Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the influence of the parameters of Fused Deposition Modelling (FDM) on the mechanical properties and geometric accuracy of angle-shaped parts. The samples were manufactured from acrylonitrile butadiene styrene (ABS) on a universal machine. A complete factorial experiment was conducted. The results indicated that the critical technological parameter was the angular orientation of the sample in the working chamber of the machine. The results were compared with the results of research performed on simple rectangular samples. A significant similarity was found in the relationships between the FDM parameters and properties for both sample types.
Go to article

Bibliography

  1.  T. Kudasik and S. Miechowicz, “Methods of reconstructing complex multi-structural anatomical objects with RP techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 315‒323 (2016), doi: 10.1515/bpasts-2016-0036.
  2.  O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology, promises and challenges”, Rapid Prototyp. J. 19, 353‒364 (2013), doi: 10.1108/RPJ-12-2011-0127.
  3.  J. Safka, M. Ackermann, and D. Martis, “Chemical resistance of materials used in additive manufacturing”, MM Sci. J. 2016, 1573‒1578 (2016), doi: 10.17973/MMSJ.2016_12_2016185.
  4.  R.I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing, rapid Prototyp. comes of age”, Rapid Prototyp. J. 18, 255‒258 (2012), doi: 10.1108/13552541211231563.
  5.  T. Kudasik, M. Libura, O. Markowska, and S. Miechowicz, “Methods for designing and fabrication large-size medical models for orthopaedics”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 623‒627 (2015), doi: 10.1515/bpasts-2015-0073.
  6.  G.N. Levy, R. Schindel, and J.P. Kruth, “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann. 52, 589‒609 (2003), doi: 10.1016/S0007-8506(07)60206-6.
  7.  D. Croccolo, M. De Agostinis, and G. Olmi, “Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30”, Comput. Mater. Sci. 79, 506–518 (2013), doi: 10.1016/j.commatsci.2013.06.041.
  8.  S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing”, Chem Rev. 117, 10212‒10290 (2017), doi: 10.1021/acs.chemrev.7b00074.
  9.  I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining and 3D Printing”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136722 (2021), doi: 10.24425/bpasts.2021.136722.
  10.  D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens, A review”, Polym. Test. 69, 157‒166 (2018), doi: 10.1016/j.polymertesting.2018.05.020.
  11.  M. Montero, R. Shad, D. Odell, S.H. Ahn, and P.K. Wright, “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Soc. Manuf. Eng. 10, 1‒21 (2001).
  12.  H.C. Song, N. Ray, D. Sokolov, and S. Lefebvre, “Anti-aliasing for fused filament deposition. Comput”, Aided Des. 89, 25‒34 (2017), doi: 10.1016/j.cad.2017.04.001.
  13.  S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp. J. 8, 248‒257 (2002), doi: 10.1108/13552540210441166.
  14.  C. Casavola, A. Cazzato, V. Moramarco, and C. Pappalettere, “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”, Mater. Des. 90, 453‒458 (2016), doi: 10.1016/j.matdes.2015.11.009.
  15.  O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, J. Mater. Eng. Perform. 25, 2922–2935 (2016), doi: 10.1007/ s11665-016-2157-6.
  16.  A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des. 31, 287–295 (2010), doi: 10.1016/j.matdes.2009.06.016.
  17.  G.C. Onwubolu and F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process”, Int. J. Manuf. Eng. 2014, 598531 (2014), doi: 10.1155/2014/598531.
  18.  M. Spoerk, F. Arbeiter, H. Cajner, J. Sapkota, and C. Holzer, “Parametric optimization of intra and interlayer strengths in parts produced by extrusion based additive manufacturing of poly(lactic acid)”, J. Appl. Polym. Sci. 134, 45401 (2017), doi: 10.1002/app.45401.
  19.  A. Peng, X. Xiao, and R. Yue, “Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system”, Int. J. Adv. Manuf. Technol. 73, 87‒100 (2014), doi: 10.1007/s00170-014-5796-5.
  20.  G. Papazetis, G.C. Vosniakos, “Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments”, Int. J. Adv. Manuf. Technol. 100, 2207‒2219 (2019), doi: 10.1007/s00170-018-2820-1.
  21.  S. Mahmood, A.J. Qureshi, K.L. Goh, and D. Talamona, “Tensile strength of partially filled FFF printed parts, experimental results”, Rapid Prototyp. J. 23, 122‒128 (2017), doi: 10.1108/RPJ-08-2015-0115.
  22.  S. Abid et al., “Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design”, Int. J. Adv. Manuf. Technol. 100, 1363‒1372 (2019), doi: 10.1007/s00170-018-2710-6.
  23.  V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, and A.G Tavitov, “Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process”, Polymers 10, 1‒16 (2018), doi: 10.3390/polym10030313.
  24.  L. Yang, S. Li, Y. Li, and Y. Mingshun, “Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts”, J. Mater. Eng. Perform. 28, 169‒182 (2019), doi: 10.1007/s11665-018-3784-x.
  25.  J.T. Belter and A.M. Dollar, “Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique”, PloS One 10(4) (2015), doi: 10.1371/journal.pone.0122915.
  26.  J.A. Gopsill, J. Shindler, and B.J. Hicks, “Using finite element analysis to influence the infill design of fused deposition modelled parts”, Prog. Addit. Manuf. 3, 145‒163 (2018), doi: 10.1007/s40964-017-0034-y.
  27.  G.A.M. Capote, N.M. Rudolph, P.V. Osswald, and A.T. Osswald, “Failure surface development for ABS fused filament fabrication parts”, Addit. Manuf. 28, 169‒175 (2019), doi: 10.1016/j.addma.2019.05.005.
  28.  F. Gorski, R. Wichniarek, W. Kuczko, and A. Hamrol, “Selection of Fused Deposition Modeling Process Parameters using Finite Element Analysis and Genetic Algorithms”, J. Mult.-Valued Logic Soft Comput. 32, 293‒311 (2019).
Go to article

Authors and Affiliations

Wiesław Kuczko
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Radosław Wichniarek
1
ORCID: ORCID
Filip Górski
1
ORCID: ORCID
Michał Rogalewicz
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, thermal oxidation resistance of silicide-coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. Pure niobium specimens were coated using the pack cementation CVD method. Three different silicide thickness coatings were deposited. Thermal oxidation resistance of the coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. All samples that passed the test showed their ability to stabilize the temperature over a time of 30 s during the thermal test. The rise time of substrate temperature takes about 10 s, following which it keeps constant values. In order to assess the quality of the Nb-Si coatings before and after the thermal test, light microscopy, scanning electron microscopy (SEM) along with chemical analysis (EDS), X-ray diffraction XRD and Vickers hardness test investigation were performed. Results confirmed the presence of substrate Nb compounds as well as Si addition. The oxygen compounds are a result of high temperature intense oxidizing environment that causes the generation of SiO phase in the form of quartz and cristobalite during thermal testing. Except for one specimen, all substrate surfaces pass the high temperature oxidation test with no damages.
Go to article

