Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Peak-to-average power ratio reduction techniques for visible light communication broadcasting systems are designed, simulated, and evaluated in this work. The proposed techniques are based on merging non-linear companding techniques with precoding techniques. This work aims to nominate an optimum novel scheme combining the low peak-to-average power ratio with the acceptable bit error rate performance. Asymmetrically clipped optical orthogonal frequency division multiplexing with the low peak-to-average power ratio performance becomes more attractive to real-life visible light communication applications due to non-linearity elimination. The proposed schemes are compared and an optimum choice is nominated. Comparing the presented work and related literature reviews for peak-to-average power ratio reduction techniques are held to ensure the proposed schemes validity and effectiveness.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297 (2015). https://doi.org/10.1364/oe.23.020297
  2. Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60–66 (2013). https://doi.org/10.1109/MCOM.2013.6685758
  3. Mohammed, N. A. & Mansi, A. H. Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design. Appl. Sci. 9, 4520 (2019). https://doi.org/10.3390/app9214520
  4. Mohammed, A. N., Okasha, M. N. & Aly, M. H. A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18, 475–479 (2016).
  5. Mohammed, N. A. & El Serafy, H. O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 57, 273 (2018). https://doi.org/10.1364/ao.57.000273
  6. Mohammed, N. A. & Okasha, N. M. Single- and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating. J. Comput. Electron. 17, 349–360 (2018). https://doi.org/10.1007/s10825-017-1096-2
  7. Shehata, M. I. & Mohammed, N. A. Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016). https://doi.org/10.1007/s11082-016-0602-2
  8. Mohammed, N. A., Hamed, M. M., Khalaf, A. A. M., Alsayyari, A. & El-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478
  9. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. Performance evaluation and enhancement of 2×2 Ti: LiNbO 3 Mach Zehnder interferometer switch at 1.3 µm and 1.55 µm. Open Electr. Electron. Eng. J. 6, 36–49 (2012). https://doi:10.2174/1874129001206010036
  10. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-h igh bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019). https://doi.org/10.1080/09500340.2019.1598587
  11. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. H. Analysis and design of an electro-optic 2 × 2 switch using Ti: KNbO3 as a waveguide based on MZI at 1.3 μ m. Opt. Quantum Electron. 46, 295–304 (2014). https://doi.org/10.1007/s11082-013-9760-7
  12. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4×2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019). https://doi.org/10.1007/s10825-018-1278-6
  13. Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).
  14. Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective–Overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
  15. Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M. & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials 21, 3204 (2019). https://doi.org/10.1109/COMST.2019.2913348
  16. Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In IEEE International Conference on Robotics Automation (ICRA2012) 2445–2450 (2012). https://doi.org/10.1109/ICRA.2012.6224718
  17. Mohammed, N. A., Badawi, K. A., Khalaf, A. A. M. & El-Rabaie, S. Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems. Opto-Electron. Rev. 28, 203–212 (2020). https://doi.org/10.24425/opelre.2020.135259
  18. Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access 6, 52393–52405 (2018). https://doi.org/10.1109/ACCESS.2018.2869878
  19. Shoreh, M.H., Fallahpour, A. & Salehi, J.A. Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. J. Opt. Commun. Netw. 7, 554–562 (2015). https://doi.org/10.1364/JOCN.7.000554
