Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A new method for measurement of sludge blanket height (SBH) based on image analysis is presented. The proposed method uses a histogram back-projection algorithm to distinguish between the settling sludge and supernatant and can be used with sludge possessing different coloring characteristics both in the sludge color and the color of supernatant produced. Individual pixels in the acquired image are compared with a histogram of a representative sludge region. Therefore, the proposed method relies neither on the assumed shape of light intensity profile nor on the dominant sludge or supernatant color. Batch sedimentation tests are presented for different initial sludge concentrations and different background colors to simulate different sludge characteristics. Parameters of a settling velocity function are estimated based on the obtained results. Additionally, an algorithm is proposed that enables the zone settling velocity (ZSV) to be estimated before the batch sedimentation test is completed.

Go to article

Bibliography

  1.  M. Henze, P. Harremoës, J.C. Jansen, and E. Arvin, Wastewater treatment, Springer-Verlag, Berlin, 1995.
  2.  M. Metzger, “Mathematical model of sequentially controlled activated sludge processes”, Arch. of Cont. Sci. 9(3‒4), 111‒133 (1999).
  3.  J.Ph. Chancelier, M. Cohen de Lara, C. Joannis, and F. Pacard, “New insights in dynamic modeling of a secondary settler – I. Flux theory and steady-states analysis”, Wat. Res. 31(8), 1847‒1856 (1997).
  4.  H. Gao and M.K. Stenstrom, “Generalizing the effects of the baffling structures on the buoyancy-induced turbulence in secondary settling tanks with eleven different geometries using CFD models”, Chem. Eng. Res. Design. 143, 215‒225 (2019).
  5.  M. T. Shah et al., “A novel settling tank for produced water treatment: CFD simulations and PIV experiments”, J. Petro. Sci. Eng. 182, 106352 (2019)
  6.  E. Asensi, E. Alemany, P. Duque-Sarango, and D. Aguado, “Assessment and modelling of the effect of precipitated ferric chloride addition on the activated sludge settling properties”, Chem. Eng. Res. Design. 150, 14‒25 (2019).
  7.  X. Kang, Z. Xia, J. Wang, and W. Yang, „A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solution”, Colloid Surf. A 579, 123647 (2019).
  8.  J. Wiora, A. Kozyra, and A. Wiora, “Towards automation of measurement process of surface water parameters by remote-controlled catamaran”, Bull. Pol. Ac.: Tech. 65(3), 351‒359 (2017).
  9.  R. Aguilar-López and I. Neria-González, “Controlling continuous bioreactor via nonlinear feedback: modelling an dsimulations approach”, Bull. Pol. Ac.: Tech. 64(1), 235‒241 (2016).
  10.  G.A. Ekama, et al., “Secondary settling tanks: theory, modeling, design and operation. of sludge sedimentation parameters”, IAWQ Scientific and Technical Report No. 6, IAWQ, London. 1997.
  11.  P.A. Vesilind, “Theoretical considerations: Design of prototype thickeners from batch settling tests”, Wat. Sew. Wks. 115(7), 302‒307 (1968).
  12.  I. Takács, G.G. Patry, and D. Nolasco, “A dynamic model of the clarification-thickening process”, Wat. Res. 25(10), 1263‒1271 (1991).
  13.  P. Grassia, S.P. Usher, and P.J. Scales, “Closed-form solution for batch settling height from model settling flux functions”, Chem. Engng. Sci. 66(5), 964‒972 (2011).
  14.  A. Vanderhasselt and P.A. Vanrolleghem, “Estimation of sludge sedimentation parameters from single batch settling curve”, Wat. Res. 34(2), 395‒406 (2000).
  15.  P. Vanrolleghem, et al., “On-line quantification of settling properties with in-sensor-experiments in an automated settlometer”, Wat. Sci. Tech. 33(1), 37‒51 (1996).
  16.  X. Lu, et al. “Automatic monitoring and quantitative characterization of sedimentation dynamics for non-homogenous systems based on image profile analysis”, Powder Technol. 281, 49‒56 (2015).
  17.  W. Suchecki, “Investigation of the sedimentation process using flow visualization methods”, Chem. And Proc. Eng. 40(2), 223‒233 (2019).
  18.  Y.J. Kim, S.J. Choi, H. Bae, and C.W. Kim, “Sludge settleability detection using automated SV30 measurement and its application to a field WWTP”, Wat. Sci. Technol. 64(8), 1743‒1749 (2011).
  19.  N. Derlon, Ch. Thürlimann, D. Dürrenmatt, and K. Villez, “Batch settling curve registration via image data modelling”, Wat. Res. 114, 327‒337 (2017).
  20.  Z-H. Li, D. Han, C-J. Yang, T-Y Zhang, and H-Q. Yu, “Probing operational conditions of mixing and oxygen deficiency using HSV color space”, J. Environ. Manage. 232, 985‒992 (2019)
  21.  Y. Xu, L. Zheng, R. Liu, and X. Dai, “Decyphering color for comprehensive utilization of sludge”, Resour. Conserv. Recycl. 153, 104579 (2020).
  22.  S.M. Pizer, et al., ”Adaptive histogram equalization and its variations”, Comp. Vis. Grap. Img. Proc. 39(3), 355‒368 (1987).
  23.  M.J. Swain and D.H. Ballard, “Color indexing”, Int. J. Comput. Vis. 7, 11‒32 (1991).
  24.  W. Niblack, An introduction to digital image processing, 1st English ed., Prentice Hall, 1986.
Go to article

Authors and Affiliations

Witold Nocoń
1
ORCID: ORCID
Jakub Pośpiech
1
ORCID: ORCID
Jacek Kopciński
2

  1. Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  2. MM Automation, ul. E. Bojanowskiego 27a, 40-772 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Is the world’s power engineering at a crossroads? Will ongoing climate changes and rise of new technologies such as the Internet of Things (IoT), Smart City or e-mobility give us a completely different perspective on the world’s future energy? What are our actual visions and development forecasts in this matter? Who is right concerning this matter, large energy companies and some politicians, environmentalists, climate researchers and all kinds of visionaries? Is transformation based on solar energy and hydrogen a holy grail for the energy sector? The author of this article tries to find answers to these and many other questions. Today we can already accept as a proven thesis that rapid and dangerous climate changes for our civilisation can also be attributed to high carbon and low-efficient power engineering. Power engineering and climate neutrality are no longer just problems for politicians, companies, and scientists, but have become a challenge for our civilisation. If we are to save the Earth, our civilisation has to change its mentality and develop ideas that will not prioritise economic growth and high consumption but sustainable growth in harmony with nature. For this to happen, the way people think about energy and global transformation must also change. The foregoing general remarks, but also the fact that a gradual transition from traditional large-scale fossil fuel-based energy generation to distributed energy generation based on renewable resources is inevitable, constitute the main message of this article. The article also aims to discuss the role of the Institute of Fluid-Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdańsk in the process of energy transformation in our country. The institute, as the coordinating entity of over a dozen of high-budgeted national and European projects in the field of environmentally-friendly power engineering, has contributed to some extent to the creation of conditions required for the development of prosumer power engineering (or more broadly: civic power engineering) in our country.

Go to article

Bibliography

  1.  W. Steffen, et al., “Planetary boundaries: Guiding human development on a changing planet”, Science 347(6223), 1259855‒1, (2015).
  2.  Ch.H. Trisos, C. Merow, and A.L. Pigot, “The projected timing of abrupt ecological disruption from climate change”, Nature, 580, 496–501(2020).
  3. European Economic Congress Trends, Warszawa, 2020.
  4.  International Energy Agency, “World Energy Outlook”, 2013, 2014, 2015, 2016.
  5.  International Energy Agency, “Key World Energy Statistics”, 2015.
  6.  “Pictures of the Future”, Siemens, The Magazine for Research and Innovation, Fall (2009).
  7.  The energy future: how to provide energy after the depletion of fossil fuels? [Online]. www.futurenergia.org/ [in Polish].
  8.  The energy future. [Online]. www.shell.pl/ [in Polish].
  9.  Hawking warns: Doom awaits mankind. [Online]. www.rp.pl [in Polish].
  10.  Artificial intelligence for a billion dollars. [Online]. www.rp.pl [in Polish].
  11.  What will be the energy in the future? Exxon Mobil has given forecasts for 2040. [Online]. www.gazetaprawna.pl/ [in Polish].
  12.  Elon Musk predicts the world’s energy future. [Online]. http://www.odnawialnezrodlaenergii.pl [in Polish].
  13.  Distributed energy systems – on the way to low-carbon Poland, expert debate, Mariusz Wójcik. [Online]. http://www.chronmyklimat.pl/ [in Polish].
  14.  M. Nowicki, Dilemmas of the Polish energy sector. 01/2016 [Online]. www.csm.org.pl, [in Polish].
  15.  J. Rączka, M. Swora, and W. Stawiany, “Distributed generation in modern energy policy”, Materials of the forum Energy-Effect- Environment. [Online]. http://forumees.pl/ [in Polish].
  16.  IRENA International Renewable Energy Agency, Transforming the energy system – and holding the line on the rise of global temperatures, ISBN 978‒92‒9260‒149‒2, 2019. [Online]. www.irena.org/publications
  17.  Report: Global Commission on the Geopolitics, International Renewable Energy Agency IRENA, A New World. The Geopolitics of the Energy Transformation, January 2019, ISBN: 978-92-9260-097-6. [Online]. www.geopoliticsofrenewables.org
  18.  IRENA International Renewable Energy Agency, Global Energy Transformation. A Roadmap to 2050, 2019 edition, ISBN 978‒92‒9260‒121‒8. [Online]. www.irena.org/publications
  19.  IRENA International Renewable Energy Agency, Hydrogen: A renewable energy perspective, Tokyo, September 2019, ISBN: 978-92- 9260-151-5.
  20.  IRENA International Renewable Energy Agency, Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed, ISBN 978‒92‒9260‒101‒0, 2019.
  21.  T. Chmielniak, S. Lepszy, and P. Mońka, “Hydrogen energy – opportunities and barriers, Modern problems of thermodynamics”. Eds. T. Bury, A. Szlęk, Institute of Heat Engineering, Gliwice, 2017 [in Polish].
  22.  A. Cenian, J. Kiciński, P. Lampart, “New distributed sustainable prosumer power engineering”, Nowa Energia 6, 23–28 (2012) [in Polish].
  23.  A.Cenian, J.Kiciński, and P. Lampart, “Prosumer power engineering – a chance for the development of the domestic machine industry”, Czysta Energia 10 (2013) [in Polish].
  24.  A. Cenian, J. Kiciński, and P. Lampart, “Quo vadis power engineering? Why small and distributed is beautiful and rich?”, Czysta Energia 4, 30–31 (2012) [in Polish].
  25.  J. Kiciński, “Do we have a chance for small-scale energy generation? The examples of technologies and devices for distributed energy systems in micro & small scale in Poland”, Bull. Pol. Ac.: Tech. 61(4), 749‒756 (2013).
  26.  J. Kiciński and G. Żywica, “Prototype of the domestic CHP ORC energy system”, Bull. Pol. Ac.: Tech. 64(2), 417‒424 (2016).
  27.  J. Kiciński and G. Żywica, Steam Microturbines in Distributed Cogeneration, Springer, 2014.
  28.  A. Cenian, P. Lampart, K. Łapiński, and J. Kiciński, “Innovative eco-technologies for sustainable power engineering which are developed at IMP PAN in Gdańsk. Part I”, Przegląd Energetyczny 3, 36–39 (2015) [in Polish].
  29. J. Kiciński, “Examples of technologies and devices used in distributed energy systems based on energy produced from biomass and agricultural waste”, Nowa Energia 1, 119–122 (2014) [in Polish].
  30.  A. Cenian, M. Górski, and J. Kiciński, “Photovoltaics, biogas plants, biomass”, Przemysł Zarządzanie Środowisko, September-October 2011 [in Polish].
  31. J. Kiciński, A. Cenian, and K. Bogucka, “IMP PAN focuses on innovative solutions for the energy sector – we are discovering the potential of biogas”, Nasz Gdańsk, 11(112), 11–12 (2010), [in Polish].
  32.  J. Kiciński and P. Lampart, “Mini and micro CHP ORC power plants as a prospective form of implementation of renewable energy technologies in Poland”, Energetyka Cieplna i Zawodowa 6, 39–43 (2009), [in Polish].
Go to article

