is recommended. Flush and extended bolted end-plate joint to connect beam-to-column were experimentally tested. Hierarchical validation of joint FEM models based on experimental test results were performed. The numerical dynamic analysis by finite element method of selected steel frame under column loss scenario is presented. The planar 2D model of frame were used. Shell elements for beams and columns and solid elements for joints were employed respectively. Nonlinear material and geometry were applied in the analysis. Johnson-Cook model was used to describe the change of steel parameters by dynamic Increase Factor (DIF). The Rayleigh model to include the damping effects in the analysis was used. The dynamic analysis was performed with the use of Abaqus/Explicit module. Main conclusion of presented research it that to achieve the required level of robustness, bolted beam-to-column joints with extended end-plate of thickness more than 15 mm should be used.
Go to article

Authors and Affiliations

Damian Kukla
1
ORCID: ORCID
Aleksander Kozlowski
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Poznanska 2, 35-084 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

In civil engineering structures, steel angles are often used as tensioned elements, because of their ease of fabrication and assembly. For practical reasons, angles are usually connected only by one leg, using a single row of bolts, and rupture of weakened section usually determines a joint capacity. Also, eccentricity affects the distribution of stresses in the net section and hence its load capacity. Assessment of ultimate resistance is a completely different issue compared to the well-known and established problems of plastic resistance and requires advanced material modelling. The paper presents a numerical simulation of net section failure of tensioned angles, made of structural steel grade S275, taking into account ductile initiation and propagation of fracture using the Gurson–Tvergaard– Needleman damage model. Extensive parametrical analysis of ultimate tensile resistance was performed with a wide range of parameters. The typical and well-recognised failure modes were observed as net section fracture and block tearing. Also, an additional failure mode, classified as limited block tearing, has occurred which is not considered in current design provisions. The paper describes the impact of individual geometrical properties of the joint (numbers of bolts, connection length, and distance from the edge of the connected leg to the center of the fastener hole) on the apparent failure form and the resistance obtained.
Go to article

Authors and Affiliations

Edyta Bernatowska
1
ORCID: ORCID
Lucjan Ślęczka
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Poznanska 2, 35-084 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

A new method of creating constitutive model of masonry is reported in this work. The model is not an explicit orthotropic elastic-plastic one, but with an artificial neural network (ANN) giving an implicit constitutive function. It relates the new state of generalised stresses Σ n+1 with the old state Σ n and with an increment of generalised strains ΔE (plane-stress conditions are assumed). The first step is to run a strain- controlled homogenisation, repeatedly, on a three-dimensional finite element model of a periodic cell, with elastic-plastic models (Drucker–Prager) of the components; thus a set of paths is created in (Σ, ΔE) space. From these paths, a set of patterns is formed to train the ANN. A description of how to prepare these data and a discussion on ANN training issues are presented. Finally, the procedure based on trained ANN is put into a finite-element code as a constitutive function. This enables the analysis of arbitrarily large masonry systems. The approach is verified by comparing the results of the developed model basing on ANN with a direct (single-scale) one, which showed acceptable accuracy.
Go to article

Authors and Affiliations

Aleksander Urbański
1
ORCID: ORCID
Szymon Ligęza
2
ORCID: ORCID
Marcin Drabczyk
3
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155, Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Drilling, Oil and Gas (doctoral student), al. Mickiewicza 30, 30-059 Kraków, Poland
  3. Idealogic Ltd., ul. Kapelanka 26, 30-347 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is presented in detail how the selection of a structural model describing the behaviour of a steel hall transverse frame when subject to fire exposure in a more or less complex way may affect the fire resistance evaluation for such a frame. In the examples compiled in this paper the same typical one-aisle and single-story steel hall is subjected to simulated fire action, each time following the same fire development scenario.Aresultant fire resistance is identified individually in each case, using various computational models, on an appropriate static equilibrium path obtained numerically. The resulting estimates vary, not only in the quantitative sense, but also in terms of their qualitative interpretation. It is shown that the greater the simplification of the model used, the more overstated the estimated fire resistance is in relation to its real value. Such an overestimation seems to be dangerous to the user, as it gives him an illusory but formally unjustified sense of the guaranteed safety level.
Go to article

