Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The heat-cured core-making process has been applied for over 60 years to produce molds and cores for different types of castings. The following technologies can be classified into the terminology of “heat-cured coremaking process”: croning-, hot-box -, and warm-box process. The latest technology provides good workability of core mixture, good strength properties, dimensional stability, and good knockout performance of the sand cores. Despite all its advantages, the warm-box technology is less widespread in foundries due to the cost of the high quality thermosetting resin and the maintenance cost of the core box. In this study, the influence of the acid hardener content on the hardening characteristics (bending strength), collapsibility, and the benchlife of the warm-box sand cores were investigated. From the results, it can be said, that within the investigated composition range, increasing the acid hardener content will improve the bending strength of the sand cores. The increased acid hardener content results in higher thermal stability at the beginning of the thermal exposure, and smaller residual bending strength after 15 minutes of thermal loading. The acid hardener level has little effect on the benchlife of the warm-box sand cores, although the sand core mixture is very sensitive to the combined effect of the sand temperature and dwelling time.
Go to article

Authors and Affiliations

I. Budavári
1
ORCID: ORCID
H. Hudák
1
G. Fegyverneki
1

  1. University of Miskolc, Faculty of Materials Science of Engineering, Institute of Foundry, Hungry
Download PDF Download RIS Download Bibtex

Abstract

Cooling slope casting is a simple technique to produce semi-solid feedstock with a non-dendritic structure. The cooling slope technique depends on various parameters like slope length, slope angle, pouring temperature etc, that has been investigated in the present study. This work presents an extensive study to comprehend the combined effect of slope angle, slope length, pouring temperature, on hardness and microstructure of A383 alloy. Response Surface Methodology was adopted for design of experiments with varying process parameters i.e. slope angle between 15° to 60°, slope length between 400 to 700 mm, and pouring temperature between 560 ºC to 600 ºC. The response factor hardness was analysed using ANOVA to understand the effect of input parameters and their interactions. The hardness was found to be increasing with increased slope length and pouring temperature; and decreased with slope angle. The empirical relation for response with parameters were established using the regression analysis and are incorporated in an optimization model. The optimum hardness with non-dendritic structure of A383 alloy was obtained at 27° slope angle, 596.5 mm slope length and 596 ºC pouring temperature. The results were successfully verified by confirmation experiment, which shows around 2% deviation from the predicted hardness (87.11 BHN).
Go to article

Bibliography

[1] Mohammed, M.N., Omar, M.Z., Salleh, M.S., Alhawari, K.S. & Abdelgnei, M.A. (2014). An overview of semi-solid metal processing. Australian Journal of Basic and Applied Sciences. 8(19). 369-373. ISSN: 1991-8178.
[2] Haga, T. & Suzuki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of Materials Processing Technology. 118(1-3), 169-172. DOI: 10.1016/S0924-0136(01)00888-3.
[3] Legoretta, E.C., Atkinson, H.V. & Jones. (2008). Cooling slope casting to obtain thixotropic feedstock II: observations with A356 alloy. Journal of Materials Science. 43(16), 5456-5469. DOI: 10.1007/s10853-008-2829-1.
[4] Farshid Taghavi, Ali Ghassemi. (2009). Study on the effects of the length and angle of inclined plate on the thixotropic microstructure of A356 aluminum alloy. Materials & Design. 30(5), 1762-1767. DOI: 10.1016/ j.matdes.2008.07.022.
[5] Xu, J., Wang, T. M., Chen, Z. N., Zhu, J., Cao, Z. Q., & Li, T. J. (2011). Preparation of semisolid A356 alloy by a cooling slope processing. Materials Science Forum. 675-677, 767-770. DOI: 10.4028/www.scientific.net/msf.675-677.767.
[6] Saklakoğlu, N., Gencalp, S., Kasman, (2011). The effects of cooling slope casting and isothermal treatment on wear behavior of A380 alloy. Advanced Materials Research. 264-265, 42-47. DOI: 10.4028/www.scientific.net/AMR.264-265.42.
[7] Rao, M.S., Kumar, A. (2022). Slope casting process: a review. Edited by T. R. Vijayaram. Casting process. 1-21. IntechOpen. DOI: 10.5772/intechopen.102742.
[8] Acar, S., & Guler, K.A. (2022). A thorough study on thixoformability of the cooling slope cast 7075 feedstocks: step-by-step optimization of the feedstock production and thixoforming processes. International Journal of Metalcasting. 16, 1-23. DOI: 10.1007/s40962-022-00801-0.
[9] Nourouzi, S., Ghavamodini, S.M., Baseri, H., Kolahdooz, A., & Botkan, M. (2012). Microstructure evolution of A356 aluminum alloy produced by cooling slope method. Advanced Materials Research. 402, 272-276. DOI: 10.4028/www.scientific.net/amr.402.27.
[10] N.K. Kund, & P. Dutta. (2010).Numerical simulation of solidification of liquid aluminum alloy flowing on cooling slope. Transactions of Nonferrous Metals Society of China. 20(3), 898-905. DOI: 10.1016/S1003-6326(10)60603-6.
[11] Das, P., Samanta, S.K., Das, R. & Dutta, P. (2014). Optimization of degree of sphericity of primary phase during cooling slope casting of A356 Al alloy. Measurement. 55, 605-615. DOI: 10.1016/j.measurement.2014.05.022.
[12] Haga, T., Nakamura, R., Tago, R. & Watari, H. (2010). Effects of casting factors of cooling slope on semisolid condition. Transactions of Nonferrous Metals Society of China. 20(3), 968-972. DOI: 10.1016/S1003-6326(10)60615-2.
[13] Kumar, S.D., Vundavilli, P.R., Mantry, S., Mandal, A. & Chakraborty, M. (2014). A taguchi optimization of cooling slope casting process parameters for production of semi-solid A356 alloy and A356-5TiB2 in-situ composite feedstock. Procedia Material Science. 5, 232-241. DOI: 10.1016/j.mspro.2014.07.262.
[14] Gautam, S.K., Mandal, N., Roy, H., Lohar, A.K., Samanta, S.K. & Sutradhar, S. (2018). Optimization of processing parameters of cooling slope process for semi-solid casting of Al alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 40(6), 291. DOI: 10.1007/s40430-018-1213-6.
[15] Khosravi, H., Eslami-Farsani, R. & Askari-Paykani, M. (2014). Modeling and optimization of cooling slope process parameters for semi-solid casting of A356 Al alloy. Transactions of Nonferrous Metals Society of China. 24(4), 961-968. DOI: 10.1016/S1003-6326(14)63149-6.
[16] Mukkollu, S.R. & Kumar, A. (2020). Comparative study of slope casting technique in integration with ultrasonic mould vibration and conventional casting of aluminium alloy. Materials Today: Proceedings. 26(2), 1078-1081. DOI: 10.1016/j.matpr.2020.02.213.