Bibliography

  1.  S. Knittel, S. Mathieu, L. Portebois, S. Drawin, and M. Vilasi, “Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation”, Surf. Coat. Technol., 235, pp. 401‒406, 2013, doi: 10.1016/j.surfcoat.2013.07.053.
  2.  J. Cheng, S. Yi, and J. Park, “Oxidation behavior of Nb–Si–B alloys with the NbSi2 coating layer formed by a pack cementation technique”, Int. J. Refract. Met. Hard Mat., vol. 41, pp. 103‒109, 2013, doi: 10.1016/j.ijrmhm.2013.02.010.
  3.  S. Cheng, S. Yi, and J. Park, “Oxidation behaviors of Nb–Si–B ternary alloys at 1100°C under ambient atmosphere”, Intermetallics, vol. 23, pp. 12‒19, 2012, doi: 10.1016/j.intermet.2011.11.007.
  4.  B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.C. Zhao, “A review of very-high-temperature Nb-silicide-based composites”, Metall. Mater. Trans. A, vol. 34, pp. 2043–2052, 2003, doi: 10.1007/s11661-003-0269-8.
  5.  R. Swadźba, “High temperature oxidation behavior of C103 alloy with boronized andsiliconized coatings during 1000h at 1100°C in air”, Surf. Coat. Technol., vol. 370, pp. 331‒339, 2019, doi: 10.1016/j.surfcoat.2019.04.019.
  6.  J. Sun, Q.G. Fu, L.P. Guo, and L. Wang, “Silicide coating fabricated by HAPC/SAPS combination to protect niobium alloy from oxidation”, ACS Appl. Mater. Interfaces, vol. 8, pp. 15838–15847, 2016, doi: 10.1021/acsami.6b04599.
  7.  J. Sun, T. Li, G.-P. Zhang, and Q.-G. Fu, “Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range”, Journal of Alloys and Compounds, vol. 790, pp. 1014‒1022, 2019, doi: 10.1016/j.jallcom.2019.03.229.
  8.  H.P. Martinz, B. Nigg, J. Matej, M. Sulik, H. Larcher, and A. Hoffmann, “Properties of the SIBOR® oxidation protective coating on refractory metal alloys”, Int. J. Refract. Met. Hard Mat., vol. 24, pp. 283‒291, 2006, doi: 10.1016/j.ijrmhm.2005.10.013.
  9.  K. Tatemoto, Y. Ono, and R.O. Suzuki, “Silicide coating on refractory metals in molten salt”, J. Phys. Chem. Solids, vol. 66, pp. 526‒529, 2005, doi: 10.1016/j.jpcs.2004.06.043.
  10.  B.V. Cockeram and R.A. Rapp, “Oxidation-resistant boron- and germanium-doped silicide coatings for refractory metals at high temperature”, Mater. Sci. Eng. A, vol. 192–193, part 2, pp. 980‒986, 1995, doi: 10.1016/0921-5093(95)03342-4.
  11.  L. Zheng, E. Liu, Z. Zheng, L. Ning, J. Tong, and Z. Tan, “Preparation of alumina/aluminide coatings on molybdenum metal substrates, and protection performance evaluation utilizing a DZ40M superalloy casting test”, Surf. Coat. Technol., vol. 395, p. 125931, 2020, doi: 10.1016/j.surfcoat.2020.125931.
  12.  M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, and R. Filip, “Microstructure and oxidation resistance of an aluminide coating on the nickel based superalloymar m247 deposited by the cvd aluminizing process”, Arch. Metall. Mater., vol. 58, no. 3 pp. 697–701, 2013, doi: 10.2478/amm-2013-0057.
  13.  Y. Garip, “Production and microstructural characterization of nb-si based in-situ composite”, Bull. Pol. Acad. Sci. Arch. Metall. Mater., vol. 65, no. 2 pp. 917‒921, 2020, doi: 10.24425/amm.2020.132839.
  14.  M. Vilasi, G. Venturini, J. Steinmetz, and B. Malaman, “Crystal structure of triniobium triiron chromium hexasilicide Nb3Fe3 Cr1Si6: an intergrowth of Zr4Co4Ge7 and Nb2Cr4Si5 blocks”, J. Alloy. Compd., vol. 194, pp. 127‒132, 1993, doi: 10.1016/0925-8388(93)90657- 9.
  15.  M. Vilasi, M. Francois, R. Podor, and J. Steinmetz, “New silicides for new niobium protective coatings”, J. Alloy. Compd., vol. 264, pp. 244‒251, 1998, doi: 10.1016/S0925-8388(97)00234-X
  16.  M. Vilasi, M. Francois, H. Brequel, R. Podor, G. Venturini, and J. Steinmetz, “Phase equilibria in the Nb–Fe–Cr–Si System”, J. Alloy. Compd., vol. 269, pp. 187‒192, 1998, doi: 10.1016/S0925-8388(98)00142-X.
  17.  S. Knittel, S. Mathieu, and M. Vilasi, “Nb4Fe4Si7 coatings to protect niobium and niobium silicide composites against high temperature oxidation”, Surf. Coat. Technol., vol. 235, pp. 144–154, 2013, doi: 10.1016/j.surfcoat.2013.07.027.
  18.  S. Majumdar, T.P. Senguptab, G.B. Kaleb, and I.G. Sharma, “Development of multilayer oxidation resistant coatings on niobium and tantalum”, Surf. Coat. Technol., vol. 200, pp. 3713–3718, 2006, doi: 10.1016/j.surfcoat.2005.01.034.
  19.  S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, and S. Banerjee, “Deposition of aluminide and silicide based protective coatings on niobium”, App. Surf. Sci., vol. 257, pp. 635–640, 2010, doi: 10.1016/j.apsusc.2010.07.055.
  20.  L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, and S. Mathieu, “Effect of boron addition on the oxidation resistance of silicide protective coatings: A focus on boron location in as-coated and oxidised coated niobium alloys”, Surf. Coat. Technol., vol. 253, pp. 292–299, 2014, doi: 10.1016/j.surfcoat.2014.05.058.
  21.  L. Xiao, X. Zhou, Y. Wang, R. Pu, G. Zhao, Z. Shen, and Y. Huang, S.Liu, Z.Cai, X.Zhao,, “Formation and oxidation behavior of Ce- modified MoSi2–NbSi2 coating on niobium alloy”, Corrosion Sci., vol. 173, p. 108751, 2020, doi: 10.1016/j.corsci.2020.108751.
  22.  J. Sun, Q. Fu, and L.Guo, “Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy”, Intermetallics, vol. 72, pp. 9‒16, 2016, doi: 10.1016/j.intermet.2016.01.006.
  23.  M. Pons, M. Caillet, and A. Galerie, “High temperature oxidation of niobium superficially coated by laser treatment”, Mater. Chem. Phys., vol. 15, pp. 423‒432, 1987, doi: 10.1016/0254-0584(87)90062-9.
  24.  B.A. Pinto, A. Sofia, and C.M. D’Oliveira, “Nb silicide coatings processed by double pack cementation: Formation mechanisms and stability”, Surf. Coat. Technol. 409, 2021, doi: 10.1016/j.surfcoat.2021.126913.
  25.  R. Swadźba et al., “Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950°C”, Intermetallics, vol. 87, pp. 81–89, 2017, doi: 10.1016/j.intermet.2017.04.015.
  26.  R. Swadźba, L. Swadźba, B. Mendala, P.-P. Bauer, N. Laska, and U. Schulz, “Microstructure and cyclic oxidation resistance of Si-aluminide coatings on γ-TiAl at 850°C”, Intermetallics, vol. 87, pp. 81‒89, 2017, doi: 10.1016/j.surfcoat.2020.126361.
  27.  J.A. Thornton, “High rate thick film growth”, Ann. Rev. Mater. Sci., vol. 7, pp. 239‒246, 1977, doi: 10.1146/annurev.ms.07.080177.001323.
Go to article