Authors and Affiliations

Jan Kiciński
1

  1. Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work attempts to use nitrogen gas as a shielding gas at the cutting zone, as well as for cooling purposes while machining stainless steel 304 (SS304) grade by Computer Numerical Control (CNC) lathe. The major influencing parameters of speed, feed and depth of cut were selected for experimentation with three levels each. Totally 27 experiments were conducted for dry cutting and N2 gaseous conditions. The major influencing parameters are optimized using Taguchi and Firefly Algorithm (FA). The improvement in obtaining better surface roughness and Material Removal Rate (MRR) is significant and the confirmation results revealed that the deviation of the experimental results from the empirical model is found to be within 5%. A significant improvement of reduction of the specific cutting energy by 2.57 % on average was achieved due to the reduction of friction at the cutting zone by nitrogen gas in CNC turning of SS 304 alloy.

Go to article

Bibliography

  1.  Ch.Y. Nee, M.S. Saad, A.M. Nor, M.Z. Zakaria, and M.E. Baharudin, “Optimal process parameters for minimizing the surface roughness in CNC lathe machining of Co28Cr6Mo medical alloy using differential evolution”, Int. J. Adv. Manuf. Technol. 97(1‒4), 1541‒1555 (2018).
  2.  B. Naveena, S.S. MariyamThaslima, V. Savitha, B. Naveen Krishna, D. Samuel Raj, and L. Karunamoorthy, “Simplified MQL System for Drilling AISI 304 SS using Cryogenically Treated Drills”, Mater. Manuf. Process. 32 (15), 1679‒1684 (2017).
  3.  D. Murat, C. Ensarioglu, N. Gursakal, A. Oral, and M.C. Cakir, “Surface roughness analysis of greater cutting depths during hard turning”, Mater. Test. 59 (9), 795‒802 (2017).
  4.  D. Tanikić, V. Marinković, M. Manić, G. Devedžić, and S. Ranđelović, “Application of response surface methodology and fuzzy logic basedsystem for determining metal cutting temperature”, Bull. Pol Ac.: Tech. 64(2),435‒445 (2016).
  5.  M. Dhananchezian, M. Rishabapriyan, G. Rajashekar, and S. Sathya Narayanan, “Study the Effect of Cryogenic Cooling on Machinability Characteristics During Turning Duplex Stainless Steel 2205”, Mater. Today: Proc. 5, 12062–12070 (2018).
  6.  C.A. Bolu, O.S. Ohunakin, E.T. Akinlabi, and D.S. Adelekan, “A Review of Recent Application of Machining Techniques, based on the Phenomena of CNC Machining Operations”, Elsevier Procedia Manuf. 35, 1054‒1060 (2019).
  7.  D. Kondayyaand and A. Gopala Krishna, “An integrated evolutionary approach for modelling and optimisation of CNC end milling process”, Int. J. Comput. Integr. Manuf. 25(11), 1069‒1084 (2012).
  8.  W.A. Jensen, “Confirmation Runs in Design of Experiments”, J. Qual. Technol. 48(2), 162‒177 (2016).
  9.  S. Amini, H. Khakbaz, and A. Barani, “Improvement of Near-Dry Machining and Its Effect on Tool Wear in Turning of AISI 4142”, Mater. Manuf. Process. 30, 241‒247 (2015).
  10.  E. Natarajan, V. Kaviarasan, W.H. Lim, S.S. Tiang, S. Parasuraman, and S. Elango, “Non-dominated sorting modified teaching– learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)”, J. Intell. Manuf. 31, 911–935 (2020), doi: 10.1007/s10845-019-01486-9.
  11.  V. Kaviarasan, R. Venkatesan, and E. Natarajan, “Prediction of surface quality and optimization of process parameters in drilling of Delrin using neural network”, Prog. Rubber Plast. Recycl. Technol. 35(3), 149–169 (2019).
  12.  N Senthilkumar, T. Ganapathy, and T. Tamizharasan, “Optimisation of machining and geometrical parameters in turning process using Taguchi method”, Aust. J. Mech. Eng.12 (2), 233‒246 (2016).
  13.  F. Kahraman, “Optimization of cutting parameters for surface roughness in turning of studs manufactured from AISI 5140 steel using the Taguchi method”, Mater. Test. 59 (1), 77‒80 (2017).
  14.  J. Rajaparthiban and A.N. Sait, “Application of the grey-based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718”, Mater. Test. 60(9), 907‒912 (2018).
  15.  T. Kıvak and Ş. Mert, “Application of the Taguchi technique for the optimization of surface roughness and tool life during the milling of Hastelloy C22”, Mater. Test. 59(1), 69‒76 (2017).
  16.  R.N. Yadav, “A Hybrid Approach of Taguchi-Response Surface Methodology for Modeling and Optimization of Duplex Turning Process”, Measurement 100, 131‒138 (2016).
  17.  D. Brahmeswararao, K. Venkatarao, and A.G. Krishna, “A hybrid approach to multi response optimization of micro milling process parameters using Taguchi method-based graph theory and matrix approach (GTMA) and utility concept”, Measurement 114, 332‒339 (2018).
  18.  P. Raja, R. Malayalamurthi, and M. Sakthivel, “Experimental investigation of cryogenically treated HSS tool in turning on AISI1045 using fuzzy logic – Taguchi approach”, Bull. Pol Ac.: Tech. 67(4),687‒696 (2019).
  19.  G.V. Chakaravarthy, S. Marimuthu, and A. Naveen Sait, “Comparison of Firefly algorithm and Artificial Immune System algorithm for lot streaming in m-machine flow shop scheduling”, Int. J. Comput. Intell. Syst. 5(6), 1184‒1199 (2012).
  20.  X.S. Yang, Firefly algorithm in Engineering Optimization, John Wiley & Sons, New York, USA (2010).
  21.  X.-S. Yang, “Firefly algorithm, stochastic test functions and design optimization”, Int. J. Bio-Inspired Comput. 2(2), 78‒84 (2010).
  22.  S. Kamarian, M. Shakeriand, and M.H. Yas, “Thermal buckling optimization of composite plates using firefly algorithm”, J. Exp. Theor. Artif. Intell. 29(4) 878‒794 (2016).
  23.  N.A. Al-Thanoon, O.S. Qasim, and Z.Y. Algamal, “A new hybrid firefly algorithm and particle swarm optimization for tuning parameter estimation in penalized support vector machine with application in chemometrics”, Chemometrics Intell. Lab. Syst. 184, 142‒152 (2019).
  24.  A.F. Zubair, M. Salman, and A. Mansor, “Embedding firefly algorithm in optimization of CAPP turning machining parameters for cutting tool selections”, Comput. Ind. Eng. 135, 317‒325 (2019).
  25.  T. Sekar, M. Arularasu, and V. Sathiyamoorthy, “Investigations on the effects of Nano-fluid in ECM of die steel”, Measurement 83, 38‒43 (2016).
  26.  E. Nas and B. Öztürk, “Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials”, Mater. Test. 60(5), 519‒525 (2018).
  27.  G. Samtaşand and S. Korucu, “Optimization of Cutting Parameters in Pocket Milling of Tempered and Cryogenically Treated 5754 Aluminum Alloy”, Bull. Pol Ac.: Tech. 67(4), 697‒707 (2019).
  28.  E. Hüner, “Optimization of axial flux permanent magnet generator by Taguchi experimental method”, Bull. Pol Ac.: Tech. 68(3), 409‒419 (2020).
  29.  Ş. Ertürk and G. Samtaş, “Design of grippers for laparoscopic surgery and optimization ofexperimental parameters for maximum tissue weight holding capacity”, Bull. Pol Ac.: Tech. 67(6), 1125‒1132 (2019).
  30.  J.A. Shukor, S. Said, R. Harun, S. Husinand, and Ab. Kadir, “Optimising of machining parameters of plastic material using Taguchi method”, Adv. Mater. Process. Technol. 2(1), 50‒56 (2016).
  31.  S. Shankar, T. Mohanraj, and S.K. Thangarasu, “Multi-response milling process optimization using the Taguchi method coupled to grey relational analysis”, Mater. Test. 58(5), 462‒470 (2016).
  32.  S. Jannet, P.K. Mathews, and R. Raja, “Optimization of process parameters of friction stir welded AA 5083-O aluminum alloy using Response Surface Methodology”, Bull. Pol Ac.: Tech. 63(4), 851‒855 (2015).
  33.  J. Kwiecień and B. Filipowicz, “Firefly algorithm in optimization of queueing systems”, Bull. Pol Ac.: Tech. 60(2), 363‒368 (2012).
  34.  Z. Liu, X. Li, D. Wu, Z. Qian, P. Feng, and Y. Rong, “The development of a hybrid firefly algorithm for multi-pass grinding process optimization”, J. Intell. Manuf. 30(6), 2457‒2472 (2019).
  35.  J. Kwiecień and B. Filipowicz, “Comparison of firefly and cockroach algorithms in selected discreteand combinatorial problems”, Bull. Pol Ac.: Tech. 62(4), 797‒804 (2014).
  36.  M.C. Shaw, Metal Cutting Principles, Second Edition, Oxford University Press, New York (2004).
  37.  A. Elddein, I. Elshwain, M. Handawi, N. Redzuan, M.Y. Noordin, and D. Kurniawan, “Performance Comparison between Dry and Nitrogen Gas Cooling when Turning Hardened Tool Steel with Coated Carbide”, Appl. Mech. Mater. 735, 65‒69 (2015).
  38.  D. Lazarevic, M. Madića, P. Jankovića, and A. Lazarević, “Cutting Parameters Optimization for Surface Roughness in Turning Operation of Polyethylene (PE) Using Taguchi Method”, Tribol. Ind. 34(2), 68‒73, 2012.
  39.  N. Senthilkumar, T. Tamizharasan, and S. Gobikannan, “Application of Response Surface Methodology and Firefly Algorithm for Optimizing Multiple Responses in Turning AISI 1045 Steel”, Arab. J. Sci. Eng. 39, 8015–8030 (2014).
  40.  A.H. Tazehkandi, M. Shabgard, and F. Pilehvarian, “Application of liquid nitrogen and spray mode of biodegradable vegetable cutting fluid with compressed air in order to reduce cutting fluid consumption in turning Inconel 740”, J. Clean Prod. 108 (part A), 90‒103 (2015).
Go to article

Authors and Affiliations

P. Prasanth
1
T. Sekar
2
M. Sivapragash
3

  1. Department of Mechanical Engineering, Tagore Institute of Engineering and Technology, Deviyakurichi, Salem – 636112, Tamilnadu, India
  2. Department of Mechanical Engineering, Government College of Technology, Coimbatore – 641013, Tamilnadu, India
  3. Department of Mechanical Engineering, Universal College of Engineering and Technology, Vallioor, Tirunelveli – 627117, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

Convolutional Neural Networks (CNN) have achieved huge popularity in solving problems in image analysis and in text recognition. In this work, we assess the effectiveness of CNN-based architectures where a network is trained in recognizing handwritten characters based on Latin script. European languages such as Dutch, French, German, etc., use different variants of the Latin script, so in the conducted research, the Latin alphabet was extended by certain characters with diacritics used in Polish language. To evaluate the recognition results under the same conditions, a handwritten Latin dataset was also developed. The proposed CNN architecture produced an accuracy of 96% for the extended character set. This is comparable to state-of-the-art results found in the domain of identifying handwritten characters. The presented approach extends the usage of CNN-based recognition to different variants of the Latin characters and shows it can be successfully used for a set of languages based on that script. It seems to be an effective technique for a set of languages written using the Latin script.