Go to article

Authors and Affiliations

M.S. Rao
1
ORCID: ORCID
H. Khandelwal
1
ORCID: ORCID
M. Kumar
1
A. Kumar
1

  1. National Institute of Advanced Manufacturing Technology (Formerly National Institute of Foundry and Forge Technology) (A Centrally Funded Technical Institute under MHRD), Hatia, Ranchi, 834003, India
Download PDF Download RIS Download Bibtex

Abstract

The article discusses issues related to the melting of grey and ductile cast iron in terms of metallurgical quality. The derivative and thermal analysis (DTA) was used to assess this quality. The article presents the results of research carried out in industrial conditions and analysed by the Itaca system. In the paper, the effect of the furnace type, the charge materials and the inoculation process on the parameters characterising the cast iron being melted was analysed. The most important of these are the minimum eutectic temperature (Te min), the liquidus temperature (T liquidus) and the nucleation rate. The results of the research and calculations are shown in graphs and as dependencies. Some of DTA results were compared to the microstructure analysis results. The article shows that the derivative and thermal analysis is a very effective tool in the assessment of the metallurgical quality of cast iron. It is a very good addition to chemical analysis. Based on the results of the research, it was concluded that a very high correlation exists between the rate of nucleation (DTA) and the number of graphite nuclei (microstructure analysis). Furthermore, it was also found that an improvement in nucleation could be achieved by ensuring a high value of carbon equivalent (CE) and, above all, by conducting the primary and secondary inoculation processes, respectively.
Go to article