Authors and Affiliations

Radosław Szklarek
1 2 3
Tomasz Tański
1
ORCID: ORCID
Bogusław Mendala
1
Marcin Staszuk
1
ORCID: ORCID
Łukasz Krzemiński
1
Paweł Nuckowski
1
Kamil Sobczak
3

  1. Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  2. Spinex Spinkiewicz Company, Klimontowska 19, 04-672 Warsaw, Poland
  3. Łukasiewicz Research Network – Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this scientific publication, research results of two newly developed hot-rolled Fe-Mn-Al-C (X105) and Fe-Mn-Al-Nb-Ti-C (X98) types of steel were compared. These types of steel are characterized by an average density of 6.68 g/cm³, a value 15% lower compared to conventional structural steel. Hot rolling was carried out on a semi-industrial line to evaluate the effect of hot plastic deformation conditions with different cooling variants on the structure. The detailed analysis of phase composition as well as microstructure allows us to state that the investigated steel is characterized by an austenitic-ferritic structure with carbides precipitates. The results of the transmission electron microscopy (TEM) tests of both types of steel after hot rolling showed the occurrence of various deformation effects such as shear bands, micro bands, and lens twins in the microstructure. Based on the research undertaken with the use of transmission electron microscopy, it was found that the hardening mechanism of the X98 and X105 steel is deformation-induced plasticity by the formation of shear bands (SIP) and micro shear bands (MBIP).
Go to article

Bibliography

  1.  M. Bausch, G. Frommeyer, H. Hofmann, E. Balichev, M. Soler, M. Didier, and L. Samek, Ultra high-strength and ductile FeMnAlC light- weight steels, European Commission Research Fund for Coal and Steel; Final Report Grant Agreement RFSR-CT-2006-00027, 2013.
  2.  Y. Kimura, K. Hayashi, K. Handa, and Y. Mishima, “Microstructural control for strengthening the γ-Fe/E21–(Fe, Mn)3AlCx alloys,” Mater. Sci. Eng. A, vol. 329, no. 331, pp. 680‒685, 2002.
  3.  K. Eipper, G. Frommeyer, W. Fussnegger, and A.K.W. Gerick, High-strength DUPLEX/TRIPLEX steel for lightweight construction and use thereof, U.S. Patent 20070125454A1, 2002.
  4.  L. Sozańska-Jędrasik, Structure and properties of newly developed TRIPLEX high-manganese steels (title in Polish: Struktura i własności nowoopracowanych stali wysokomanganowych typu TRIPLEX), PhD. Thesis, Silesian University of Technology, Gliwice, Poland 2020, [in Polish].
  5.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and K. Matus, ”Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels,” Arch. Metall. Mater., vol. 63, no. 1, pp.  265‒276, 2018.
  6.  L. Sozańska-Jędrasik, J. Mazurkiewicz, K. Matus, and W. Borek, “Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot- Rolling,” Materials, vol. 13, no. 3, p. 739, 2020.
  7.  G. Frommeyer and U. Brüx, “Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels,” Steel Res. Int., vol. 77, no. 9‒10, pp. 627‒633, 2006.
  8.  M. Jabłońska, “Struktura i Właściwości Austenitycznej Stali Wysokomanganowej Umacnianej Wskutek Mechanicznego Bliźniakowania w Procesach Dynamicznej Deformacji,” Publishing house of the Silesian University of Technology (Wydawnictwo Politechniki Śląskiej), Gliwice, Poland, 2016, [in Polish].
  9.  S. Chen, R. Rana, A. Haldar and R.K. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol.  89, pp. 345‒391, 2017.
  10.  A. Grajcar, “Nowoczesne stale wysokowytrzymałe dla motoryzacji II generacji,” STAL Metale & Nowe Technologie, vol.  7‒8, no. 10‒13, pp. 10‒13, 2013, [in Polish].
  11.  S.S. Sohn et al., “Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization,” Acta Mater., vol. 96, pp. 301‒310, 2015.
  12.  M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang and K.T. Park, “Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature,” Mater. Sci. Eng. A, vol. 586, pp. 276‒283, 2013.
  13.  U. Brüx, G. Frommeyer, and J. Jimenez, “Light-weight steels based on iron-aluminium – Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties,” Steel Res., vol. 73, no. 12, pp. 543‒548, 2002.
  14.  J.D. Yoo and K.T. Park, “Microband-induced plasticity in a high Mn–Al–C light steel,” Mater. Sci. Eng. A, vol. 496, no. 1‒2, pp. 417‒424, 2008.
  15.  J.D. Yoo, S.W. Hwang, and K.T. Park, “Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel,” Metall. Mater. Trans. A, vol. 40, no. 7, pp. 1520‒1523, 2009.
  16.  E. Welsch et al., “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel,” Acta Mater., vol. 116, pp. 188‒199, 2016.
  17.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, “Influence of high strain rates on the structure and mechanical properties of high- manganes austenitic TWIP-type steel,” Materialwiss. Werkstofftech., vol. 47, no. 5‒6, pp. 428‒435, 2016.
  18.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, „Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions,” Arch. Metall. Mater., vol. 61, no. 2, pp.  725‒730, 2016.
  19.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and L.A. Dobrzański, “Structure and phase composition of newly developed high manganese X98MnAlSiNbTi24‒11 steel of TRIPLEX type,” Inżynieria Materiałowa, vol. 2, no. 216, pp. 69‒76, 2017.
  20.  R. Ebner, P. Gruber, W. Ecker, O. Kolednik, M. Krobath, and G. Jesner, “Fatigue damage mechanisms and damage evolution near cyclically loaded edges,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 267‒279, 2010.
  21.  W. Borek, T. Tanski, Z. Jonsta, P. Jonsta, and L. Cizek, “Structure and mechanical properties of high-Mn TWIP steel after their thermo- mechanical and heat treatments” in Proc. METAL 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 2015, pp. 307‒313.
  22.  M. Sroka, A. Zieliński, and J. Mikuła, “The service life of the repair welded joint of Cr Mo/Cr-Mo-V,” Arch. Metall. Mater., vol. 61, no. 3, pp. 969‒974, 2016.
  23.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure,” Rev. Chim., vol. 4, pp. 737‒741, 2017.
  24.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 913‒921, 2020.
  25.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, p. 2130, 2018.
  26.  L.A. Dobrzański and W. Borek, “Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels,” Mater. Sci. Forum, vol. 654‒656, no. 1‒3, pp. 266‒269, 2010.
  27.  M. Opiela, G. Fojt-Dymara, A. Grajcar, and W. Borek, “Effect of Grain Size on the Microstructure and Strain Hardening Behavior of Solution Heat-Treated Low-C High-Mn Steel,” Materials, vol. 13, no. 7, p. 1489, 2020.
  28.  L. Sozańska-Jędrasik, J. Mazurkiewicz, and W. Borek, “The influence of the applied type of cooling after eight-stage hot compression test on the structure and mechanical properties of TRIPLEX type steels,” MATEC Web Conf., vol. 252, p. 08005. 2019.
  29.  L. Sozanska-Jedrasik, J. Mazurkiewicz, W. Borek, K. Matus, B. Chmiela, and M. Zubko, “Effect of Nb and Ti micro-additives and thermo- mechanical treatment of high-manganese steel with aluminium and silicon on their microstructure and mechanical properties,” Arch. Metall. Mater., vol. 64, no. 1, pp. 133‒142, 2019.
Go to article