  20. Mossaad, M. S. A., Hranilovic, S. & Lampe, L. Visible light commu¬nications using OFDM and multiple LEDs. IEEE Trans. Commun. 63, 4304–4313 (2015). https://doi.org/10.1109/TCOMM.2015.2469285
  21. Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinc-tive lighting. J. Optoelectron. Adv. Mater. 20, 290–301 (2018)
  22. Mohammed, N. A, Abaza, M. R. & Aly, M. H. Improved perfor-mance of M-ary PPM in different free-space optical channels due to reed solomon code using APD. J. Sci. Eng. Res. 2, 82–85 (2011)
  23. Tsonev, D., Sinanovic, S. & Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. in IEEE Vehicular Technology Conference (2012). https://doi.org/10.1109/VETECS.2012.6240060
  24. Islam, R., Choudhury, P. & Islam, M. A. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system. in 8th International Confference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow (ICECE 2014) 32–35 (2015). https://doi.org/10.1109/ICECE.2014.7026929
  25. Hu, W. W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination. IEEE Photonics J. 11, 1024 (2019). https://doi.org/10.1109/JPHOT.2019.2892871
  26. Dissanayake, S. D., Panta, K. & Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. in IEEE Globecom Workshops (GC Wkshps 2011) 782–786 (2011). https://doi.org/10.1109/GLOCOMW.2011.6162561
  27. Dissanayake, S. D., Member, S., Armstrong, J. & Member, S. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 31, 1063–1072 (2013).
  28. Dang, J., Zhang, Z. & Wu, L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication. Electron. Lett. 51, 1681–1683 (2015). https://doi.org/10.1049/el.2015.2024
  29. Lam, E., Wilson, S. K., Elgala, H. & Little, T. D. C. Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems. The Cornell University,1–26 (2015). https://arxiv.org/abs/1510.08172v1
  30. Lowery, A. J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 24, 3950 (2016). https://doi.org/10.1364/oe.24.003950
  31. Elgala, H. & Little, T. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints. J. Opt. Commun. Netw. 7, A277–A284 (2015). https://doi.org/10.1364/JOCN.7.00A277
  32. Zhang, T. et al. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017). https://doi.org/10.1016/j.optcom.2017.06.015
  33. Kubjana, M. D., Shongwe, T. & Ndjiongue, A. R. Hybrid PLC-VLC based on ACO-OFDM. in 2018 IEEE International Conference On Intelligent And Innovative Computing Applications (ICONIC 2018) 364–368 (2018)
  34. Shawky, E., El-Shimy, M. A., Shalaby, H. M. H., Mokhtar, A. & El-Badawy, E.-S. A. Kalman Filtering for VLC Channel Estimation of ACO-OFDM Systems. in 2018 ASIA IEEE Communications And Photonics Conference (ACP) (2018).
  35. Niaz, M. T., Imdad, F., Ejaz, W. & Kim, H. S. Compressed sensing-based channel estimation for ACO-OFDM visible light communica¬tions in 5G systems. Eurasip J. Wirel. Commun. Netw. 2016, 268 (2016). https://doi.org/10.1186/s13638-016-0774-2
  36. Hao, L., Wang, D., Cheng, W., Li, J. & Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid autoencoder scheme. Opt. Commun. 442, 110–116 (2019). https://doi.org/10.1016/j.optcom.2019.03.013
  37. Vappangi, S. & Vakamulla, V. M. Channel estimation in ACO-OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 84, 111–122 (2018). https://doi.org/10.1016/j.aeue.2017.11.016
  38. Vappangi, S. & Vakamulla, V. M. A low PAPR multicarrier and multiple access schemes for VLC. Opt. Commun. 425, 121–132 (2018). https://doi.org/10.1016/j.optcom.2018.04.064
  39. Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  40. Hu, S., Wu, G., Wen, Q., Xiao, Y. & Li, S. Nonlinearity reduction by tone reservation with null subcarriers for WiMAX system. Wirel. Pers. Commun. 54, 289–305 (2010). https://doi.org/10.1007/s11277-009-9726-z
  41. Zhang, X., Wang, Q., Zhang, R., Chen, S. & Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 5, 18366–18381 (2017). https://doi.org/10.1109/ACCESS.2017.2748057
  42. Anoh, K., Tanriover, C., Adebisi, B. & Hammoudeh, M. A new approach to iterative clipping and filtering papr reduction scheme for ofdm systems. IEEE Access 6, 17533–17544 (2017). https://doi.org/10.1109/ACCESS.2017.2751620