Go to article

Bibliography

  1.  E. Lukasik and T. Zientarski, “Comparative analysis of selected programs for optical text recognition”, J. Comput. Sci. Inst. 7, 191‒194 (2018).
  2.  P. Kusaj, M. Kosyra, and M. Charytanowicz, “Web-Page Classification Based on Wikipedia Structure. Recent Developments” in Mathematics and Informatics, Contemporary Mathematics and Computer Science 2, Part II, A. Zapała (red.), pp. 89‒102, Wydawnictwo KUL, 2016.
  3.  D. Połap and M. Woźniak, “Flexible neural network architecture for handwritten signatures recognition”, Int. J. Electron. Telecommun. 62, 197–202 (2016).
  4.  M. Milosz and J. Gazda, “Effectiveness of artificial neural networks in recognising handwriting characters”, J. Comput. Sci. Inst. 7, 210‒214 (2018).
  5.  Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”. Proc. IEEE 86(11), 2278‒2324 (1998).
  6.  A. Pal and D. Singh, “Handwritten English character recognition using neural network”, Int. J. Comput. Sci. Commun. 1(2), 141‒144 (2010).
  7.  B.K. Verma, “Handwritten Hindi character recognition using multilayer perceptron and radial basis function neural network”, IEEE International Conference on Neural Network 4, 2111‒2115 (1995).
  8.  D. Singh, S.K. Singh, and M. Dutta, “Hand written character recognition using twelve directional feature input and neural network”, Int. J. Comput. Appl. 1(3), 94‒98 (2010).
  9.  Y. Perwej and A. Chatirvedi, “Neural networks for handwritten English alphabet recognition”, Int. J. Comput. Appl. 20(7), 1–5 (2011).
  10.  J. Pradeep, E. Srinivasan, and S. Himavathi, “Neural network based handwritten character recognition system without feature extraction”, 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), Tamilnadu, 2011, pp. 40‒44.
  11.  A.M. Obaid, H.M. El Bakry, M.A. Elodusuky, and A.I. Shehab, “Handwritten text recognition system based on neural network”, Int. J. Adv. Res. Comput. Sci. Technol. 4(1), 72‒77 (2016).
  12.  V. Lebedev and V. Lempitsky. “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Ac.: Tech. 66(6), 799‒810 (2018).
  13.  D. Firmani, P. Merialdo, E. Nieddu, and S. Scardapane, “In codice ratio: OCR of handwritten Latin documents using deep convolutional networks”, in AI* CH@ AI* IA, 2017, pp. 9‒16.
  14.  F.P. Such, D. Peri, F. Brockler, P. Hutkowski, and R. Ptucha. “Fully convolutional networks for handwriting recognition”. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), IEEE, 2018, pp. 86‒91.
  15.  P. Grother, “NIST special database 19 handprinted forms and characters database”, National Institute of Standards and Technology, Tech. Rep., 1995.
  16.  M. Lutf, X. You, Y. Cheung, and C.L.P. Chen, “Arabic font recognition based on diacritics features”, Pattern Recognit. 47, 672–684 (2014).
  17.  K.E. Gajoui, F.A. Allah, and M. Oumsis, “Diacritical Language OCR based on neural network: Case of Amazigh language”. Procedia Comput. Sci. 73, 298‒305 (2015).
  18.  J. Náplava, M. Straka, P. Straňák, and J. Hajič, “Diacritics Restoration Using Neural Networks”, Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC), 2018.
  19.  D. Grzelak, K. Podlaski, and G. Wiatrowski, “Analyze the effectiveness of an algorithm for identifying Polish characters in handwriting based on neural machine learning technologies”, Journal of King Saud University – Computer and Information Sciences, 2019, doi: 10.1016/j.jksuci.2019.08.001.
  20.  G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, ”EMNIST: an extension of MNIST to handwritten letters”. Retrieved from: http:// arxiv.org/abs/1702.05373, 2017.
  21.   M. Tokovarov, M. Kaczorowska, and M. Milosz, “Development of Extensive Polish Handwritten Characters Database for Text Recognition Research”, Adv. Sci. Technol. Res. J. 14(3), 30–38 (2020), doi: 10.12913/22998624/122567.
  22.  M. Charytanowicz and P. Kulczycki, “An Image Analysis Algorithm for Soil Structure Identification“; in: Intelligent Systems’2014, pp. 681‒692, D. Filev, J. Jablkowski, J. Kacprzyk, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, S. Zadrozny (eds.), Springer, Berlin, 2014.
  23.  The Polish Handwritten Characters Database, [Online]. https://cs.pollub.pl/phcd/?lang=en.
  24.  D.P. Kingma and J.L. Ba, “Adam: A method for stochastic optimization”. arXiv:1412.6980v9, 2014.
  25.  M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in 12th Symposium on Operating Systems Design and Implementation, 2016, pp. 265‒283.
Go to article

Authors and Affiliations

Edyta Lukasik
ORCID: ORCID
Malgorzata Charytanowicz
ORCID: ORCID
Marek Milosz
ORCID: ORCID
Michail Tokovarov
Monika Kaczorowska
Dariusz Czerwinski
Tomasz Zientarski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The effectiveness of lightning protection on the power and distribution grid is a significant factor, which influences the power distribution reliability and the failure rate of system elements. As part of this article, a mathematical model will be presented, taking into account selected parameters that affect the assessment of the lightning hazard of an overhead line. The proposed model will consider the location of the object near the line and the adjustment of line conductor overhangs. Moreover, the mentioned mathematical model allows for analyzing the impact of considered parameters on the protection level of the power system, and transient overvoltages that occur in this system. The article contains also a detailed description of an effective and fast method to assess the lightning discharge impact on the power system with insufficient data. The introduced model was tested to verify the correctness of its operation by comparison of calculation results and functional data. High convergence of calculated and functional data and uncomplicated model structure ensure a wide range of applications for the proposed solution to easily prevent emergency situations in the power system. Furthermore, the described model gives the opportunity to assess the reduction of the range of selectivity zone associated with the power line, in conjunction with the impact of constructional peculiarities and a near object.

Go to article

Bibliography

  1.  J.L. He and R. Zeng, “Lightning shielding failure analysis of 1000 kV ultra-high voltage AC transmission line”, Proc. CIGRE Session, 2010, pp. 1‒9.
  2.  A. Borghetti, G. Martinez Figueiredo Ferraz, F. Napolitano, C.A. Nucci, A. Piantini, and F. Tossani, “Lightning protection of a multi- circuit HV-MV overhead line”, Electr. Power Syst. Res. 180, 1‒10 (2020).
  3.  A. Murphy, “Lightning strike direct effects”, Polymer Composites in the Aerospace Industry, 2nd Edition, Woodhead Publishing, 2020.
  4.  G. Shanqiang, W. Jian, W. Min, G. Juntian, Z. Chun, and L. Jian, “Study on lightning risk assessment and early warning for UHV DC transmission channel”, High Voltage 4(2), 144‒150 (2019).
  5.  R.G. Deshagoni, T. Auditore, R. Rayudu, and C.P. Moore, “Factors Determining the Effectiveness of a Wind Turbine Generator Lightning Protection System”, IEEE Trans. Ind. Appl 55(6), 6585‒6592 (2019).
  6.  J. Bendík, et al., “Experimental verification of material coefficient defining separation distance for external lightning protection system”, J. Electrostat. 98, 69‒74 (2019).
  7.  K. I. Pruslin, “Organization for increasing lightning resistance of overvoltage lines PJSC “FGC UES””, VI Russian Conference on Lightning Protection, 2018, pp. 1‒24.
  8.  G. E. Masin, “Indicators of lightning resistance of power facilities of Kubanenergo PJSC and measures to increase them”, VI Russian Conference on Lightning Protection, 2018, pp. 1‒9.
  9.  A. Andreotti, A. Pierno, and V.A. Rakov, “A new tool for calculation of lightning-induced voltages in power systems – ”Part I: Development of circuit model”, IEEE Trans. Power Del. 30(1), 326‒333 (2015).
  10.  C. Wooi, Z. Abul-Malek, M. Rohani, A. Yusof, S. Arshad, and A. Elgayar, “Comparison of lightning return stroke channel-base current models with measured lightning current”, Bull. EEI 8(4), 1478‒1488(2019).
  11.  T.H. Thang, Y. Baba, V.A. Rakov, and A. Piantini, “FDTD computation of lightning-induced voltages on multi-conductor lines with surge arresters and pole transformers”, IEEE Trans. Electromagn. Compat. 57(3), 442‒447(2015).
  12.  M. Brignone, F. Delfino, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of power system lightning performance Part I: Model and numerical solution using the PSCAD-EMTDC platform”, IEEE Trans. Electromagn. Compat. 59(1), 137‒145 (2017).
  13.  M.E.M. Rizk et al., “Protection Against Lightning-Induced Voltages: Transient Model for Points of Discontinuity on Multiconductor Overhead Line”, IEEE Trans. Electromagn. Compat. 62(4), 1209‒1218 (2020), doi: 10.1109/TEMC.2019.2940535.
  14.  J. Zhang et al., “Evaluation of the Lightning-Induced Voltages of Multiconductor Lines for Striking Cone-Shaped Mountain, ” IEEE Trans. Electromagn. Compat. 61(5), 1534‒1542 (2019).
  15.  Q. Li et al., “On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields”, Electr. Power Syst. Res. 178, 1‒10(2020).
  16.  E. Soto and E. Perez, “Lightning-induced voltages on overhead lines over irregular terrains”, Electr. Power Syst. Res. 176, 105941 (2019).
  17.  M. Brignone, D. Mestriner, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of the mitigation effect of shield wires on lightning-induced overvoltages in MV distribution systems using statistical analysis”, IEEE Trans. Electromagn. Compat. 60(5), 1‒10 (2018).
  18.  M.R. Bank Tavakoli and B. Vahidi, “Shielding failure rate calculation by means of downward and upward lightning leader movement models: Effect of environmental conditions”, J. Electrostat. 68, 275‒283 (2010).
  19.  Y. Xu and M. Chen, “Striking Distance Calculation for Flat Ground and Lightning Rod by a 3D Self-Organized Leader Propagation Model”, Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
  20.  V. Cooray, C.A. Nucci, and F. Rachidi, “On the Possible Variation of the Lightning Striking Distance as Defined in the IEC Lightning Protection Standard as a Function of Structure Height”. Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
  21.  M.E.M. Rizk and G.N. Trinh, High voltage engineering, p. 804, Taylor and Francis Group, LLC, 2014.
  22.  Lightning protection guide. Dehn + Sohne GmbH + Co.KG., Germany, 2007/2012.
  23.  S. Takatoshi, “Lightning striking characteristics to tall structures”, IEEJ Trans. Electr. Electron. Eng. 13, 938‒947 (2017).
  24.  P.N. Mikropoulos and T.E. Tsovilis, “Striking Distance and Interception Probability, ” IEEE Trans. Power Delivery 23(3), 1571‒1580 (2008).
  25.  Y. Xie, M. Dong, H. He, J. He, H. Cai, and X. Chen, “A new tool for lightning performance assessment of overhead transmission lines”, Proc. 7th Asia-Pacific Int. Conf. Light., 2011, pp. 513‒519.
  26.  D. Spalek, “Proposal of the criterion for transmission line lumped parameters analysis”, Bull. Pol. Ac.: Tech. 67(6), 1181‒1186 (2019).
  27.  G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure – a survey”, Bull. Pol. Ac.: Tech. 59(4), 455‒473 (2011).
  28.  S. Robak and R.M. Raczkowski, “Substations for offshore wind farms: a review from the perspective of the needs of the Polish wind energy”, Bull. Pol. Ac.: Tech. 66(4), 517‒528 (2018).
  29.  M. Borecki and J. Starzyński, “Selected Aspects of Numerical Models and Cost Comparison Analysis of Surge Protection Device”, Progress in Applied Electrical Engineering (PAEE), Poland, 2019, pp. 1‒4.
  30.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids”, Bull. Pol. Ac.: Tech. 68(4), 769‒776 (2020).
  31.  M. Borecki, “A Proposed New Approach for the Assessment of Selected Operating Conditions of the High Voltage Cable Line”, Energies 13, 5275(1‒15) (2020).
  32.  Z. Flisowski, Calculation of atmospheric surges in power lines based on antenna wave theory. Electrotechnical Dissertations, Volume XV, Z.1, pp. 177‒194, 1968.
  33.  M. Borecki, Analysis of atmospheric overvoltages protection of medium voltage overhead lines with covered conductors, pp. 1‒128, Warszawa, Wyd. P.W. 2017.
Go to article