Authors and Affiliations

Liwia Sozańska-Jędrasik
1
Wojciech Borek
2
ORCID: ORCID
Janusz Mazurkiewicz
2

  1. Łukasiewicz Research Network–Institute for Ferrous Metallurgy, Department of Investigations of Properties and Structure of Materials, ul. K. Miarki 12-14, Gliwice 44-100, Poland
  2. Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, Gliwice 44-100, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article deals with studying the hydrodynamic characteristics of the fluidized bed in gravitation shelf dryers. The algorithm to calculate hydrodynamic characteristics of the fluidized bed in the dryer’s workspace is described. Every block of the algorithm has a primary hydrodynamic characteristics theoretical model of calculation. Principles of disperse phase motion in various areas in the gravitation shelf dryer are established. The software realization of the author’s mathematic model to calculate disperse phase motion trajectory in a free and constrained regime, disperse phase residence time in the dryers’ workspace, polydisperse systems classification is proposed in the study. Calculations of disperse phase motion hydrodynamic characteristics using the software product ANSYS CFX, based on the author’s mathematic model, are presented in the article. The software product enables automating calculation simultaneously by several optimization criteria and visualizing calculation results in the form of 3D images. The disperse phase flow velocity fields are obtained; principles of a wide fraction of the disperse phase distribution in the workspace of the shelf dryer are fixed. The way to define disperse phase residence time91 in the workspace of the shelf dryer in free (without consideration of cooperation with other particles and dryer’s elements) and con-strained motion regimes is proposed in the research. The calculation results make a base for the optimal choice of the gravitation shelf dryer working chamber sizes.
Go to article