  43. Madhavi, D. & Ramesh Patnaik, M. Implementation of non linear companding technique for reducing PAPR of OFDM. Mater. Today Proc. 5, 870–877 (2018). https://doi.org/10.1016/j.matpr.2017.11.159
  44. Shaheen, I. A. A., Zekry, A., Newagy, F. & Ibrahim, R. Absolute exponential companding to reduced PAPR for FBMC/OQAM. in 2017 Palestinian International Confference on Information and Communication Technology (PICICT 2017) 60–65 (2017). https://doi.org/10.1109/PICICT.2017.17
  45. Yang, Y., Zeng, Z., Feng, S. & Guo, C. A simple OFDM scheme for VLC systems based on μ-law mapping. IEEE Photonics Technol. Lett. 28, 641–644 (2016). https://doi.org/10.1109/LPT.2015.2503481
  46. Yadav, A.K. & Prajapati, Y. K. PAPR minimization of clipped ofdm signals using tangent rooting companding technique. Wirel. Pers. Commun. 105, 1435–1447 (2019). https://doi.org/10.1007/s11277-019-06151-1
  47. Hasan, M. M. VLM precoded SLM technique for PAPR reduction in OFDM systems. Wirel. Pers. Commun. 73, 791–801 (2013). https://doi.org/10.1007/s11277-013-1217-6
  48. Freag, H. et al. PAPR reduction in VLC-OFDM system using CPM combined with PTS method. Int. J. Comput. Digit. Syst. 6, 127–132 (2017). https://doi.org/10.12785/ijcds/060304
  49. Xiao, Y. et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Opt. Fiber Technol. 21, 81–86 (2015). https://doi.org/10.1016/j.yofte.2014.08.014
  50. Wang, Z., Wang, Z. & Chen, S. Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic DFT precoding. Opt. Commun. 431, 229–237 (2019). https://doi.org/10.1016/j.optcom.2018.09.045
  51. Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  52. Ghassemlooy, Z., Ma, C. & Guo, S. PAPR reduction scheme for ACO-OFDM based visible light communication systems. Opt. Commun. 383, 75–80 (2017). https://doi.org/10.1016/j.optcom.2016.07.073
  53. Abd Elkarim, M., Elsherbini, M. M., AbdelKader, H. M. & Aly, M. H. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020). https://doi.org/10.1364/AO.397559
  54. Kumar Singh, V. & Dalal, U. D. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope. Opt. Commun. 393, 258–266 (2017). https://doi.org/10.1016/j.optcom.2017.02.065
  55. Wang, Z.-P., Xiao, J.-N., Li, F. & Chen, L. Hadamard precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 7, 363–366 (2011). https://doi.org/10.1007/s11801-011-1044-5
  56. Wang, Z.-P. & Zhang, S.-Z. Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 9, 213–216 (2013). https://doi.org/10.1007/s11801-013-3021-7
  57. Ali Sharifi, A. Discrete Hartley matrix transform precoding-based OFDM system to reduce the high PAPR. ICT Express 5, 100–103 (2019). https://doi.org/10.1016/j.icte.2018.07.001
  58. El-Nabawy, M. M., Aboul-Dahab, M. A. & El-Barbary, K. PAPR Reduction of OFDM signal by using combined hadamard and modified meu-law companding techniques. Int. J. Comput. Networks Commun. 6, 71 (2014).
  59. Reddy, Y. S., Reddy, M. V. K., Ayyanna, K. & Ravikumar, G. V. The effect of NCT techniques on SC-FDMA system in presence of HPA. Int. J. Res. Computer Commun. Technol. 3, 844–848 (2014).
  60. Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241–255 (2020). https://doi.org/10.1080/21681724.2019.1600051
  61. Azim, A. W., Le Guennec, Y. & Maury, G. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems. Opt. Commun. 389, 318–330 (2017). https://doi.org/10.1016/j.optcom.2016.12.026
  62. Guan, R. et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Opt. Commun. 402, 600–605 (2017). https://doi.org/10.1016/j.optcom.2017.06.032
  63. Hu, W. W. SLM-based ACO-OFDM VLC system with low-complexity minimum amplitude difference decoder. Electron. Lett. 54, 144–146 (2018). https://doi.org/10.1049/el.2017.3158
  64. Offiong, F. B., Sinanovic, S. & Popoola, W. O. On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access 5, 8916–8929 (2017). https://doi.org/10.1109/ACCESS.2017.2700877
  65. Xu, W., Wu, M., Zhang, H., You, X. & Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 6, (2014). https://doi.org/10.1109/JPHOT.2014.2352643
Go to article