Authors and Affiliations

Michał Borecki
1
ORCID: ORCID
Maciej Ciuba
1
Yevhen Kharchenko
2 3
Yuriy Khanas
3

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 2, 10-719 Olsztyn, Poland
  3. Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a multi-phase doubly fed induction machine operating as a DC voltage generator. The machine consists of a six-phase stator circuit and a three-phase rotor circuit. Two three-phase six-pulse diode rectifiers are connected to each three-phase machine section on the stator side and in parallel to the common DC circuit feeding the isolated load. The same DC bus is also common for the rotor side power electronics converter responsible for machine control. Two methods – direct torque control DTC and field oriented control FOC – were implemented for machine control and compared by means of simulation tests. Field oriented control was implemented in the laboratory test bench.

Go to article

Bibliography

  1.  G.D. Marques, D. Sousa, and M. F. Iacchetti, “Sensorless torque control of a DFIG connected to a DC link”, IEEE Int. Symp. on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics – SLED/PRECEDE’13, Munich, Germany, 2013, pp. 1‒7.
  2.  M.F. Iacchetti and G.D. Marques, “Enhanced torque control in a DFIG connected to a DC grid by a diode rectifier”, 16th Europ. Conf. Power Electron. and Appl. – EPE’14, Lappeenranta, Finland, 1‒9 (2014).
  3.  G.D. Marques and M.F. Iacchetti, “A self-sensing stator-current-based control system of a DFIG connected to a DC-link”, IEEE Trans. Ind. Electron. 62(10), 6140–6150 (2015).
  4.  Y. Li, et al, “The capacity optimization for the static excitation controller of the dual-stator-winding induction generator operating in a wide speed range”, IEEE Trans. Ind. Electron. 56(2), 530–541 (2009).
  5.  H. Misra, A. Gundavarapu, and A.K. Jain, “Control scheme for DC voltage regulation of stand-alone DFIG-DC system”, IEEE Trans. Ind. Electron. 64(4), 2700–2708 (2017).
  6.  N. Yu, H. Nian, and Y. Quan, “A novel DC grid connected DFIG system with active power filter based on predictive current control”, Int. Conf. Electr. Machines and Systems – ICEMS’11, Beijing, China, 2011, pp. 1–5.
  7.  M.F. Iacchetti, G.D. Marques, and R. Perini, “Torque ripple reduction in a DFIG-DC system by resonant current controllers”, IEEE Trans. Power Electron. 30(8), 4244–4254 (2015).
  8.  C. Wu and H. Nian, “Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of dfig-dc system”, IEEE Trans. Power Electron. 34(9), 8739–8748 (2019).
  9.  C. Wu, et al, “Adaptive repetitive control of DFIG-DC system considering stator frequency variation”, IEEE Trans. Power Electron. 34(4), 3302‒3312 (2018).
  10.  A. Gundavarapu, H. Misra, and A. K. Jain, “Direct torque control scheme for dc voltage regulation of the standalone DFIG-DC system”, IEEE Trans. Ind. Electron. 64(5), 3502–3512 (2017).
  11.  P. Maciejewski and G. Iwanski, “Direct torque control for autonomous doubly fed induction machine based DC generator”, 12th Int. Conf. Ecological Vehicles and Renewable Energies – EVER’17, Monte Carlo, Monaco, 2017, pp. 1–6.
  12.  P. Maciejewski and G. Iwanski, “Study on direct torque control methods of a doubly fed induction machine working as a stand-alone DC voltage generator”, IEEE Trans. Energy Conv. (to be published), doi: 10.1109/TEC.2020.3012589.
  13.  M. Gwóźdź et al, “Generator with modulated magnetic flux for wind turbines”, Bull. Pol. Ac.: Tech. 65(4), 469–478 (2017).
  14.  E. Levi, et al, “Multiphase induction motor drives – a technology status review”, IET Electric Power Applications 1(4), 489–516 (2007).
  15.  F. Bu, Y. Hu, W. Huang, S. Zhuang, and K. Shi, “Wide-speed-range-operation dual stator-winding induction generator DC generating system for wind power applications”, IEEE Trans. Power Electron. 30(2), 561–573 (2015).
  16.  B. Zhang et al., “Comparison of 3-, 5-, and 6-phase machines for automotive charging applications”, IEEE Int .Electric Machines and Drives Conf. 3, 1357–1362 (2003).
  17.  K.S. Khan, W.M. Arshad, and S. Kanerva, “On performance figures of multiphase machines”, 18th Int. Conf. Electr. Machines – ICELMACH’08, Vilamoura, Portugal, 2008, pp. 1‒5.
  18.  S. Williamson and S. Smith, “Pulsating torque and losses in multiphase induction machines”, IEEE Trans. Ind. Appl. 39(4), 986–993 (2003).
  19.  P.G. Holmes and N.A. Elsonbaty, “Cycloconvertor-excited divided-winding doubly-fed machine as a wind-power convertor”, IEE Proc. B Electr. Power Appl. 131(2), 61–69 (1984).
  20.  P. Maciejewski and G. Iwanski, “Modeling of six-phase double fed induction machine for autonomous DC voltage generation”, 10th Int. Conf. Ecological Vehicles and Renewable Energies – EVER’15, Monte Carlo, Monaco, 2015, pp. 1–6.
  21.  G.D. Marques and M.F. Iacchetti, “DFIG topologies for DC networks: a review on control and design features”, IEEE Trans. Power Electron. 34(2), 1299‒1316 (2019).
  22.  N.K. Mishra, Z. Husain, and M. Rizwan Khan, “DQ reference frames for the simulation of multiphase (six phase) wound rotor induction generator driven by a wind turbine for disperse generation”, Electr. Power Appl. IET, 13(11), 1823‒1834, (2019).
  23.  R. Bojoi, et al, “Dual-three phase induction machine drives control; A survey”, IEEJ Trans. Ind. Appl. 126(4), 420–429 (2006).
  24.  R. Nelson and P. Krause, “Induction machine analysis for arbitrary displacement between multiple winding sets”, IEEE Trans. Power Appar. Syst. 93(3), 841–848 (1974).
  25.  D. Forchetti, G. García, and M.I. Valla, “Vector control strategy for a doubly-fed stand-alone induction generator”, Ind. Electron. Conf. – IECON’12, Montreal, Canada, 2, 2002, pp. 991–995.
Go to article

Authors and Affiliations

Paweł Maciejewski
1
Grzegorz Iwański
1

  1. Warsaw University of Technology, Institute of Control and Industrial Electronics, 75, Koszykowa St., 00-662 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Short-circuit analysis is conducted based on the nodal impedance matrix, which is the inversion of the nodal admittance matrix. If analysis is conducted for sliding faults, then for each fault location four elements of the nodal admittance matrix are subject to changes and the calculation of the admittance matrix inversion needs to be repeated many times. For large-scale networks such an approach is time consuming and unsatisfactory. This paper proves that for each new fault location a new impedance matrix can be found without recalculation of the matrix inversion. It can be found by a simple extension of the initial nodal impedance matrix calculated once for the input model of the network. This paper derives formulas suitable for such an extension and presents a flowchart of the computational method. Numerical tests performed for a test power system confirm the validity and usefulness of the proposed method.