Bibliography

  1.  M. Kwauk, Fluidization: Idealized and bubbleless, with application, Science Press, Beijing, 1992.
  2.  D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications, Academic Press, San Diego, 1994.
  3.  W.-C. Yang, Handbook of fluidizfition and fluid-particle systems, Marcel Dekker, New York, 2003.
  4.  L.G. Gibilaro, Fluidization-dynamics. The formulation and applications of a predictive theory for the fluidized state, Butterworth- Heinemann, Woburn, 2001.
  5.  P. Muralidhar, E. Bhargav, and C. Sowmya, “Novel techniques of granulation: a review”, Int. Res. J. Pharm. 7(10), 8–13 (2016).
  6.  H. Stahl, “Comparing Different Granulation Techniques”, Pharm. Technol. Eur. 16(11), 23–33 (2004).
  7.  D. Parikh, Handbook of Pharmaceutical Granulation Technology, Informa Healthcare, 2009.
  8.  H. Stahl, Comparing Granulation Method, Hürth: GEA Pharma Systems, 2010.
  9.  H.K. Solanki, T. Basuri, J.H. Thakkar, and C.A. Patel, “Recent advances in granulation technology” Int. J. Pharm. Sci. Rev. Res. 5(3), 48–54 (2010).
  10.  S. Srinivasan, “Granulation techniques and technologies: recent progresses”, Bioimpacts 5(1), 55–63 (2015).
  11.  M.A. Saikh, “A technical note on granulation technology: a way to optimize granules”, Int. J. Pharm. Sci. Rev. Res. 4, 55–67 (2013).
  12.  P. Patel, D. Telange, and N. Sharma, “Comparison of Different Granulation Techniques for Lactose Monohydrate”, Int. J. Pharm. Sci. Drug. Res. 3, 222–225 (2011).
  13.  V.A. Kirsanov and M.V. Kirsanov, Effect of Structural Parameters of Cascade Elements on Effectiveness of Pneumatic Classification”, Chem. Pet. Eng. 49, 707–711 (2014).
  14.  V.A. Kirsanov and M.V. Kirsanov, “Hydrodynamic Characteristics of Classification Process in Pneumatic Classifier with Continuous Shelves”, Chem. Pet. Eng. 54, 71–74 (2018).
  15.  M. Yukhymenko, R. Ostroha, A. Lytvynenko, Y. Mikhajlovskiy, and J. Bocko, “Cooling Process Intensification for Granular Mineral Fertilizers in a Multistage Fluidized Bed Device”, Lecture Notes in Mechanical Engineering, pp. 249–257, Springer, Cham, 2020.
  16.  M. Yukhymenko and A. Lytvynenko, “Pneumatic Classification Of The Granular Materials In The “Rhombic” Apparatus”, J. Manuf. Ind. Eng. 1‒2, 1–3 (2014).
  17.  E. Barsky and M. Barsky, “Master curve of separation processes”, Phys. Sep. Sci. Eng. 13(1), 1–13 (2004).
  18.  E. Barsky and M. Barsky. Cascade Separation of Powders, Cambridge Int Science Publishing, 2006.
  19.  А.E. Artyukhov, V.K. Obodiak, P.G. Boiko, and P.C. Rossi, “Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices”, in CEUR Workshop Proceedings, 2017, 1844, pp. 33‒47.
  20.  A.E. Artyukhov and N.A. Artyukhova, “Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluidized bed”, J. Environ. Health Sci. Eng. 16(2), 193‒204 (2018).
  21.  A. Artyukhov, N.Artyukhova, A. Ivaniia, and R. Galenin, “Progressive equipment for generation of the porous ammonium nitrate with 3D nanostructure”, Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, NAP 2017, 2017, p. 03NE06.
  22.  A. Artyukhov, N. Artyukhova, J. Krmela, and V. Krmelova, “Complex designing of granulation units with application of computer and software modeling: Case “Vortex granulator”. IOP Conf. Ser.: Mater. Sci. Eng. 776(1), 012016 (2020).
  23.  N.A. Artyukhova, “Multistage finish drying of the N4HNO3 porous granules as a factor for nanoporous structure quality improvement”, J. Nano- Electron. Phys. 10 (3), 03030-1-03030-5 (2018).
  24.  A.E. Artyukhov, N.O. Artyukhova, and A.V. Ivaniia, “Creation of software for constructive calculation of devices with active hydrodynamics”, in Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET 2018), 2018, pp. 139‒142.
  25.  A.E. Artyukhov, N.A. Artyukhova, A.V. Ivaniia, and J. Gabrusenoks, “Multilayer modified NH4NO3 granules with 3D nanoporous structure: effect of the heat treatment regime on the structure of macro- and mezopores”, in Proc IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), 2017, pp. 315–318.
  26.  A. Artyukhov, N. Artyukhova, R. Ostroha, M. Yukhymenko, J. Bocko, and J. Krmela, “Convective drying in the multistage shelf dryers: theoretical bases and practical implementation”, in Drying Unit Operations, pp. 140‒163, IntechOpen, UK, 2019.
  27.  A.E. Artyukhov and V.I. Sklabinskiy, “Application of vortex three-phase separators for improving the reliability of pump and compressor stations of hydrocarbon processing plants”, IOP Conf. Ser.: Mater. Sci. Eng. 233(1), 012014 (2017).
  28.  K. Hiltunen, A. Jasberg, S. Kallio, H. Karema, M. Kataja, A. Koponen, M. Manninen, and V. Taivassalo, Multiphase Flow Dynamics: Theory and Numerics, VTT Technical Research Centre of Finland, Edita Prima Oy, 2009.
  29.  C. Crowe, Multiphase flow handbook, Boca Raton, Taylor & Francis Group, 2006.
  30.  D.L. Marchisio and R.O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge Series in Chemical Engineering. Cambridge University Press, 2013.
  31.  D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications, Academic Press, San Diego, 1994.
  32.  E.G. Sinaiski, Hydromechanics: theory and fundamentals, Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
  33.  A.E. Artyukhov and N.O. Artyukhova, “Technology and the main technological equipment of the process to obtain NH4NO3 with nanoporous structure”, Springer Proc. Phys. 221, 585–594 (2019).
  34.  K.P. Bowman, J.C. Lin, A. Stohl, R. Draxler, P. Konopka, A. Andrews, and D. Brunner, “Input Data Requirements for Lagrangian Trajectory Models”, Bull. Am. Meteorol. Soc. 94, 1051‒1058 (2013).
  35.  M. Rybalko, E. Loth, and D. Lankford, “A Lagrangian particle random walk model for hybrid RANS/LES turbulent flows”, Powder Technol. 221, 105‒113 (2012).
  36.  A.I. Leont’ev, Yu. A. Kuzma-Kichta, and I. A. Popov, “Heat and mass transfer and hydrodynamics in swirling flows (review)”, Therm. Eng. 64(2), 111‒126 (2017).
  37.  M. Honkanen, Direct optical measurement of fluid dynamics and dispersed phase morphology in multiphase flows, p. 193, PhD. Thesis, Tampere Univetsity of Technology, 2006.
  38.  M.J.V. Goldschmidt, G.G.C. Weijers, R. Boerefijn, and J.A.M Kuipers, “Discrete element modelling of fluidised bed spray granulation”, Powder Technol. 138, 39‒45 (2003).
  39.  M. Khanali, S. Rafiee, A. Jafari, and A. Banisharif, “Study of Residence Time Distribution of Rough Rice in a Plug Flow Fluid Bed Dryer”, Int. J. Adv. Sci. Technol. 48, 103‒114 (2012).
  40.  S. Banerjee and R.K. Agarwal, “Review of recent advances in process modeling and computational fluid dynamics simulation of chemical- looping combustion”, Int. J. Energy Clean Environ. 18(1), 1‒37 (2018).
  41.  Certificate of copyright registration No. 79141UA, UA: Computer program “Multistage fluidizer”, 2018.
  42.  B. Paprocki, A. Pregowska and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 225‒233 (2020), doi: 10.24425/bpasts.2020.131844.
  43.  W. Jefimowski, A. Nikitenko, Z. Drążek, and M. Wieczorek, “Stationary supercapacitor energy storage operation algorithm based on neural network learning system”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 733‒738 (2020), doi: 10.24425/bpasts.2020.134176.
Go to article

Authors and Affiliations

Nadiia Artyukhova
1
Jan Krmela
2
ORCID: ORCID
Vladimíra Krmelová
3
Artem Artyukhov
1
ORCID: ORCID
Mária Gavendová
3

  1. Sumy State University, Oleg Balatskyi Academic and Research Institute of Finance, Economics and Management, Department of Marketing, Rymskogo-Korsakova st. 2, 40007, Sumy, Ukraine
  2. Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Numerical Methods and Computational Modeling, Ivana Krasku 491/30, 020 01 Púchov, Slovakia
  3. Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Material Technologies and Environment, Ivana Krasku 491/30, 020 01 Púchov, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

For fault detection of doubly-fed induction generator (DFIG), in this paper, a method of sliding mode observer (SMO) based on a new reaching law (NRL) is proposed. The SMO based on the NRL (NRL- SMO) theoretically eliminates system chatter caused by the reaching law and can be switched in time with system interference in terms of robustness and smoothness. In addition, the sliding mode control law is used as the index of fault detection. Firstly, this paper gives the NRL with the theoretically analyzes. Secondly, according to the mathematical model of DFIG, NRL-SMO is designed, and its analysis of stability and robustness are carried out. Then this paper describes how to choose the optimal parameters of the NRL-SMO. Finally, three common wind turbine system faults are given, which are DFIG inter-turn stator fault, grid voltage drop fault, and rotor current sensor fault. The simulation models of the DFIG under different faults is established. The simulation results prove that the superiority of the method of NRL-SMO in state tracking and the feasibility of fault detection.
Go to article