Authors and Affiliations

Nazmi A. Mohammed
1
Mohamed M. Elnabawy
2 3
Ashraf A. M. Khalaf
2
ORCID: ORCID

  1. Photonic Research Lab, Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi 11961, Kingdom of Saudi Arabia
  2. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111, Minia, Egypt
  3. Electronics and Communication Department, Modern Academy for Engineering and Technology, Maadi 11585, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10−7 rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
Go to article

Bibliography

  1. Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications. (CRC press, 2017).
  2. Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B. & Kamaruddin, R. Toward optical sensors: Review and applications. J. Phys.: Conf. Ser. 423, 012064 (2014). https://doi.org/10.1088/1742-6596/423/1/012064
  3. Lee, B. et al. Interferometric fiber optic sensors. Sensors 12(3), 2467-2486 (2012). https://doi.org/10.3390/s120302467
  4. Bao, X. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012). https://doi.org/10.3390/s120708601
  5. Liu, G., Han, M. & Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 23(6), 7237–7247 (2015). https://doi.org/10.1364/OE.23.007237
  6. Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A. & Passaro, V. Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018). https://doi.org/10.3390/s18093115
  7. Ramakrishnan, M., Rajan, G., Semenova, Y. & Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016), https://doi.org/10.3390/s16010099.
  8. Yu, Q. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 1(1), 72–83 (2011). https://doi.org/10.1007/s13320-010-0017-9
  9. Chang, T. et al. Fiber optic interferometric seismometer with phase feedback control. Opt. Express 28(5), 6102–6122 (2020). https://doi.org/10.1364/OE.385703
  10. Budinski, V. & Donlagic, D. Fiber-optic sensors for measurements of torsion, twist and rotation: a review. Sensors 17(3), 443 (2017). https://doi.org/10.3390/s17030443
  11. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Kowalski, J. K., Kowalski, H. A. & Teisseyre, K. P. Innovative Fibre-Optic Rotational Seismograph. in 7th International Symposium on Sensor Science Proceedings 15, 45 (2019). https://doi.org/10.3390/proceedings2019015045
  12. Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344
  13. Kurzych, A., Kowalski, J. K., Sakowicz, B., Krajewski, Z. & Jaroszewicz, L. R. The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron. Rev. 24(3), 134–143 (2016). http://doi.org/10.1515/oere-2016-0017
  14. Kurzych, A., Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 28(2), 69–73 (2020). https://doi.org/10.24425/opelre.2020.132503
  15. Bernauer, F. et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors 21(1), 264 (2021). https://doi.org/10.3390/s21010264
  16. Sagnac, G. The light ether demonstrated by the effect of the relativewind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708–710 (1913).
  17. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  18. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Dudek, M., Kowalski, J. K. & Teisseyre, K. P. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19(12), 2699 (2019). https://doi.org/10.3390/s19122699
  19. Lefevre, H. C., Martin, P., Morisse, J., Simonpietri, P., Vivenot, P. & Arditti, H. J. High-dynamic-range fiber gyro with all-digital signal processing. Proc. SPIE 1367, 72–80 (1991).
  20. LeFevre, H. C. The Fiber Optic Gyroscope. (2nd ed.) 154–196 (Artech House: Norwood, MA, 2008).
  21. Merlo, S., Norgia, M. & Donati, S. Fiber Gyroscope Principles. in Handbook of Fibre Optic Sensing Technology. (ed. Lopez, J. M.) 1–23 (2000).
  22. Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 16, 595–602 (2012). https://doi.org/10.1007/s10950-012-9286-7
  23. Heinzel, G., Rüdiger, A. & Schilling, R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. https://holometer.fnal.gov/GH_FFT.pdf (2021).
  24. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  25. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc., Eindhoven, Niderlands, (2015).
  26. Konno K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998).
Go to article

Authors and Affiliations

Sławomir Niespodziany
1
ORCID: ORCID
Anna T. Kurzych
2
ORCID: ORCID
Michał Dudek
2
ORCID: ORCID

  1. Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., Warsaw 00-665, Poland
  2. Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
Download PDF Download RIS Download Bibtex