Authors and Affiliations

Mariusz Maślak
1
ORCID: ORCID
Michał Pazdanowski
1
ORCID: ORCID
Maciej Suchodoła
1
ORCID: ORCID
Piotr Wozniczka
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a comparison of three strain measurement methods. The mechanical parameters of S355 grade steel (yield strength, tensile strength, modulus of elasticity) were determined in tensile tests. Strains were measured using high resolution measuring instruments: an extensometer, a strain gauge and an ARAMIS 3D DIC system. In this paper, these three instruments have been used simultaneously in tensile tests for the first time. The results indicate that the values of the Young’s modulus obtained using different techniques were similar when each instrument measured strain on the same side of the sample. Small differences were connected with different gauge lengths and their locations. The values of the Young’s modulus determined on the opposite sides of the samples were more varied even when the same method was used (strain gauge measurements). For this reason, it is recommended to use double-sided averaging instruments when the Young’s modulus is determined. The strain-curves obtained from the strain gauge measurements were incomplete and they came to an end at the end of the yield plateau due to the fact that they were damaged when the values of strain were relatively high. The extensometer was used up to the point where the strain reached 0.3% and then the strain was measured based on the distance between the machine clamps. The stress-strain curves obtained from the DIC system were complete because the system was able to monitor the sample until the very end of the tests.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Janusz Dębiński
1
ORCID: ORCID
Adam Glema
1
ORCID: ORCID
Justyna Grzymisławska
1
ORCID: ORCID
Dariusz Jezierski
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID
Wojciech Szymkuć
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper there the laboratory tests of interaction between thin-walled beams of the Z crosssection and the sandwich panels with PIR foam core are presented. The different numbers of connectors (0, 4, and 8) were used to connect the sandwich panels with the thin-walled beams. Furthermore, the parallel and perpendicular to the longitudinal axis of the thin-walled beam load arrangement was analysed. The research provides a qualitative and quantitative comparison of the mentioned experiments using the ultimate capacity, the deformation capacity, and the stiffness. In the second part of the paper, the numerical analysis of the thin-walled beam was also performed. The beam was modelled as a shell element and loaded in two ways, which corresponded to the loading scenario during laboratory tests (uniformly distributed and concentrated loads). The results of the numerical calculations of the beam without lateral stabilization were compared with the laboratory results of the beam stabilized by the sandwich panels.
Go to article

Authors and Affiliations

Katarzyna Ciesielczyk
1
ORCID: ORCID
Robert Studziński
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

At present, many studies have been carried out on the fatigue mechanical properties of conventional rocks, but there are few studies on the mechanical properties of rocks after water rock interaction. The aim is to better study the fatigue mechanical characteristics of sandstone after dry wet cycle and the research object we take was sandstone samples after a certain number of drying and wetting cycles. The WAW-2000 electro-hydraulic servo pressure system was used to carry out uniaxial fatigue cyclic loading and unloading tests with different amplitudes and different upper limit stresses. The test found that: when the sample is damaged under fatigue load, the stress-strain curve shows a sharp downward trend and a sudden instability failure occurred in the sample.With the increase of the upper limit stress and amplitude, the life of the sample decreases gradually which also conforms to the change of power function. Then the relationship between fatigue life and stress is obtained. The fatigue stress-strain curve is characterized by sparse-dense-sparse. With the increase of cycle time, the axial strain of the sample shows an inverted “S” shape. The strain change can be divided into three stages: initial stage, constant velocity stage and acceleration stage.
Go to article

Authors and Affiliations

Jin-Song Zhang
1
ORCID: ORCID
Yu Lu
1
ORCID: ORCID
Heng-Liang Zhang
2
ORCID: ORCID
Yu-Di Yang
1
ORCID: ORCID
Yi-Shun Bu
1
ORCID: ORCID

  1. Anhui University of Science and Technology, No. 168, Taifeng street, Huainan City, Anhui Province, China
  2. First Design and Research Institute MI China Co, No. 12550, bustling Avenue, Hefei Economic and Technological Development Zone, Anhui Province, China
Download PDF Download RIS Download Bibtex

Abstract

The implementation of construction projects in Warsaw is associated with increasing difficulties in preparation, obtaining the relevant building permits and licences, partly due to the lack of water and sewage infrastructure and the inadequate management of rainwater in the city. All this leads to an increase in the cost of the construction projects undertaken. To illustrate a number of issues related to stormwater management in the city and the resulting problems, the study provides a number of different case studies, stylised facts and abductive conclusions to develop the best explanation for the existing problems. Specifically, the study presents the barriers to stormwater management in the city of Warsaw through an analysis of a hypothetical investment process (related to the Wawer Canal). The case studies analysed concern the deterioration of the “Bernardine Water” reservoir and the lack of appropriate investments in the Sluzewiecki Stream catchment, as well as a number of conflicting conditions in stormwater management in Warsaw. In contrast, examples of successful investments in stormwater management are also shown, e.g. Radex Park Marywilska, Stegny Południe settlement, Fort Bema settlement in Bemowo. In this way it is shown that with the right approach it is possible to carry out construction investments in water and wastewater infrastructure in an appropriate way, thus avoiding many stormwater management problems. The main conclusion of the study is that insufficient consideration of stormwater drainage issues in spatial planning will lead to further flooding and increasing water management problems.
Go to article

Authors and Affiliations

Janusz Sobieraj
1
ORCID: ORCID
Marek Bryx
2
ORCID: ORCID
Dominik Metelski
3
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw School of Economics, Department of Innovative City, al. Niepodległosci 162, 02-554, Warsaw, Poland
  3. University of Granada, Faculty of Economics and Business Sciences, Campus Cartuja, 18071 Granada, Spain
Download PDF Download RIS Download Bibtex