Go to article

Bibliography

  1.  IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, IEEE Std P493/D4, 2006.
  2.  J. Machowski, Z. Lubośny, J. Bialek, and J. Bumby, Power System Dynamics. Stability and Control, 3rd ed., John Wiley & Sons, Chichester, New York, 2020.
  3.  C. Fan, K. Xu, and Q. Liu, “Short-circuit current calculation method for partial coupling transmission lines under different voltage levels”, Int. J. Electr. Power Energy Syst. 78, 647–654 (2016).
  4.  B. Dağ, A.R. Boynueğri, Y. Ateş, A. Karakaş, A. Nadar, and M. Uzunoğlu, “Static Modeling of Microgrids for Load Flow and Fault Analysis,” IEEE Trans. Power Syst. 32(3), 1990‒2000 (2017).
  5.  Ł. Nogal, S. Ribak, and J. Bialek: “Advances in electrical power engineering”, Bull. Pol. Ac.: Tech. 68(4), 647‒649 (2020).
  6.  H. Li, A. Bose, and Y. Zhang, “On-line short-circuit current analysis and preventive control to extend equipment life”, IET Gener. Transm. Distrib. 7(1), 69‒75 (2013).
  7.  S. Azizi and M. Sanaye-Pasand, “From Available Synchrophasor Data to Short-Circuit Fault Identity: Formulation and Feasibility Analysis”, IEEE Trans. Power Syst. 32(3), 2062‒2071 (2017).
  8.  V.A. Stanojević, G. Preston, and V. Terzija, “Synchronised Measurements Based Algorithm for Long Transmission Line Fault Analysis”, IEEE Trans. Smart Grid 9(5), 4448‒4457 (2018).
  9.  T. Gonen, Modern Power System Analysis, 2nd ed., CRC Press, 2013.
  10.  A.R. Bergen and V. Vittal, Power System Analysis, 2nd ed., Englewood Cliffs, NJ, USA: Prentice-Hall, 2000.
  11.  P. Kacejko and J. Machowski, Short-circuits in power systems, PWN/WNT Warszawa 2017, [in Polish].
  12.  P.M. Anderson, Analysis of Faulted Power Systems, New York: IEEE Press, 1995.
  13.  A.H. El-Abiad, “Digital Calculation of Line-to-Ground Short Circuits by Matrix Method”, rans. Am. Inst. Electr. Eng. Part III: Power Apparatus and Systems 79(3), 323‒331 (1960).
  14.  J.J. Grainger and W.D. Stevenson, JR, Power System Analysis, McGraw-Hill, New York, 1994
  15.  T.A. Davis, Direct methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2006.
  16.  X. Luo et al., “An Efficient Second-Order Approach to Factorize Sparse Matrices in Recommender Systems”, IEEE Trans. Ind. Inform. 11(4) 946‒956 (2015).
  17.  X. Luo, M. Zhou, S. Li, and M. Shang, “An Inherently Nonnegative Latent Factor Model for High-Dimensional and Sparse Matrices from Industrial Applications”, IEEE Trans. Ind. Inform. 14(5), 2011‒2022 (2018).
  18.  M.R. Araújo and C.R. Pereira, “A practical first-zone distance relaying algorithm for long parallel transmission lines”, Electr. Power Syst. Res. 146, 17‒24 (2017).
  19.  N. Abu Bakar, A. Mohamed, M. Ismail, and N. Hamzah, “A voltage sag analysis software tool for determine areas of vulnerability,” 2004 IEEE Region 10 Conference TENCON 2004., Chiang Mai, 2004, pp. 299‒302.
  20.  S.R. Naidu, G.V. de Andrade, and E.G. da Costa, “Voltage Sag Performance of a Distribution System and Its Improvement”, IEEE Trans. Ind. Appl. 48(1), 218‒224 (2012).
  21.  D. Ma and L. Tian, “Practical fault location estimation based on voltage sags magnitude,” 2016 China International Conference on Electricity Distribution (CICED), Xi’an, 2016, pp. 1‒5.
  22.  R.J. Gopi, V.K. Ramachandaramurthy, and M.T. Au, “Analytical approach to stochastic assessment for balanced voltage sags and duration on transmission networks”, 2009 10th International Conference on Electrical Power Quality and Utilisation, Lodz, 2009, pp. 1‒6.
  23.  NEPLAN Smarter Tools “Power System Analysis Software” NEPLAN AG Oberwachtstrasse 2 CH 8700 Küsnacht ZH, [Online]. Available https://www.neplan.ch/wp-content/uploads/2015/01/Electricity.pdf
  24.  A. Boboń, A. Nocoń, S. Paszek, and P. Pruski, “Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm”, Bull. Pol. Ac.: Tech. 65(4), 479‒488 (2017).
  25.  P. Kacejko and J. Machowski, “Application of the Sherman-Morrison formula to short-circuit analysis of transmission networks with phase-shifting transformers”, Electr. Power Syst. Res. 155, 289‒295 (2018).
Go to article

Authors and Affiliations

Jan Machowski
1
ORCID: ORCID
Sylwester Robak
1
ORCID: ORCID

  1. Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is an assessment of the accuracy of a solution based on the linear theory of elasticity describing the interaction of a cylindrical reinforced concrete tank with the subsoil. The subsoil was modeled in the form of an elastic half-space and Winkler springs. The behavior of the shell structure of the RC cylindrical tank, and particularly of the ground slab interacting with the subsoil, depends largely on the distribution of the reactions on the foundation surface. An analysis of this structure with the shell fixed in a circular ground slab was carried out taking into consideration the elastic half-space model using the Gorbunov-Posadov approach and, for comparison, the two-parameter Winkler model. Although the results for both subsoil models proved to be divergent, the conclusions that follow the accuracy assessment of a solution based on the theory of elasticity are fairly important for engineering practice.

Go to article

Bibliography

  1.  H. Borowicka, “Pressure distribution under elastic plates“, Ing. Arch., X. Band, 113–125 (1939) [in German].
  2.  M.I. Gorbunov-Posadov, T.A. Malikova, and V.I. Solomin, Calculation of Structures on Elastic Foundation, Stroyizdat, Moskva, 1984 [in Russian].
  3.  P.M. Lewiński and M. Rak, “Soil-structure interaction of cylindrical water tanks with linearly varying wall thickness”, PCM-CMM-2015: 3rd Pol. Congr. Mech. & 21st Comp. Meth. Mech., Gdańsk, Poland, 8‒11 September, 2015, vol. 2, pp. 921‒922.
  4.  P.M. Lewiński and M. Rak, “Soil-structure interaction of cylindrical tank of variable wall thickness under the thermal gradient conditions”, IOP Conf. Ser.: Mater. Sci. Eng. 661, 012044 (2019)
  5.  A.R. Kukreti, M.M. Zaman, and A. Issa, “Analysis of fluid storage tanks including foundation-superstructure interaction”, Appl. Math. Model. 17, 618‒631 (1993).
  6.  A.R. Kukreti and Z.A. Siddiqi, “Analysis of fluid storage tanks including foundation-superstructure interaction using differential quadrature method”, Appl. Math. Model. 21, 193‒205 (1997).
  7.  J.A. Hemsley (Ed.), Design Applications of Raft Foundations, Thomas Telford Publishing, London, 2000.
  8.  J.A. Hemsley, Elastic Analysis of Raft Foundations, Thomas Telford Publishing, London, 1998.
  9.  E.S. Melerski, Design Analysis of Beams, Circular Plates and Cylindrical Tanks on Elastic Foundations, Taylor & Francis Group, London, 2006.
  10.  J.S. Horvath and R.J. Colasanti, “Practical subgrade model for improved soil-structure interaction analysis: Model development”, Int. J. Geomech. 11(1), 59‒64 (2011).
  11.  N. el Mezaini, “Effects of soil-structure interaction on the analysis of cylindrical tanks”, Pract. Period. Struct. Des. Constr. 11(1), 50–57 (2006).
  12.  Z. Mistríková and N. Jendželovský, “Static analysis of the cylindrical tank resting on various types of subsoil”, J. Civ. Eng. Manag. 18(5), 744–751 (2012).
  13.  P. Lewiński, Analysis of Interaction of RC Cylindrical Tanks with Subsoil, Prace Naukowe ITB, Rozprawy, Wydawnictwa ITB, Warszawa, 2007 [in Polish].
  14.  Z. Kączkowski, Plates. Static Calculations, Arkady, Warszawa, 2000 [in Polish].
  15.  W. Flügge, Stresses in Shells, 2nd ed., Springer, Berlin, Heidelberg, 1973.
  16.  Z.E. Mazurkiewicz and T. Lewiński (Ed.), Thin Elastic Shells, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2004 [in Polish].
  17.  E. Szewczak and A. Piekarczuk, “Performance evaluation of the construction products as a research challenge. Small error – big difference in assessment?”, Bull. Pol. Ac.: Tech. Sci. 64(4), 675–686 (2016).
  18.  P.M. Lewiński and S. Dudziak, “Nonlinear interaction analysis of RC cylindrical tank with subsoil by adopting two kinds of constitutive models for ground and structure”, Amer. Inst. Phys., AIP Conf. Proc. 1922, 130007 (2018).
Go to article

Authors and Affiliations

Paweł Marek Lewiński
1

  1. Building Research Institute, ul. Filtrowa 1, 00-611 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, maximal values xe(τ) of the solutions x(t) of the linear differential equations excited by the Dirac delta function are determined. The analytical solutions of the equations and also the maximal positive values of these solutions are obtained. The analytical formulae enable the design of the system with prescribed properties. The complementary case to the earlier paper is presented. In an earlier paper it was assumed that the roots si are different, and now we consider the case when s1 = s2  = … = sn.

Go to article

Bibliography

  1.  S. Białas, H. Górecki, and M. Zaczyk, “Extremal properties of the linear dynamic systems controlled by Dirac’s impulse”, J. Appl. Math. Comput. Sci. 30(1), 75‒81 (2020).
  2.  L. Farina and S. Rinaldi: Positive Linear Systems. Theory and Application, J. Wiley, New York, 2000.
  3.  H. Górecki and M. Zaczyk: “Design of the oscillatory systems with the extremal dynamic properties”, Bull. Pol. Ac.: Tech. 62(2), 241‒253 (2014).
  4.  T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
  5.  K.L. Moore and S.P. Bhattacharyya, “A technique for choosing zero locations for minimal overshoot”, Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, USA 2, 1989, pp. 1230‒1233.
  6.  H. Górecki and M. Zaczyk, “Positive extremal values and solutions of the exponential equations with application to automatics”, Bull. Pol. Ac.: Tech. 68(3), 585‒591 (2020).
  7.  H. Górecki and M. Zaczyk, “Extremal dynamic errors in linear dynamic systems”, Bull. Pol. Ac.: Tech. 58(1), 99‒105 (2010).
  8.  H. Górecki and S. Białas, “Relations between roots and coefficients of the transcendental equations”, Bull. Pol. Ac.: Tech. 58(4), 631‒634 (2010).
  9.  H. Górecki and M. Zaczyk, “Design of systems with extremal dynamic properties”, Bull. Pol. Ac.: Tech. 61(3), 563‒567 (2013).
  10.  S. Białas and H. Górecki, “Generalization of Vieta’s formulae to the fractional polynomials, and generalizations the method of Graeffe- Lobactievsky”, Bull. Pol. Ac.: Tech. 58(4), 625‒629 (2010).
  11.  T. Kaczorek, “A new method for determination of positive realizations of linear continuous-time systems”, Bull. Pol. Ac.: Tech. 66(5), (2018).
  12.  T. Kaczorek, “Global stability of nonlinear feedback systems with positive descriptor linear part”, Bull. Pol. Ac.: Tech. 67(1), 45‒51 (2019).
  13.  T. Kaczorek, “Stability of interval positive continuous-time linear systems”, Bull. Pol. Ac.: Tech. 66(1), 31‒35 (2018).
  14.  J. Osiowski, An outline of operator calculus. Theory and applications in electrical engineering, WNT, Warszawa, 1965 [in Polish].
  15.  H. Górecki, Optimization and Control of Dynamic Systems, Springer, 2018.
  16.  D.C. Kurtz, “Condition for all the roots of a polynomial to be real”, The American Mathematical Monthly 99(3), 259‒263 (1992).
Go to article

Authors and Affiliations

Henryk Górecki
1
Mieczysław Zaczyk
1

  1. AGH University of Science and Technology, Department of Automatics and Robotics, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The unmanned underwater tracked bulldozer (UUTB) is an indispensable equipment for dredging and cleaning obstacles on the river bed in the flood season. The investigation on the interaction properties between the UUTB tracks and sediments provides foundation for the evaluation of operation performance when it works on the inland river bed. Based on the current worldwide research, the sediments mixed by sand, bentonite and water with sand content 0%, 10% and 20% were configured in this study to replace the real sediments on the inland river bed in China. The current pressure-sinkage model and shear stress-shear displacement model were discussed. Three different tracks were tested for the pressure-sinkage and the shear stress-shear displacement on the platform. The relationship between pressure and sinkage under sand content 0%, 10% and 20% are revealed based on the experimental results. The modulus of cohesive deformation and friction deformation of the sediments under said sand content are presented. The curves of shear stress and shear displacement are also obtained, which demonstrates the properties between the tracks and configured sediments under sand content 0%, 10% and 20%. The relationship between the tractive force and slip ratio with three different tracks under said sand content is also presented based on the quantitative analysis, which provides reference for the dynamics control and performance evaluation of UUTB on the inland river bed.