Bibliography

  1.  Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. “Condition monitoring and fault detection of wind turbines and related algorithms: A review”, Renew. Sust. Energ. Rev. 13(1), 1‒39 (2009).
  2.  A. Stefani, A. Yazidi, C. Rossi, F. Filippetti, D. Casadei, and G.A. Capolino, “Doubly fed induction machines diagnosis based on signature analysis of rotor modulating signals”, IEEE Trans. Ind. Appl. 44(6), 1711‒1721(2008).
  3.  D. Shah, S. Nandi, and P. Neti, “Stator-interturn-fault detection of doubly fed induction generators using rotor-current and search-coil- voltage signature analysis”, IEEE Trans. Ind. Appl. 45(5), 1831‒1842 (2009).
  4.  G. Stojčić, K. Pašanbegović, and T.M. Wolbank, “Detecting faults in doubly fed induction generator by rotor side transient current measurement”, IEEE Trans. Ind. App. 50(5), 3494‒3502 (2014).
  5.  R. Roshanfekr and A. Jalilian, “Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators, a simulation study”, IET Gener. Transm. Distrib. 10(2), 374‒381 (2016).
  6.  M.B. Abadi et al., “Detection of stator and rotor faults in a DFIG based on the stator reactive power analysis”, in IECON 2014‒40th Annual Conference of the IEEE Industrial Electronics Society 2014 pp. 2037‒2043.
  7.  S. He, X. Shen, and Z. Jiang, “Detection and Location of Stator Winding Interturn Fault at Different Slots of DFIG”, IEEE Access 7, 89342‒89353 (2019).
  8.  I. Erlich, C. Feltes, and F. Shewarega, “Enhanced voltage drop control by VSC–HVDC systems for improving wind farm fault ridethrough capability”, IEEE Trans. Power Deliv. 29(1), 378‒385 (2013).
  9.  Ö. Göksu, R. Teodorescu, C.L. Bak, F. Iov, and P.C. Kjær, “Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution”, IEEE Trans. Power Syst. 29(4), 1683‒1691 (2014).
  10.  Z. Fan, G. Song, X. Kang, J. Tang, and X. Wang, “Three-phase fault direction identification method for outgoing transmission line of DFIG-based wind farms”, J. Mod. Power Syst. 7(5), 1155‒1164 (2019).
  11.  L.G. Meegahapola, T. Littler, and D. Flynn, “Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults”, IEEE Trans. Sustain. Energy 1(3), 152‒162 (2010).
  12.  F. Aguilera, P.M. De la Barrera, C.H. De Angelo, and D.E. Trejo, “Current-sensor fault detection and isolation for induction-motor drives using a geometric approach”, Control Eng. Pract. 53, 35‒46 (2016).
  13.  S. Abdelmalek, S. Rezazi, and A.T. Azar, “Sensor faults detection and estimation for a DFIG equipped wind turbine”, Energy Procedia 139, 3‒9 (2017).
  14.  M. Liu and P. Shi, “Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach”, Automatica 49(5), 1242‒1250 (2013).
  15.  Y.J. Kim, N. Jeon, and H. Lee, “Model based fault detection and isolation for driving motors of a ground vehicle”, Sens. Transducers 199(4), 67 (2016).
  16.  K. Xiahou, Y. Liu, L. Wang, M.S. Li, and Q.H. Wu, “Switching fault-tolerant control for DFIG-based wind turbines with rotor and stator current sensor faults”, IEEE Access 7, 103390‒103403 (2019).
  17.  K.S. Xiahou, Y. Liu, M.S. Li, and Q.H. Wu, “Sensor fault-tolerant control of DFIG based wind energy conversion systems”, Int. J. Electr. Power Energy Syst. 117, 105563 (2020).
  18.  Z.Y. Xue, K.S. Xiahou, M.S. Li, T.Y. Ji, and Q.H. Wu, “Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems”, IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2600‒2610 (2019).
  19.  L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox”, Measurement 111, 1‒10 (2017).
  20.  W. Teng, H. Cheng, X. Ding, Y. Liu, Z. Ma, and H. Mu, “DNN-based approach for fault detection in a direct drive wind turbine”, IET Renew. Power Gener. 12(10), 1164‒1171 (2018).
  21.  M.N. Akram and S. Lotfifard, “Modeling and health monitoring of DC side of photovoltaic array”, IEEE Trans. Sustain. Energy 6(4), 1245‒1253 (2015).
  22.  W. Gao and J.C. Hung, “Variable structure control of nonlinear systems, A new approach”, IEEE Trans. Ind. Electron. 40(1), 45‒55 (1993).
  23.  C.J. Fallaha, M. Saad, H.Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law”, IEEE Trans. Ind. Electron. 58(2), 600‒610 (2010).
  24.  Y. Liu, Z. Wang, L. Xiong, J. Wang, X. Jiang, G. Bai, R. Li, S. Liu, “DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed”, Int. J. Electr. Power Energy Syst. 96, 253‒260 (2018).
  25.  Z. Lan, L. Li, C. Deng, Y. Zhang, W. Yu, and P. Wong, “A novel stator current observer for fault tolerant control of stator current sensor in DFIG”, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 790‒797.
Go to article

Authors and Affiliations

RuiQi Li
1 2
Wenxin Yu
1 2
JunNian Wang
3 2
Yang Lu
1 2
Dan Jiang
1 2
GuoLiang Zhong
1 2
ZuanBo Zhou
1 2

  1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  2. Key Laboratory of Knowledge Processing Networked Manufacturing, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  3. School of Physics and Electronics, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to discuss the behavior of the proprietary real-time simulator (RTS) during testing the coordination of distance relay protections in power engineering. During the construction process of the simulator, the mapping of various dynamic phenomena occurring in the modeled part of the power system was considered. The main advantage to the solution is a lower cost of construction while maintaining high values of essential parameters, based on the generally available software environment (MATLAB/Simulink). The obtained results are discussed in detail. This paper is important from the point of view of the cost-effectiveness of design procedures, especially in power systems exploitation and when avoiding faults that result from the selection of protection relay devices, electrical devices, system operations, and optimization of operating conditions. The manuscript thoroughly discusses the hardware configuration and sample results, so that the presented real-time simulator can be reproduced by another researcher.
Go to article