Abstract

Deterioration and defects in building components are key aspects to consider when assessing buildings’ conditions, as they may influence the building’s functionality. The typical defects include cracking, moisture, dampness, and architectural defects. This paper aims to evaluate the defects in a building using a non-destructive testing (NDT), which is the Infrared Thermography (IRT) method. A visual inspection method is then conducted to verify the results of the IRT method. The combination of IRT and visual inspection methods can identify the type of defect and level of severity more accurately. In both methods, ratings or scores are given to the collected defect data to determine the consistency between them. Two (2) buildings were selected as case studies; AA1 and BB2 are multistorey buildings. From those, 51 and 67 spots were taken from the IRT method and further verification process, respectively. Among the defects that were found were moisture, dampness, cracking, staining, chipping, and flaking paint. From all the findings, IRT was found to be comparable with the visual inspection results for serious defects such as cracking and flaking paint. However, IRT was believed to underestimate the architectural defects of staining and chipping. Even so, serious defects such as dampness were also underestimated in IRT due to the fact that the temperature difference between different ratings will not differ much. In conclusion, the IRT method has the potential to be used as a tool for building condition rating. However, it should be assisted with a visual inspection, and more research needs to be conducted for its practicality.
Go to article

Authors and Affiliations

Muhd Zubair Tajol Anuar
1
ORCID: ORCID
Noor Nabilah Sarbini
1
ORCID: ORCID
Izni Syahrizal Ibrahim
1
ORCID: ORCID
Siti Hajar Othman
2
ORCID: ORCID
Mohd Nadzri Reba
3
ORCID: ORCID

  1. Department of Structure & Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  2. School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  3. Geoscience & Digital Earth Centre (Insteg), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The following article collects and describes several practical problems that can be encountered when performing geophysical field measurements using the electrical resistivity tomography (ERT) method. The methodology of work carried out with the Terrameter LS apparatus of the Swedish company ABEM (currently the company has changed its name to GUIDELINE GEO) was presented and discussed. The attention was paid to interesting solutions that increase the efficiency of works, especially in works related to linear investments. Errors that may appear during the use of the roll-along method are indicated, in particular, those appearing in measurements where too long measurement sections are transferred, as well as problems resulting from high electrode earthing, nonlinear profile traces and variable morphology. It describes how the use of different measurement systems affects the depth of prospecting, and which systems cope well in the area with disturbances. The article also emphasizes that the work should be properly planned before starting field research.
Go to article

Authors and Affiliations

Grzegorz Pacanowski
1
ORCID: ORCID
Maciej Maślakowski
2
ORCID: ORCID
Anna Lejzerowicz
2
ORCID: ORCID

  1. Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Currently, the possibilities offered by measurement techniques allow development of both cities in the form of 3D models as well as models of small and large architecture objects. Depending on the needs, the scale of an examined object or the intended use of the final product, geodesy finds readymade measurement methods. If one wants to work out a 3D model of a building object in detail, the most accurate way is to use laser scanning technology. However, there are situations in which limitations resulting from the terrain layout or the structure of the building preclude to obtain full information about its shape. In such situations, the solution is to integrate data from various measurement devices. If creating a full 3D model of large buildings, the best choice to complete data, especially the roof of the object, is to use an unmanned aerial platform, because the resolution of images made on a low altitude is good enough to obtain a satisfactory effect in the form of a point cloud. The research used integration of data obtained at low altitude from two unmanned aerial vehicles, Fly-Tech DJI S1000 and DJI Phantom 3 Advanced – using various types of missions – with data recorded with the Leica ScanStation P40 terrestrial laser scanner. The data was integrated by giving them a common coordinate system – in this case the 2000 system, for the grid points measured in the field with the GNSS technique, and the use of Cyclone, Metashape and Pix4D software for this purpose. Combined point clouds were used for 3D modelling of the sacred object with Bentley CAD software. The accuracy with which data integration was performed and errors resulting from the use of various measurement techniques were determined. The result of the study is a 3D model of the Church of Our Lady of Consolation, located in Krakow at the Sportowe estate.
Go to article

Authors and Affiliations

Bogusława Kwoczyńska
1
ORCID: ORCID
Bogumił Małysa
2

  1. University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Al. Mickiewicza 21, 31-120 Krakow, Poland
  2. RemoteCraftsmen Krakow, ul. Opolska 12, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The proposition of a method to verify the punching resistance for very large supports based on the EN 1992-1-1 standard is described in this paper. The present standard guidelines for the calculation of the punching resistance for large supports are also summarised. The proposed direct method is compared with other standard methods using an example taken from design practice. This method consists of a direct check of the shear forces at specific locations of the control perimeter with the permissible shear force calculated from the EC2 standard. The method showed very good agreement with the experiment while remaining practical for applications. The method presented takes into account the actual distribution of shear forces in the vicinity of the support, taking into account the influence of non-uniform loads, irregular floor geometry, the concentration of internal forces at the corners of the support and the influence of the stiffness of the head used. The paper provides scientists, engineers, and designers new method (called the direct method) for estimation of the punching load-bearing capacity outside the shear cap.
Go to article

Authors and Affiliations

Maciej Grabski
1
ORCID: ORCID
Andrzej Ambroziak
2
ORCID: ORCID

  1. Maciej Grabski Engineering, 94B/1 Leszczynowa Street, 80-175 Gdansk, Poland
  2. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza St. 11/12, 80-233 Gdansk, Poland

This page uses 'cookies'. Learn more