Go to article

Bibliography

  1.  C.B. Yang, M. Dong, L. Gu, Q. Li, X.D. Gao, “Study on soil thrust of crawler plate considering the shape of shoe thorn”, J. Beijing Inst. Technol. 35(11), 1118‒1121 (2015).
  2.  C.B. Yang, Research on the adhesion characteristics and optimization of high-speed track and soft ground, Beijing Institute of Technology, 2015.
  3.  X. Lü, Q. Zhou, and B. Fang, “Hydrodynamic performance of distributed pump-jet propulsion system for underwater vehicle,” J. Hydrodyn. 26(4), 523–530 (2014).
  4.  A. Yasui, K.Sunobe, and T. Murata “Development of underwater bulldozer systems”, J. Terramech. 10(4), 13‒20 (1973).
  5.  G. Yamauchi, K. Nagatani, T. Hashimoto, and K. Fujino, “Slip-compensated odometry for tracked vehicle on loose and weak slope”, J. Hydrodyn. 4(2), 2197‒4225 (2017).
  6.  F. Xu, Q.H. Rao, and W.B. Ma, “Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment”, J. Hydrodyn. 36, 230‒237 (2018).
  7.  S. Hong, J.S. Choi, H.W. Kim, M.C. Won, S.C. Shin, J.S. Rhee, and H.N. Par, “A path tracking control algorithm for underwater mining vehicles”, J. Mech. Sci. Technol. 23(8), 2030‒2037 (2009).
  8.  S.M. Yoon, S. Hong, S.J. Park, J.S. Choi, H.W. Kim, and T.K. Yeu, “Track velocity control of crawler type underwater mining robot through shallow-water test”, J. Mech. Sci. Technol. 26(10), 3291‒3298 (2012).
  9.  K. Herzog, E. Schulte, M.A. Atmanand, and W. Schwarz, “Slip Control System for a Deep-Sea Mining Machine”, IEEE Trans. Autom. Sci. Eng. 4(2), 282‒286 (2007).
  10.  H. Grebe and E.S. Schulte, Determination of soil parameters based on the operational data of a ground operated tracked vehicle, pp. 149‒156, International Society of Offshore and Polar Engineers, 2005.
  11.  E. Schulte and W. Schwarz, “Simulation of Tracked Vehicle Performance on Deep Sea Soil Based on Soil Mechanical Laboratory Measurements in Bentonite Soil”, in Proceedings of The Eighth ISOPE Ocean Mining Symposium, 2009, pp. 276‒284.
  12.  L.Q. Song, “Geotechnical Properties of Oceanic Sediments in Polymetallic Nodules Belts”, Acta Oceanol. Sin., 19(2), 57‒67 (2000).
  13.  X.L. Chen, J.Z. Lu, T.W. Cui, L.Q. Tian, L.Q. Chen, and W.J. Zhao, “Coupling remote sensing retrieval with numerical simulation for SPM study—Taking Bohai Sea in China as a case”, Int. J. Appl. Earth Obs. Geoinf. 12(2), 203‒211 (2010).
  14.  S.J. Liu, C. Liu, and Y. Dai, “Research and development of deep-sea mining equipment”, Chin. J. Mech. Eng. 50(2), 8‒18 (2014).
  15.  Y. Dai and S.J. Liu, “Dynamic analysis of integrated linkage operation mode of deep-sea mining system”, J. Huazhong Univ. Sci. Tech.- Natural Sci. 40(S2), 39‒43 (2012).
  16.  Y. Dai and S.J. Liu, “Theoretical design and dynamic simulation of new mining paths of tracked miner on deep seafloor”, J. Cent. South Univ. 20(04), 918‒923 (2013).
  17.  Y. Dai and S.J. Liu, “Dynamic Analysis of the Seafloor Pilot Miner Based on Single-Body Vehicle Model and Discretized Track-Terrain Interaction Model”, China Ocean Eng. 24(01), 145‒160 (2010).
  18.  Y. Dai, H. Liu, T. Zhang, and S.J. Liu, “A study on the driving performance of seabed crawler mining vehicle”, Chinese Sci. Technol. Paper 10(10), 1203‒1208 (2015).
  19.  L. Li and S.L. Li, “Simulation of deep-sea surface Marine mud and study on surface mechanical properties”, Eng. Mech. 27(11), 213‒220 (2010).
  20.  M. Wang, X. Wang, and Y. Sun, “Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements”, Int. J. Nav. Archit. Ocean Eng. 8(2), 177‒187 (2016).
  21.  M. Wang, X. Wang, and Y. Sun, “Traction Potential Analysis of Self-Propelled Seafloor Trencher Based on Mechanical Measurements in Bentonite Soil”, J. Harbin Inst. Technol. 24(1), 71‒80 (2017).
  22.  C. Yang, G. Yang, and Z. Liu, “A method for deducing pressure–sinkage of tracked vehicle in rough terrain considering moisture and sinkage speed”, J. Terramech. 79, 99‒113 (2018).
  23.  P. Siemaszko and Z. Meyer, “Static load test cure analysis based on soil field investigations”, Bull. Pol. Ac.: Tech. 67(2), 329‒337 (2019).
  24.  A. Sawicki, J. Mierczynski, and W. Swidzinski, “Basic set of experiments for determination of mechanical properties of sand”, Bull. Pol. Ac.: Tech. 62(1), 129‒137 (2014).
  25.  C. Janarthanan, K.Gopkumar, V.Sundaramoorthi, N.R. Ramesh, and G.A. Ramadass, “Influence of Grouser Geometrical Parameters of Deep-Sea Crawler Vehicle on Soft Clays”, J. Hydrodyn. 47:899‒912 (2018).
  26.  H. Mao, F. Kumi, and Q. Li, “Combining X-ray computed tomography with relevant techniques for analysing soil-root dynamics-an overview”, Acta Agric. Scand. Sect. B – Soil Plant Sci. 66(1), 1‒19 (2015).
  27.  T. Kato and M. Kamichika, “Determination of a crop coefficient for evapotranspiration in a sparse sorghum field”, Irrig. Drain., 55(2), 165‒175 (2010).
  28.  S. Hong, H.W. Kim, T. Yue, J.S. Choi, T.H. Lee, and J.K. Lee, “Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals”, J. Hydrodyn. 65:95‒143 (2019).
  29.  Z.Y. Zuo, X.G. Li, C. Xu, “Responses of barley Albina and Xantha mutants deficient in magnesium chelatase to soil salinity”, Plant Soil Environ. 63(8), 348‒354 (2017).
  30.  C.L. Qi, Q.H. Rao, Q. Liu, and W.B. Ma, “Traction rheological properties of simulative soil for deep-sea sediment”, J. Hydrodyn. 37:61‒71 (2019).
  31.  B. Ali Abubaker, H.F. Yan, and L. Hong, “Enhancement of Depleted Loam Soil as Well as Cucumber Productivity Utilizing Biochar Under Water Stress”, Commun. Soil Sci. Plant Anal. 50(1), 49‒64 (2019).
  32.  W. Wei, Y. Xu, and S. Li, “Developing suppressive soil for root diseases of soybean with continuous long-term cropping of soybean in black soil of Northeast China”, Acta Agric. Scand. Sect. B – Soil Plant Sci. 65(3), 7 (2015).
  33.  J.Z. Li, S.J. Liu, and Y. Dai, “Effect of grouser height on tractive performance of tracked mining vehicle”, J. Hydrodyn. 39:2459‒2466 (2017).
  34.  D. Knez and A. Calicki, “Looking for a new source of natural proppants in Poland”, Bull. Pol. Ac.: Tech. 66(1), 3‒8 (2018).
  35.  M. Mitew-Czajewska, “Parametric study of deep excavation in clays”, Bull. Pol. Ac.: Tech. 66(5), 747‒754 (2018).
  36.  J. Liu, X.M. Liu, and J.M. Xie, “Influence of copper on transport and dissipation of lambda-cyhalothrin and cypermethrin in soils”, Pedosphere 23(3), 395‒401 (2013).
  37.  L.L. Chu, Y.H. Kang, and S.Q. Wan, “Effect of different water application intensity and irrigation amount treatments of microirrigation on soil-leaching coastal saline soils of North China”, J. Integr. Agric. 15(9), 2123‒2131 (2016).
  38.  J.Y. Wong, Theory of Ground Vehicles. John Wiley & Sons Inc, 2001.
  39.  J.Y. Wong, Terramechanics and Off-road Engineering. Elsevier, 2010.
  40.  J.Y. Wong, M. Garber, and J. Preston-Thomas, “Theoretical prediction and experimental substantiation of the ground pressure distribution and tractive performance of tracked vehicles”, Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. (4), 265‒285 (1988).
  41.  E. Schulte, R. Handschuh, and W. Schwarz, “Transferability of soil mechanical parameters to traction potential calculation of a tracked vehicle”, in Proceedings of the Fifth Ocean Mining Symposium, 2003, pp. 123‒131.
  42.  Z. Janosi and B. Hanamoto, “Analytical determination of drawbar pull as a function of slip on tracked vehicles in deformable soils”, 1st Intern. Conference on Terrain-Vehicles Systems, 1961, pp. 1131‒1152.
  43.  M. Wang, C. Wu, and T. Ge, “Calibration and validation of tractive performance for seafloor tracked trencher”, J. Terramech. 66, 13‒25 (2016).
  44.  M. Wang, X.Y. Wang, Y.H. Sun, and Z.M. Gu, “Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements”, Int. J. Nav. Archit. Ocean Eng. 8, 177‒187 (2016).
  45.  M.G. Bekker, Theory of land locomotion: the mechanics of vehicle mobility, pp. 221‒262, The University of Michigan Press, 1956.
  46.  M.G. Bekker, Theory of Land Locomotion, University of Michigan Press, 1962.
  47.  M.G. Bekker, Introduction to Terrain-vehicle Systems, University of Michigan Press, 1969.
  48.  A.R. Reece, “Principles of soil-vehicle mechanics”, Proc. Inst. Mech. Eng. Automob. Div. 180(1), 45‒66 (1965).
  49.  Y. Xu, H.Y. Wu, and L.B. Zuo, “Influence of shale tooth height of tracked vehicle on traction performance and its parameter determination”, Trans. Chinese Soc. Agric. Eng. 28(11), 68‒74 (2012).
Go to article

Authors and Affiliations

Yong Li
1
Dingchang He
1
Qiaorui Si
2

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
  2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

This article presents a system of precise navigation for a visually impaired person which uses GPS navigation and an infrared sensor in the form of an infrared matrix. The presented system allows determining the orientation and distance of a blind person relative to a selected object, e.g. a wall or road edge. The application of the above solution facilitates a significant increase in the accuracy of determining the position of a blind person compared to the accuracy offered by commonly used ground satellite devices. The system uses thermal energy accumulated in the environment without the need to generate additional signals. The main parts of the system are a simple infrared matrix, data processing system and vibrating wristband. Messages and navigation warnings are sent to a blind person in the form of a vibration code. The article describes the method of determining the path of a specified width and distance from the wall of a building, curb, etc., along which a blind person should move. The article additionally describes the method of determining the orientation of a blind person depending on the selected object. Such a method facilitates verifying whether the visually impaired person is moving according to the indicated direction. The method can also be used to navigate mobile robots. Due to the use of natural energy for data registration and processing, the mobile navigation system can be operated for a long time without the need to recharge the battery.