Bibliography

  1.  M. Faruque, T. Strasser, and G. Lauss, “Real-Time Simulation Technologies for Power Systems Design, Testing and Analysis”, IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63‒73, 2015.
  2.  P.G. McLaren, R. Kuffel, R. Wierckx, J. Giesbrecht, and L. Arendt, “A real time digital simulator for testing relays”, IEEE Trans. Power Deliv., vol. 7, no. 1, pp. 207–213, 1992.
  3.  C. Dufour and J. Belanger, “A PC-based real-time parallel simulator of electric systems and drives”, Parallel Comput. Electr. Eng., vol. 7, no. 1, pp. 105–113, 2004.
  4.  D. Majstorovic, I. Celanovic, N.D. Teslic, N. Celanovic, and V.A. Katic, “Ultralow-latency hardware-in-the-loop platform for rapid validation of power electronics designs”, IEEE Trans. Ind.. Electron., vol. 58, no. 10, pp. 4708–4716, 2011.
  5.  R. Razzaghi, M. Mitjans, F. Rachidi, and M. Paolone, “An automated FPGA real-time simulator for power electronics and power systems electromagnetic transient applications”, Electr. Power Syst. Res. vol. 141, pp. 147–156, 2016.
  6.  F.R. Blánquez, E. Rebollo, F. Blázquez, and C.A. Platero, “Real Time Power Plant Simulation Platform for Training on Electrical Protections and Automatic Voltage Regulators”, 12th International Conference on Environment and Electrical Engineering, Wroclaw, Poland, 2013, pp.18‒22.
  7.  L.A. Montoya and D. Montenegro, “Adaptive Protection Testbed Using Real time and Hardware-in-the-Loop Simulation”, IEEE International Conference PowerTech., 2013, Grenoble, France, 2013, pp. 20‒24.
  8.  M. Krakowski and Ł. Nogal, “Testing power system protections utilizing hardware-in-the-loop simulations on real-time Linux”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1099‒1105, 2020.
  9.  X. Guillaud et al., “Applications of Real-Time Simulation Technologies in Power and Energy Systems”, IEEE Power Energy Technol. Syst. J., vol. 2, no. 3, pp. 103–115, 2015.
  10.  M.D. Omar Faruque et al., “Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis”, IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63–73, 2015.
  11.  R. Kuffel, D. Ouellete, and P. Forsyth, “Real time simulation and testing using IEC 61850”, Modern Electric Power Systems, (MEPS) International Symposium, 2010, pp. 1‒8.
  12.  D. Gurusinghe, S. Kariyawasam, and D. Ouellette, “Testing of IEC 61850 sampled values based digital substation automation systems”, J. Eng., vol. 15, 2018, pp. 807–811.
  13.  M. Krakowski, K. Kurek, and Ł. Nogal, “Comparative analysis of the DAQ cards-based and the IEC 61850-based real time simulations in the matlab/simulink environment for power system protections”, Electr. Power Syst. Res., vol. 192, pp. 1‒6, 2021.
  14.  RTDS Technologies Inc., Real Time Digital Simulators, [Online] Available: https://www.rtds.com, (accesed: 10.01.2019).
  15.  OPAL-RT Technologies, [Online] Available: https://www.opal-rt.com, (accesed: 10.05.2019).
  16.  Z. Yang, Y. Wang, L. Xing, B. Yin, and J.Tao, “Relay Protection Simulation and Testing of Online Setting Value Modification Based on RTDS”, IEEE Access, vol. 8, pp. 4693‒4699, 2019.
  17. Simulink desktop realtime toolbox, [Online] Available: https://www.mathworks.com/products/simulink-desktop-real-time.html, (accesed: 10.02.2019).
  18.  F. Coffele, C. Booth, and A. Dysko, “An adaptive overcurrent protection scheme for distribution networks”, IEEE Trans. Power Deliv., vol 30, no. 1, pp. 561–568, 2015.
  19.  D. Dantas, “Energy and reactive power differential protectionhardware-in-the-loop validation for transformer application”, J. Eng., vol. 15, pp. 1160–1164, 2018.
  20.  Z. Xu, Z. Su, J. Zhang, A. Wen, and Q. Yang, “An interphase distance relaying algorithm for series-compensated transmission lines”, IEEE Trans. Power Deliv., vol. 29, no. 2, pp. 834–841, 2014.
  21.  R. Kuffel, P. Forsyth, and C. Peters, “The Role and Importance of Real Time Digital Simulation in the Development and Testing of Power System Control and Protection Equipment”, IFAC PapersOnLine, vol. 49‒27, pp. 178–182, 2016.
  22.  V. Papaspiliotopoulos, G. Korres, V. Kleftakis, and N. Hatziargyriou, “Hardware-in-theloop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation”, IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 393–400, 2015.
  23.  A. Smolarczyk, E. Bartosiewicz, R. Kowalik, and D.D. Rasolomampionona, „A Simple Real-Time Simulator for Protection Devices Test”, EnergyCon 2014, IEEE International Energy Conference, Dubrovnik, Croatia, 2014, pp. 837 – 843.
  24.  GE Digital Energy, D60 Line Distance Protection System. UR Series Instruction Manual, (accessed: 12.06.2018).
  25.  Advantech, [Online] Available: https://www.www.advantech.com, (accessed: 15.07.2019).
  26.  OMICRON electronics, CMS 156 Reference Manual,Version CMS156.AE.9, (accessed: 14.07.2020).
  27.  P. Opała, “Extension of a real time simulator for testing of protection relays”, M.Sc. thesis, Warsaw University of Technology, Electrical Power Engineering Institute, Warsaw, 2018.
Go to article

Authors and Affiliations

Adam Smolarczyk
1
ORCID: ORCID
Sebastian Łapczyński
1
ORCID: ORCID
Michał Szulborski
1
ORCID: ORCID
Łukasz Kolimas
1
ORCID: ORCID
Łukasz Kozarek
2
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, 00-662 Warsaw, Poland
  2. ILF Consulting Engineers Polska Sp. z o.o., ul. Osmańska 12, 02-823 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main drawback of any Design for Reliability methodology is lack of easy accessible reliability models, prepared individually for each critical component. In this paper, a reliability model for SiC power MOSFET in SOT – 227 B housing, subjected to power cycling, is presented. Discussion covers preparation of Accelerated Lifetime Test required to develop such reliability model, analysis of semiconductor degradation progress, samples post-failure analysis and identification of reliability model parameters. Such model may be further used for failure prognostics or useful lifetime estimation of High Performance Power Supplies.
Go to article

