Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, thermal conductivity, mechanical properties, and thermal degradation of pumice-added epoxy materials were investigated. 2%, 4%, 6%, 8%, and 10% of pumice was added to the epoxy resin (EP) % by weight. Various types of analyses and tests were conducted to determine the thermal conductivity, mechanical properties, and thermal degradation of these epoxy materials. The tests and analyses proved that the addition of pumice leads to a decrease in the thermal conductivity coefficient and density of the pure EP material. It also increases the degree of hardness. The addition of pumice had a positive effect on mechanical properties. Compared to pure EP, it increased the tensile strength, Young’s modulus, bending strength, and flexural modulus. As a result of TGA analysis it was determined that with the incorporation of pumice into the EP, its decomposition rate progressed more slowly. At 800_C, the carbon residue improved as a result of the addition of pumice.
Go to article

Authors and Affiliations

İbrahim Kırbaş
1
ORCID: ORCID

  1. Burdur Mehmet Akif Ersoy University, Department of Electrical and Energy, 15100, Burdur, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the post-weld explosive hardening of a 5 mm AA7075-T651 plate welded via FSW was performed. To investigate the possibility of increasing FSW joint mechanical properties, the welded plate was explosively treated with four various explosive materials (ammonal, emulsion explosive, FOX-7, and PBX) in two different hardening systems. As part of the investigation, the observations of the surface and macrostructure of the treated plates were described. The obtained microhardness distribution allowed us to register the increase in hardness of the SZ up to 6%, but no increase in hardness of the LHZ was reported. In most cases, the influence of explosive treatment on the mechanical properties of the welded joint was disadvantageous as ultimate tensile strength and ductility were reduced. The only positive effect which was observed is the increase in the value of yield strength up to 27% corresponding to 77 MPa, achieved by explosive materials with detonation velocity below 3000 m/s.
Go to article

Authors and Affiliations

Robert Kosturek
1
ORCID: ORCID
Rafał Lewczuk
2
Janusz Torzewski
1
Marcin Wachowski
1
Piotr Słabik
2
Andrzej Maranda
2

  1. Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw, Poland
  2. Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol St., Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the formulation, the existence, uniqueness and stability of solutions and parameter perturbation analysis to Riemann-Liouville fractional differential equations with integro-differential boundary conditions are discussed by the properties of Green’s function and cone theory. First, some theorems have been established from standard fixed point theorems in a proper Banach space to guarantee the existence and uniqueness of positive solution. Moreover, we discuss the Hyers-Ulam stability and parameter perturbation analysis, which examines the stability of solutions in the presence of small changes in the equation main parameters, that is, the derivative order η, the integral order β of the boundary condition, the boundary parameter ξ , and the boundary value τ. As an application, we present a concrete example to demonstrate the accuracy and usefulness of the proposed work. By using numerical simulation, we obtain the figure of unique solution and change trend figure of the unique solution with small disturbances to occur in different kinds of parameters.
Go to article

Authors and Affiliations

Nan Zhang
1
Lingling Zhang
2
ORCID: ORCID
Mercy Ngungu
3
Adejimi Adeniji
4
Emmanuel Addai
2

  1. College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, ChinaCollege of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  2. College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  3. Human Sciences Research Council (HSRC), South Africa
  4. Tshwane university of Technology, South Africa
Download PDF Download RIS Download Bibtex

Abstract

To reduce the recoil and improve the stability of small arms, a muzzle brake compensator is attached to the muzzle of the barrel. This device uses the kinetic energy of the powder gas escaping from the bore after the bullet is fired. In this paper, the authors present the determination of the thermo-gas-dynamic model of the operation of a muzzle brake compensator and an example of calculating this type of muzzle device for the AK assault rifle using 7.62x39 mm ammunition. The results of the calculation allowed for obtaining the parameters of the powder gas flow in the process of flowing out of the muzzle device, as well as the change in the momentum of the powder gas's impact on the muzzle device. The model proposed in the article provides the basis for a quantitative evaluation of the effectiveness of using the muzzle device in stabilizing infantry weapons when firing.
Go to article