Go to article

Bibliography

  1.  R.R.A. Bourne et al., “Vision Loss Expert Group (2017). Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis”, Lancet Glob. Health 5(9), e888-e897 (2017), doi: 10.1016/S2214-109X(17)30293-0.
  2.  K. Bryant, “Seeing what the future holds”, Sightings SEE International, April, 2018
  3.  P. Barański and P. Strumiłło, “Enhancing positioning accuracy in urban terrain by fusing data from a GPS receiver, inertial sensors, stereo- camera and digital maps for pedestrian navigation”, Sensors 12(6), 6764–6801 (2012).
  4.  R. Sammouda and A. Alrjoub, “Mobile blind navigation system using RFID”, in 2015 Global Summit on Computer & Information Technology (GSCIT), Sousse, 2015, pp. 1‒4, doi: 10.1109/GSCIT.2015.7353325.
  5.  J. Villanueva and R. Farcy, “Optical Device Indicating a Safe Free Path to Blind People”, IEEE Trans. Instrum. Meas. 61(1), 170‒177 (2012), doi: 10.1109/TIM.2011.2160910.
  6.  A. Sen, K. Sen, and J. Das, “Ultrasonic Blind Stick for Completely Blind People to Avoid Any Kind of Obstacles”, 2018 IEEE SENSORS, New Delhi, India, 2018, pp. 1‒4, doi: 10.1109/ICSENS.2018.8589680.
  7.  N. Mahmud, R.K. Saha, R.B. Zafar, M.B.H. Bhuian, and S.S. Sarwar, “Vibration and voice operated navigation system for visually impaired person”, in 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, 2014, pp. 1‒5, doi: 10.1109/ ICIEV.2014.6850740.
  8.  P. Barański, M. Polańczyk, and P. Strumiłło, “A remote guidance system for the blind”, in Proceedings of the 12th International Conference on e-Health Networking, Application & Services (Healthcom2010), Lyon, France, 2010, pp. 386–390.
  9.  W. Gelmuda and A. Kos, “Multichannel ultrasonic range finder for blind people navigation”, Bull. Pol. Ac.: Tech. 61(3), 633‒637 (2013).
  10.  P. Marzec and A. Kos, “Low energy precise navigation system for the blind with infrared sensors”, in 2019 MIXDES – 26th International Conference “Mixed Design of Integrated Circuits and Systems”, Rzeszów, 2019.
  11.  Kiruthika and Sheela, “Developing mobile application to navigate blind people using sensors”, 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Chennai, 2016, pp. 080‒084, doi: 10.1109/ICCPEIC.2016.7557228.
  12.  “The ultimate infrared handbook for R&D professionals”, FLIR AB. [Online]. https://www.flirmedia.com/MMC/THG/Brochures/T559243/ T559243_EN.pdf
  13.  S. Sichelschmidt, A. Haselhoff, A. Kummert, M. Roehder, B. Elias, and K. Berns, “Pedestrian crossing detecting as a part of an urban pedestrian safety system”, 2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, 2010, pp. 840‒844, doi: 10.1109/IVS.2010.5548032.
  14.  A. Kos, K. Boroń, and I. Brzozowski, “Thermal tablet for the blind”, Microelectron. Int. 33(1), 1‒8 (2016), doi: 10.1108/MI-02-2015- 0016.
  15.  R. Sarkar, S. Das, and D. Rudrapal, “A low cost microelectromechanical Braille for blind people to communicate with blind or deaf blind people through SMS subsystem”, 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, 2013, pp. 1529‒1532, doi: 10.1109/IAdCC.2013.6514454.
  16.  R. Uzun, G.K. Yaman, A. Tekkanat, and Y. İşler, “Wristband design to support blind people”, 2017 Medical Technologies National Congress (TIPTEKNO), Trabzon, 2017, pp. 1‒4, doi: 10.1109/TIPTEKNO.2017.8238038.
Go to article

Authors and Affiliations

Paweł Marzec
1
Andrzej Kos
1

  1. AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper is focusing on 3D Finite Elements Analysis (FEA) based modelling of protrusions as defects or imperfections in the XLPE high voltage cable. This study is aiming to examine the impact, protrusions have on the initiation of partial discharges. Spherical and ellipsoidal protrusions with different sizes at the conductor screen of the high voltage cable is an essential content of this paper. In addition, a spherical gas-filled void is placed inside and outside the protrusions, and a water tree produced from protrusions is under consideration. The partial discharge influence taking place at the protrusions and the stress enhancement factor is determined for all the variations mentioned to quantify the rise in the inception of partial discharges due to the protrusions.

Go to article

Bibliography

  1.  S.M.S. Tohid Shahsavarian, “Modelling of aged cavities for partial discharge in power cable insulation”, IET Sci. Meas. Technol. 9(6), 661–670, 2015.
  2.  M.A. Saleh and S.S. Refaat, “The Impact of Water Trees and Cavities on the Electric Field Distribution in XLPE Power Cables”, in 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 2019, pp. 1‒8.
  3.  N. Hampton, “Chapter 3: HV and EHV Cable System Aging and Testing Issues”, National Electric Energy Testing, Research and Applications Center, no. Feb. pp. 1–19, 2016.
  4.  T.L. Hanley, R.P. Burford, R.J. Fleming, and K.W. Barber, “A general review of polymeric insulation for use in HVDC cables”, in IEEE Electr. Insul. Mag. 19(1), 13‒24, (2003).
  5.  W. Guoming and G.-S. Kil, “Measurement and Analysis of Partial Discharge Using an Ultra-High Frequency Sensor for Gas Insulated Structures”, Metrol. Meas. Syst. 24 (3), 515–524 (2017).
  6.  K.Ch. Kao, “Electrical Aging, Discharge, and Breakdown Phenomena”, in Dielectric Phenomena in Solids, Ed(s): Kwan Chi Kao, pp. 515‒572, Academic Press, 2004.
  7.  J. Vedral and M. Kříž. “Signal Processing in Partial Discharge Measurement.” Metrol. Meas. Syst. XVII (1), 55−64 (2010).
  8.  S. Gutierrez, I. Sancho, L. Fontan, and J. D. No, “Effect of protrusions in HVDC cables”, in IEEE Trans. Dielectr. Electr. Insul. 19(5), 1774‒1781 (2012).
  9.  M.S. Amir and S.M.H. Hosseini, “Comparison of aged XLPE power cables restoration by injecting two various anti-failure nanofluids”, Eng. Failure Anal. 90, 262‒276 (2018).
  10.  L. Andrei, I. Vlad, and F. Ciuprina, “Electric field distribution in power cable insulation affected by various defects”, in 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, 2014, pp. 1‒5.
  11.  P.H.F. Morshuis, “Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now”, IEEE Trans. Dielectr. Electr. Insul. 12(5), 905‒913 (2005).
  12.  P. Notingher, S. Holé, L. Berquez, and G.Teyssedre, “An Insight into Space Charge Measurements”, Int. J. Plasma Environ. Sci. Technol. 11, 26‒37 (2017).
  13.  D.A. do Nascimento, S.S. Refaat, A. Darwish, Q. Khan, H. Abu-Rub, and Y. Iano, “Investigation of Void Size and Location on Partial Discharge Activity in High Voltage XLPE Cable Insulation”, in 2019 Workshop on Communication Networks and Power Systems (WCNPS), Brasilia, Brazil, 2019, pp. 1‒6.
  14.  Z. Lei, J. Song, M. Tian, X. Cui, C. Li, and M. Wen, “Partial discharges of cavities in ethylene propylene rubber insulation”, IEEE Trans. Dielectr. Electr. Insul. 21(4), 1647‒1659 (2014).
  15.  M. Mahdipour, A. Akbari, and P. Werle, “Charge concept in partial discharge in power cables”, IEEE Trans. Dielectr. Electr. Insul. 24(2), 817–825 (2017).
  16.  D. He, W. Wang, J. Lu, G. Teyssedre, and C. Laurent, “Space charge characteristics of power cables under AC stress and temperature gradients”, IEEE Trans. Dielectr. Electr. Insul. 23(4), 2404‒2412 (2016).
  17.  M. Fu, L.A. Dissado, G. Chen, and J.C. Fothergill, “Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable”, IEEE Trans. Dielectr. Electr. Insul. 15(3), 851‒860 (2008).
  18.  R. Ross, “Inception and propagation mechanisms of water treeing”, IEEE Trans. Dielectr. Electr. Insul. 5(5), 660‒680, (1998).
  19.  T. Boonraksa and B. Marungsri, “Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable”, Int. J. Electr. Comput. Eng. 8(5) 795‒798 (2014).
  20.  G. Callender, Modelling Partial Discharge in Gaseous Voids by George Callender, University of Southampton, 2018.
  21.  G. Callender, P. Rapisarda, and P.L. Lewin, “Improving models of partial discharge activity using simulation”, in 2017 IEEE Electr. Insul. Conf. EIC 2017, 2017, pp. 392–395.
  22.  X. Zhou, J. Cao, S. Wang, Y. Jiang, T. Li, and Y. Zou, “Simulation of electric field around typical defects in 110kV XLPE power cable joints”, in 2017 International Conference on Circuits, Devices and Systems (ICCDS), Chengdu, 2017, pp. 21‒24.
  23.  L. Andrei, I. Vlad, and F. Ciuprina, “Electric field distribution in power cable insulation affected by water trees”, in 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, 2015, pp. 426‒429.
  24.  S. Gutiérrez, I. Sancho, L. Fontán, and M. Martínez-Iturralde, “Influence of irregularities within electric fields in high voltage cables”, in 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, 2011, pp. 752‒755.
  25.  S. Nakamura, T. Ozaki, N. Ito, I. Sengoku, J. Kawai “Dynamic behavior of interconnected channels in water-treed polyethylene subjected to high voltage”, IEEE Trans. Dielectr. Electr. Insul. 9, 390‒395 (2002).
  26.  T. Toyoda, S. Mukai, Y. Ohki, Y. Li, and T. Maeno, “Conductivity and permittivity of water tree in polyethylene”, in 1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.99CH36319), Austin, TX, USA, 1999, 577‒580, vol. 2.
Go to article

Authors and Affiliations

Mohammad AlShaikh Saleh
1 2
Shady S. Refaat
2
Marek Olesz
3
Haitham Abu-Rub
2
Jarosław Guziński
3

  1. Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany
  2. Department of Electrical and Computer Engineering, Texas A&M University at Qatar
  3. Departement of Electrical Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted experiments. The obtained results demonstrate the effectiveness of our approach.