Bibliography

  1.  S. Baba, W. Gajewski, M. Jasinski, M. Zelechowski, and M.P. Kazmierkowski, “High performance power supplies for plasma materials processing”, IEEE Access 9, 19327–19344 (2021).
  2.  K. Fischer, K. Pelka, A. Bartschat, B. Tegtmeier, D. Coronado, C. Broer, and J. Wenske, “Reliability of power converters in wind turbines: Exploratory analysis of failure and operating data from a worldwide turbine fleet”, IEEE Trans. Power Electron. 34(7), 6332–6344 (2019).
  3.  S. O’Donnell, P. Wheeler, and A. Castellazzi, “Reliability analysis of sic mosfet power module for more electric aircraft motor drive applications”, 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC), 1–4 (2018).
  4.  I. Vernica, H. Wang, and F. Blaabjerg, “Design for reliability and robustness tool platform for power electronic systems – study case on motor drive applications”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 1799–1806 (2018).
  5.  Y. Shen, A. Chub, H. Wang, D. Vinnikov, E. Liivik, and F. Blaabjerg, “Wear-out failure analysis of an impedance-source pv microinverter based on system-level electrothermal modeling”, IEEE Trans. Ind. Electron. 66(5), 3914–3927 (2019).
  6.  M. Bajerlein, M. Bor, W. Karpiuk, R. Smolec, and M. Spadło, “Strength analysis of critical components of high-pressure fuel pump with hypocycloid drive”, Bull. Pol. Acad. Sci. Tech. Sci. 68(6), 1341–1350 (2020).
  7.  W. Wang and D.B. Kececioglu, “Fitting the Weibull log-linear model to accelerated life-test data”, IEEE Trans. Reliab. 49(2), 217–223 (2000).
  8.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 2300–1917 (2020).
  9.  J. Zhang, Z. Qiu, E. Zhang, and P. Ning, “Comparison and analysis of power cycling and thermal cycling lifetime of igbt module”, 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 876–880 (2018).
  10.  M. Dbeiss and Y. Avenas, “Power semiconductor ageing test bench dedicated to photovoltaic applications”, IEEE Trans. Ind. Appl. 55(3), 3003–3010 (2019).
  11.  T. Ziemann, U. Grossner, and J. Neuenschwander, “Power cycling of commercial sic mosfets”, 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 24–31 (2018).
  12.  E. Ugur, F. Yang, S. Pu, S. Zhao, and B. Akin, “Degradation assessment and precursor identification for sic mosfets under high temp cycling”, IEEE Trans. Ind. Appl. 55(3), 2858–2867 (2019).
  13.  S. Baba, A. Gieraltowski, M.T. Jasinski, F. Blaabjerg, A.S. Bahman, and M. Zelechowski, “Active power cycling test bench for sic power mosfets – principles, design and implementation”, IEEE Trans. Power Electron. 36(3), 2661–2675 (2021).
  14.  J. Liu, G. Zhang, B. Wang, W. Li, and J. Wang, “Gate failure physics of sic mosfets under short-circuit stress”, IEEE Electron Device Lett. 41 (1), 103–106 (2020).
  15.  U. Karki and F.Z. Peng, “Effect of gate-oxide degradation on electrical parameters of power mosfets”, IEEE Trans. Power Electron. 33(12), 10764–10773 (2018).
  16.  Y. Huang, Y. Luo, F. Xiao, and B. Liu, “Failure mechanism of die-attach solder joints in igbt modules under pulse high-current power cycling”, IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 99–107 (2019).
  17.  S.-H. Ryu, “Sic power mosfet ruggedness”, ECPE Workshop: Power Semiconductor Robustness – What Kills Power Devices?, ECPE, 1–1 (2020).
  18.  J. Sun, J.Wei, Z. Zheng, Y.Wang, and K. J. Chen, “Short circuit capability and short circuit induced vth instability of a 1.2-kv sic power mosfet”, IEEE J. Emerg. Sel. Top. Power Electron. 7(3), 1539–1546 (2019).
  19.  U. Choi and F. Blaabjerg, “Separation of wear-out failure modes of igbt modules in grid-connected inverter systems”, IEEE Trans. Power Electron. 33(7), 6217–6223 (2018).
  20.  C. Zorn and N. Kaminski, “Acceleration of temperature humidity bias (thb) testing on igbt modules by high bias levels”, 2015 IEEE 27th International Symposium on Power Semiconductor Devices IC’s (ISPSD), 385–388 (2015).
  21.  IEC 60749-34 Ed. 1.0 b:2005, Semiconductor devices – mechanical and climatic test methods – part 34: Power cycling, American National Standards Institute (ANSI) (August 19, 2007).
  22.  F. Wagner, G. Reber, M. Rittner, M. Guyenot, M. Nitzsche, and B. Wunderle, “Power cycling of sic-mosfet single-chip modules with additional measurement cycles for life end determination”, CIPS 2020; 11th International Conference on Integrated Power Electronics Systems, 1–6 (2020).
  23.  C. Schwabe, P. Seidel, and J. Lutz, “Power cycling capability of silicon low-voltage mosfets under different operation conditions”, 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 495–498 (2019).
  24.  C. Durand, M. Klingler, D. Coutellier, and H. Naceur, “Power cycling reliability of power module: A survey”, IEEE Trans. Device Mater. Reliab. 16(1), 80–97 (2016).
  25.  U. Scheuermann and S. Schuler, “Power cycling results for different control strategies”, Microelectron. Reliab. 50(9), 1203‒1209 (2010), 21st European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis.
  26.  M. Sathik, T.K. Jet, C.J. Gajanayake, R. Simanjorang, and A.K. Gupta, “Comparison of power cycling and thermal cycling effects on the thermal impedance degradation in igbt modules”, IECON 2015 – 41st Annual Conference of the IEEE Industrial Electronics Society, 001170–001175 (2015).
  27.  M. Thoben and M. Tuellmann, “Lifetime testing i (pc principles)”, ECPE Tutorial: Testing Automotive Power Modules According to the ECPE Guideline AQG 324 (2021).
  28.  European Center for Power Electronics, “Qualification of power modules for use in power electronics converter units in motor vehicles”, ECPE Guideline AQG 324 (2019).
  29.  V. Raveendran, M. Andresen, and M. Liserre, “Improving onboard converter reliability for more electric aircraft with lifetime-based control”, IEEE Trans. Ind. Electron. 66(7), 5787–5796 (2019).
  30.  B. Zhou, T. Lu, and J. You, “Study on fatigue ductility coefficient and life prediction for mixed solder joints under thermal cycle loads”, 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), 686–690 (2014).
  31.  K. Okada, K. Kurimoto, and M. Suzuki, “Intrinsic mechanism of non-linearity in weibull tddb lifetime and its impact on lifetime prediction”, 2015 IEEE International Reliability Physics Symposium, 2A.4.1–2A.4.5 (2015).
  32.  J. Ling, T. Xu, R. Chen, O. Valentin and C. Luechinger, “Cu and Al-Cu composite-material interconnects for power devices”, 2012 IEEE 62nd Electronic Components and Technology Conference, 1905‒1911 (2012), doi: 10.1109/ECTC.2012.6249098.
  33.  R. Bayerer, T. Herrmann, T. Licht, J. Lutz, and M. Feller, “Model for power cycling lifetime of igbt modules – various factors influencing lifetime”, 5th International Conference on Integrated Power Electronics Systems, 1–6 (2008).
Go to article

Authors and Affiliations

Sebastian Bąba
1
ORCID: ORCID

  1. TRUMPF Huettinger Sp. z o.o., Research and Development Department, 05-220 Zielonka, Poland

This page uses 'cookies'. Learn more