Bibliography

[1] V.V. Alferov. Design and Calculation of Automatic Weapons. Moscow, Mechanical Engineering, 1977 (in Russian).
[2] M. Stiavnicky and P. Lisy. Influence of barrel vibration on the barrel muzzle position at the moment when bullet exits barrel. Advances in Military Technology, 8(1):89–102, 2013.
[3] D.M. Hung. Study on the dynamics of the AGS-17 30mm grenade launcher and the effect of some structural factors on gun stability when fired. PhD Thesis, Military Technical Academy, Hanoi, 2016 (in Vietnamese).
[4] J. Balla. Contribution to determining of load generated by shooting from automatic weapons. International Conference on Military Technologies (ICMT), pages 1–6, Brno, Czech Republic, 30-31 May 2019. doi: 10.1109/MILTECHS.2019.8870116.
[5] V.B. Vo, J. Balla, H.M. Dao, H.T. Truong, D.V. Nguyen, and T.V. Tran. Firing stability of automatic grenade launcher mounted on tripod. International Conference on Military Technologies (ICMT), pages 1–8, Brno, Czech Republic, August 2021. doi: 10.1109/ICMT52455.2021.9502836.
[6] M. Macko, B.V. Vo, and Q.A. Mai. Dynamics of short recoil-operated weapon. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(3):9–26, 2021. doi: 10.5604/01.3001.0015.2432.
[7] N.T. Dung, N.V. Dung, T.V. Phuc, and D.D. Linh. biomechanical analysis of the shooter-weapon system oscillation. International Conference on Military Technologies (ICMT), Brno, Czech Republic, pages 48–53, 2017. doi: 10.1109/MILTECHS.2017.7988729.
[8] V.B. Vo, M. Macko, and H.M. Dao. Experimental study of automatic weapon vibrations when burst firing. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(4):9–28, 2012. doi: 10.5604/01.3001.0015.5984.
[9] T.D. Van, T.L. Minh, D.N. Thai, D.T. Cong, and P.V. Minh. The application of the design of the experiment to investigate the stability of special equipment. Mathematical Problems in Engineering, 2022: 8562602, 2022. doi: 10.1155/2022/8562602.
[10] Instructions on shooting. Gun shooting basics. 7.62 mm Modernized Kalashnikov assault rifle (AKM and AKMS), 7.62 mm Kalashnikov light machine gun (RPK and RPKS), 7.62 mm Kalashnikov machine gun (PK, PKS, PKB and PKT), 9 mm Makarov pistol. Hand grenades. Military Publishing House of the USSR Ministry of Defense, 1973 (in Russian).
[11] D.N. Zhukov, V.V. Chernov, and M.V. Zharkov. Development of an algorithm for calculating muzzle devices in the CFD package, Fundamentals of ballistic design. All-Russian Scientific and Technical Conference, St. Petersburg, pages 126-129, 2012. (in Russian).
[12] R. Cayzac, E. Carette, and T. Alziary de Roquefort. 3D unsteady intermediate ballistics modelling: Muzzle brake and sabot separation, In Proceedings of the 24th International Symposium on Ballistics, New Orleans, LA, USA, pages 423–430, 2008.
[13] J.S. Li, M. Qiu, Z.Q. Liao, D.P. Xian, and J. Song. Dynamic modeling and simulation of Gatling gun with muzzle assistant-rotating and recoil absorber. Acta Armamentarii, 35(9):1344–1349, 2014. doi: 10.3969/j.issn.1000-1093.2014.09.003.
[14] N.A. Konovalov, O.V. Pilipenko, Yu.A. Kvasha, G.A. Polyakov, A.D. Skorik, and V.I. Kovalenko. On thermo-gas-dynamic processes in devices for reducing the sound level of a small arms shot. Technical Mechanics, pp. 69-81, 2011 (in Russian).
[15] E.N. Patrikov. Mathematical modeling of the functioning process of service weapons in the mode of non-lethal action. Technical Sciences, News of TulGU, pp. 33-39, 2012 (in Russian).
[16] X.Y. Zhao, K.D. Zhou, L. He, Y. Lu, J. Wang, and Q. Zheng. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake. Shock and Vibration, 2019: 5938034, 2019. doi: 10.1155/2019/5938034.
[17] P.F. Li and X.B. Zhang. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion. Defence Technology, 17(4):1178–1189, 2021. doi: 10.1016/j.dt.2020.06.019.
[18] H.H. Zhang, Z.H. Chen, X.H. Jiang, and H.Zh. Li. Investigations on the exterior flow field and the efficiency of the muzzle brake. Journal of Mechanical Science and Technology, 27: 95–101, 2013. doi: 10.1007/s12206-012-1223-8.
[19] I. Semenov, P. Utkin, I. Akhmedyanov, I. Menshov, and P. Pasynkov. Numerical investigation of near-muzzle blast levels for perforated muzzle brake using high performance computing. International Conference "Parallel and Distributed Computing Systems" PDCS 2013, pages 281–289, Ukraine, Kharkiv, March 13-14, 2013. (in Russian).
[20] S.Q. Uong. Investigating the effect of gas compensator combined with brake device on the stability of automatic hand-held weapons when firing in series by experiment. Military Technical and Technological Science Research, 23:80–83, 2008. (in Vietnamese).
[21] L.E. Mikhailov. Designs of Small Automatic Arms Weapons. Central Research Institute of Information, USSR, 1984. (in Russian).
[22] Theory and Calculation of Automatic Weapons. V.M. Kirillov (editor). Penza: PVAIU, 1973. (in Russian).
[23] V.I. Kulagin and V.I. Cherezov. Gas Dynamics of Automatic Weapons. Central Research Institute of Information, USSR, 1985. (in Russian).
[24] Yu.P. Platonov. Thermo-gas-dynamics of Automatic Weapons. Mechanical Engineering, USSR, 2009. (in Russian).
[25] M.I. Gurevich. Theory of Jets of an Ideal Fluid. Fizmatgiz, USSR, 1961. (in Russian).
[26] Guiding Technical Material, Small Arms, Methods of Thermo-Gas-Dynamic Calculations. RTM-611-74, 1975. (in Russian).
Go to article

Authors and Affiliations

Dung Van Nguyen
1
ORCID: ORCID
Viet Quy Bui
1
ORCID: ORCID
Dung Thai Nguyen
1
ORCID: ORCID
Quyen Si Uong
1
ORCID: ORCID
Hieu Tu Truong
1
ORCID: ORCID

  1. Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam

This page uses 'cookies'. Learn more