Go to article

Bibliography

  1.  C. Sammut and G. I. Webb, Encyclopedia of Machine Learning and Data Mining. Springer US, 2016.
  2.  M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2018.
  3.  S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517–525 (2019).
  4.  O. Sagi and L. Rokach, “Ensemble learning: A survey”, Wiley Interdiscip. Rev.-Data Mining Knowl. Discov. 8(4), e1249 (2018).
  5.  R.M. Cruz, R. Sabourin, and G.D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives”, Inf. Fusion 41, 195–216 (2018).
  6.  O.A. Alzubi, J.A. Alzubi, M. Alweshah, I. Qiqieh, S. AlShami, and M. Ramachandran, “An optimal pruning algorithm of classifier ensembles: dynamic programming approach”, Neural Comput. Appl. 32, 16091–16107 (2020).
  7.  Y. Bian, Y. Wang, Y. Yao, and H. Chen, “Ensemble pruning based on objection maximization with a general distributed framework”, IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3766‒3774 (2020).
  8.  R.M. Cruz, D.V. Oliveira, G.D. Cavalcanti, and R. Sabourin, “Fire-des++: Enhanced online pruning of base classifiers for dynamic ensemble selection”, Pattern Recognit. 85, 149–160 (2019).
  9.  T.T. Nguyen, A.V. Luong, M.T. Dang, A.W.-C. Liew, and J. McCall, “Ensemble selection based on classifier prediction confidence”, Pattern Recognit. 100, 107104 (2020).
  10.  Z.-L. Zhang, X.-G. Luo, S. García, J.-F. Tang, and F. Herrera, “Exploring the effectiveness of dynamic ensemble selection in the one- versus-one scheme”, Knowledge-Based Syst. 125, 53–63 (2017).
  11.  M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers”, Pattern Recognit. 46(12), 3412–3424 (2013).
  12.  M. Pawlicki, A. Giełczyk, R. Kozik, and M. Choraś, “Faultprone software classes recognition via artificial neural network with granular dataset balancing”, in International Conference on Computer Recognition Systems 2019, Springer, 2019, pp. 130–140.
  13.  D. Rajeev, D. Dinakaran, and S. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of aisi4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech. 65(4), 553–559 (2017).
  14.  D. Więcek, A. Burduk, and I. Kuric, “The use of ann in improving efficiency and ensuring the stability of the copper ore mining process”, Acta Montanistica Slovaca 24(1), 1‒14 (2019).
  15.  P. Raja, R. Malayalamurthim, and M. Sakthivel, “Experimental investigation of cryogenically treated hss tool in turning on aisi1045 using fuzzy logic–taguchi approach”, Bull. Pol. Ac.: Tech. 67(4), 687–696 (2019).
  16.  T. Andrysiak and L. Saganowski, “Anomaly detection for smart lighting infrastructure with the use of time series analysis”, J. UCS 26(4), 508–527 (2020).
  17.  A. Burduk, K. Musiał, J. Kochańska, D. Górnicka, and A. Stetsenko, “Tabu search and genetic algorithm for production process scheduling problem”, LogForum 15, 181–189 (2019.
  18.  M. Choraś, M. Pawlicki, D. Puchalski, and R. Kozik, “Machine learning–the results are not the only thing that matters! what about security, explainability and fairness?”, in International Conference on Computational Science, Springer, 2020, pp. 615–628.
  19.  P. Zarychta, P. Badura, and E. Pietka, “Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis”, Bull. Pol. Ac.: Tech. 65(1), 63–70 (2017).
  20.  I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of technological processes with the use of decision trees method”, in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17, León, Spain, 2017, Springer, 2018, pp. 318–327.
  21.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Ac.: Tech. 68(2), 199–206 (2020).
  22.  P. Prokopowicz, D. Mikołajewski, K. Tyburek, and E. Mikołajewska, “Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks”, Bull. Pol. Ac.: Tech. 68(2), 191–198 (2020).
  23.  S. Igari, F. Tanaka, and M. Onosato, “Customization of a micro process planning system for an actual machine tool based on updating a machining database and generating a database-oriented planning algorithm”, Trans. Inst. Syst. Control Inform. Eng. 26(3), 87–94 (2013).
  24.  C. Tan and S. Ranjit, “An expert carbide cutting tools selection system for cnc lathe machine”, Int. Rev. Mech. Eng. 6(7), 1402–1405 (2012).
  25.  I. Rojek, “Technological process planning by the use of neural networks”, AI EDAM – AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. 31(1), 1–15 (2017).
  26.  P. Heda, I. Rojek, and R. Burduk, “Dynamic ensemble selection – application to classification of cutting tools”, in International Conference on Computer Information Systems and Industrial Management LNCS(12133), Springer, 2020, pp. 345–354.
  27.  L.I. Kuncheva, Combining Pattern Classifiers. John Wiley & Sons, Inc., 2014.
  28.  E. Santucci, L. Didaci, G. Fumera, and F. Roli, “A parameter randomization approach for constructing classifier ensembles”, Pattern Recognit. 69, 1–13 (2017).
  29.  M. Mohandes, M. Deriche, and S. O. Aliyu, “Classifiers combination techniques: A comprehensive review”, IEEE Access 6, 19626–19639 (2018).
  30.  J. Yan, Z. Zhang, K. Lin, F. Yang, and X. Luo, “A hybrid scheme-based one-vs-all decision trees for multi-class classification tasks”, Knowledge-Based Syst. 198. 105922 (2020).
  31.  P. Chaitra and R.S. Kumar, “A review of multi-class classification algorithms”, Int. J. Pure Appl. Math. 118(14), 17–26 (2018).
  32.  M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “An overview of ensemble methods for binary classifiers in multi- class problems: Experimental study on onevs-one and one-vs-all schemes”, Pattern Recognit. 44(8), 1761–1776 (2011).
  33.  R. Burduk, “Integration base classifiers based on their decision boundary”, in International Conference on Artificial Intelligence and Soft Computing, Springer, 2017, pp. 13–20.
  34.  M.P. Groover, Fundamentals of modern manufacturing: materials, processes and systems, Willey, 2010.
  35.  M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Inf. Process. Manage. 45, 427–437 (2009).
  36.  I. Rojek, “Classifier models in intelligent capp systems”, in Man-Machine Interactions, pp. 311–319, Springer, 2009.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Robert Burduk
2
ORCID: ORCID
Paulina Heda
2

  1. Institute of Computer Science, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Faculty of Electronic, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to propose a model of a novel quasi-resonant boost converter with a tapped inductor. This converter combines the advantages of zero voltage quasi-resonant techniques and different conduction modes with the possibility of obtaining a high voltage conversion ratio by using a tapped inductor, which results in high converter efficiency and soft switching in the whole output power range. The paper contains an analysis of converter operation, a determination of voltage conversion ratio and the maximum voltage across power semiconductor switches as well as a discussion of control methods in discontinuous, critical, and continuous conduction modes. In order to verify the novelty of the proposed converter, a laboratory prototype of 300 W power was built. The highest efficiency η  = 94.7% was measured with the output power Po =  260 W and the input voltage Vin = 50 V. The lowest efficiency of 90.7% was obtained for the input voltage Vin  = 30 V and the output power Po = 75 W. The model was tested at input voltages (30–50) V, output voltage 380 V and maximum switching frequency 100 kHz.

Go to article

Bibliography

  1.  M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, and B. Lehman, “Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications”, IEEE Trans. Power Electron. 32(12), 9143‒9178 (2017), doi: 10.1109/ TPEL.2017.2652318.
  2.  W. Li and X. He, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications”, IEEE Trans. Ind. Electron. 58(4), 1239‒1250 (2011), doi: 10.1109/TIE.2010.2049715.
  3.  H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, “Overview of High-Step-Up Coupled-Inductor Boost Converters”, IEEE IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 689‒704 (2016), doi: 10.1109/JESTPE.2016.2532930.
  4.  A. Tomaszuk and A. Krupa, “High efficiency high step-up DC/DC converters – a review”, Bull. Pol. Ac.: Tech. 59(4), 475‒483 (2011), doi: 10.2478/v10175-011-0059-1.
  5.  W. Janke, M. Bączek, and J. Kraśniewski, “Input characteristics of a non-ideal DC-DC flyback converter”, Bull. Pol. Ac.: Tech. 67(5), 841‒849 (2019), doi: 10.24425/bpasts.2019.130884.
  6.  F.C. Lee, “High-frequency quasi-resonant converter technologies”, Proc. IEEE 76(4), 377‒390 (1988), doi: 10.1109/5.4424.
  7.  W.A. Tabisz, P.M. Gradzki, and F.C.Y. Lee, “Zero-voltage-switched quasi-resonant buck and flyback converters-experimental results at 10 MHz”, IEEE Trans. Power Electron. 4(2), 194‒204, 1989, doi: 10.1109/63.24904.
  8.  M. Harasimczuk and A. Borchert, “Single switch quasi-resonant ZVS converter with tapped inductor”, Prz. Elektrotechniczny 3, 44‒48 (2018).
  9.  S. Sathyan, H.M. Suryawanshi, M.S. Ballal, and A.B. Shitole, “Soft-Switching DC-DC Converter for Distributed Energy Sources With High Step-Up Voltage Capability”, IEEE Trans. Ind. Electron. 62(11), 7039‒7050 (2015), doi: 10.1109/TIE.2015.2448515.
  10.  T.F. Wu, Y.S. Lai, J.C. Hung, and Y.M. Chen, “Boost Converter With Coupled Inductors and Buck-Boost Type of Active Clamp”, IEEE Trans. Ind. Electron. 55(1), 154‒162 (2008), doi: 10.1109/TIE.2007.903925.
  11.  J.H. Yi, W. Choi, and B.H. Cho, “Zero-Voltage-Transition Interleaved Boost Converter With an Auxiliary Coupled Inductor”, IEEE Trans. Power Electron. 32(8), 5917‒5930 (2017), doi: 10.1109/TPEL.2016.2614843.
  12.  Y. Chen, Z. Li, and R. Liang, “A Novel Soft-Switching Interleaved Coupled-Inductor Boost Converter With Only Single Auxiliary Circuit”, IEEE Trans. Power Electron. 33(3), 2267‒2281 (2018), doi: 10.1109/TPEL.2017.2692998.
  13.  R. Stala et al., “A family of high-power multilevel switched capacitor-based resonant DC-DC converters – operational parameters and novel concepts of topologies”, Bull. Pol. Ac.: Tech. 65(5), 639‒651 (2017).
  14.  M. Harasimczuk, “A QR-ZCS Boost Converter With Tapped Inductor and Active Edge-Resonant Cell”, IEEE Trans. Power Electron. 35(12), 13085‒13095 (2020), doi: 10.1109/TPEL.2020.2991363.
  15.  M. Harasimczuk, “Przekształtniki podwyższające napięcie z dławikami dzielonymi”, PL Patent, Poland, P.423354, 2017.
Go to article

Authors and Affiliations

Jakub Dawidziuk
1
ORCID: ORCID
Michał Harasimczuk
2
ORCID: ORCID

  1. Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Bialystok, Poland
  2. Department of Electrical Engineering, Power Electronics and Electrical Power Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Bialystok, Poland

This page uses 'cookies'. Learn more