Bibliography

[1] Stefanescu, D.M., Suarez, R. & Kim S.B, (2020). 90 years of thermal analysis as a control tool in the melting of cast iron. China Foundry. 17(2), 69-84. https://doi.org/10.1007/s41230-020-0039-x.
[2] Jura, S., Sakwa, J. & Borek, K. (1980). Application of thermal and differential analysis for determination of chemical composition parameters. Krzepnięcie Metali i Stopów. 3, 16-24. (in Polish).
[3] Jura, S., Sakwa, J. & Borek, K. (1980). Differential analysis of solidification and crystallization processes of gray cast iron. Krzepnięcie Metali i Stopów. 3, 25-35. (in Polish).
[4] Jura, Z. & Jura, S. (1990). Calorimetric curve and heat source in thermal and derivational analysis of cast iron solidification process. Krzepnięcie Metali i Stopów. 16, 126-139. (in Polish).
[5] Jura, Z. & Jura, S. (1996). The theory of the TDA method in the study of Al alloys. Krzepnięcie Metali i Stopów. 28, 57-88. (in Polish).
[6] Jura, S., Studnicki, A., Przybył, M. & Jura, Z. (2001). Application of the ATD method to assess the quality of ductile cast iron. Archiwum Odlewnictwa. 1(1), 93-102. (in Polish).
[7] Gawroński, J., Szajnar, J., Jura, Z. & Studnicki, A. (2004). Professor Stanisław Jura, creator of the theory and industrial applications of diagnostics and wear of metals and alloys. Archiwum Odlewnictwa. 4(SI 16), 1-74. (in Polish).
[8] Pietrowski, S. & Władysiak, R. (1996). TDA Inspection of piston silumins. Krzepnięcie Metali i Stopów. 28, 160-173. (in Polish).
[9] Pietrowski, S. & Gumienny, G. (2002). Methodology for preparing the quality assessment of ductile cast iron using the TDA method. Archiwum Odlewnictwa. 2(6). (in Polish).
[10] Pietrowski, S. & Gumienny, G. (2002). Evaluation of the quality of ductile cast iron EN-GJS-400-15 by the TDA method. Archiwum Odlewnictwa. 2(6), 257-268. (in Polish).
[11] Chisamera, M., Riposan, I., Stan, S., Stefan, E. & Costache, G. (2009). Thermal analysis control of in-mould and ladle inoculated grey cast irons. China Foundry. 6(2), 145-151.
[12] Erturka, S.O., Kumruoglub, L.C., Ozel, A. (2017). Determination of feederless casting limits by thermal analysis in cast iron. Acta Physica Polonica A. 131(3), 370-373. DOI: 10.12693/APhysPolA.131.370.
[13] Seidu, S.O. (2013). Thermal analysis of preconditioned ductile cast iron. International Journal of Current Engineering and Technology. 3(3), 813-818. ISSN 2277-4106.
[14] Cojocaru, A.M., Riposan, I. & Stan, S. (2019). Solidification influence in the control of inoculation effects in ductile cast irons by thermal analysis. Journal of Thermal Analysis and Calorimetry.138, 2131-2143. https://doi.org/10.1007/s10973-019-08808-2.
[15] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M., Sobieraj, J., Matuszkiewicz, G., Szwalbe, L., Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 20(1), 105-110. DOI: 10.24425/afe.2020.131290.
[16] Petrus, Ł., Bulanowski, A., Kołakowski, J., Sobieraj, J., Paruch, T., Urbanowicz, M., Brzeżański, M., Burdzy, D. & Janerka. K. (2021). Importance of TDA thermal analysis in an automated metallurgical process. Journal of Casting & Materials Engineering. 5(4), 89-93. https://doi.org/10.7494/ jcme.2021.5.4.89.
[17] ProserviceTech. Retrieved June, 30, 2022 from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/.
[18] Novacast. Retrieved June, 30, 2022 from https://www.novacast.se/product/atas/.
[19] Heraeus. Retrieved June, 30, 2022 from https://www.heraeus.com/en/hen/products_and_solutions_hen/foundry/thermal_analysis/thermal_analysis.html.
[20] Vesuvius. Retrieved June, 30, 2022 from https://www.vesuvius.com/content/dam/vesuvius/corporate/Our-solutions/our-solutions-master-english/foundry/Newsletter/Issue2/FP-new-issues/FERROLAB%20V.pdf.

Go to article

Authors and Affiliations

J. Kołakowski
1
ORCID: ORCID
M. Brzeżański
1
ORCID: ORCID
D. Burdzy
1
ORCID: ORCID
J. Sobieraj
1
M. Urbanowicz
1
T. Paruch
1
K. Janerka
2
ORCID: ORCID

  1. “Śrem” Iron Foundry Sp. z o.o., ul. Staszica 1, 63-100 Śrem, Poland
  2. Department of Foundry Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical model for the horizontal continuous casting of cast iron (HCCCI). A computational three-dimensional (3D) steady-state, coupled with fluid flow and heat transfer simulation model was developed and validated against experimental results to study the shell thickness and solidification of ductile cast iron. The study introduces the influence of an air gap at the melt-mould interface, which has long been known to have a detrimental effect on the efficiency of the process. The effect of the length and thickness of the melt-mould air gaps (also referred to as top air gaps) on solidification and remelting of the solid strand is studied. Parametric studies on top air gaps suggested a substantial effect on the solid and eutectic area at the top-outlet end of the die when the length of air gas was varied. This study serves to create a foundational and working model with the overall objective of process optimisation and analyzing the effect of operating process input parameters on the shell thickness of the strand.
Go to article

Authors and Affiliations

A. Chawla
1
ORCID: ORCID
N.S. Tiedje
1
ORCID: ORCID
J. Spangenberg
1
ORCID: ORCID

  1. Technical University of Denmark, Denmark

This page uses 'cookies'. Learn more