Abstract

Solar blind UV cameras are not theoretically supposed to be sensitive to solar light. However, there is practically always some sensitivity to solar light. This limited solar sensitivity can sometimes make it impossible to detect the weak emission of a corona target located on the solar background. Therefore, solar sensitivity is one of the crucial performance parameters of solar blind UV cameras. However, despite its importance, the problem of determining solar sensitivity of solar blind UV cameras has not been analysed and solved in the specialized literature, so far. This paper presents the concept (definition, measurement method, test equipment, interpretation of results) of measuring solar sensitivity of solar blind UV cameras.
Go to article

Bibliography

  1. UViRCO Technologies. https://www.uvirco.com (2020)
  2. OFIL Systems - Daytime Corona Cameras. https://www.ofilsystems.com (2020)
  3. Zhejiang ULIRVISION Technology Co., LTD. https://www.ulirvision.co.uk (2020)
  4. Olip Systems Inc. https://www.olipsystems.com (2020)
  5. Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. https://www.sonel.pl (2020)
  6. ICI Infrared Cameras Inc. https://www.infraredcameras.com (2020)
  7. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
  8. Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009). https://doi.org/10.1117/12.834700
  9. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020). https://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041014
  10. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019). https://doi.org/10.1117/12.2501251
  11. Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007). http://hdl.handle.net/10019.1/2920
  12. Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009). https://doi.org/10.1039/b817018e
  13. Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017). https://doi.org/10.1175/JAMC-D-16-0175.1
  14. G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. http://www.astm.org/cgi-bin/resolver.cgi?G173-03R20 https://doi.org/10.1520/G0173-03R20
  15. Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017). https://doi.org/10.1063/1.4975537
  16. Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012). https://doi.org/10.3390/rs4040934
  17. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001). https://doi.org/10.1016/S0038-092X(01)00054-8
  18. Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995)
  19. Gueymard, C. A. Reference solar spectra: Their evolution, standard- ization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006). https://doi.org/10.1016/j.asr.2005.03.104
  20. TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, https://disc.gsfc.nasa.gov/datacollection/TOMSM3L3_008.html (2021)
  21. SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/smarts.html (2020)
  22. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014). https://doi.org/10.12952/journal.elementa.000029
  23. Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990). https://doi.org/10.1109/pvsc.1990.111784
  24. Wikipedia contributors. Air mass (solar energy). Wikipedia. https://en.wikipedia.org/wiki/Air_mass_(solar_energy) (2020)
  25. Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. https://www.thephysicalenvironment.com (2020)
  26. NOAA Research. NOAA Solar Position Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (2020)
  27. Global Solar Atlas. https://globalsolaratlas.info/download/world (2020)
  28. Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014). https://doi.org/10.1016/j.solener.2014.10.001
  29. Class ABB Small Area Solar Simulators. Newport Corporation. https://www.newport.com/f/small-area-solar-simulators (2020)
  30. Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro- radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Appli- cations 8910, 8910-2 (2013). https://doi.org/10.1117/12.2030753
  31. Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007)
  32. Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Tech- nische Bundesanstalt (PTB), https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilu ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
1 2
ORCID: ORCID
Bolesław Safiej
2

  1. Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the current work the calculations of the reaction cross-section of total fusion σ fus, the fusion barrier distribution D fus, and the probability P fus were achieved for systems ⁶He+⁶⁴Zn, ⁸B+⁵⁸Ni and ⁸He+¹⁹⁷Au which involve halo nuclei by using a semiclassical approach. The semiclassical and quantum mechanics treatments comprise the approximation of WKB for describing the relative motion among projectile nuclei and target nuclei, and the method of CDCC (Continuum Discretized Coupled Channel) for describing the intrinsic motion for the projectile and target nuclei. Our semiclassical calculations yielded findings that were compared to obtainable experimental data as well as quantum mechanics calculations. For fusion cross-sections σ fus below and above the Coulomb barrier Vb, the quantum mechanics coupled channels are very similar, according to the experimental results.
Go to article

Bibliography

  1.  J. Badziak, “Laser nuclear fusion: current status, challenges and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 4, pp. 729–738, 2012, doi: 10.2478/v10175-012-0084-8.
  2.  K. Hagino and N. Takigawa, “Subbarrier fusion reactions and many-particle quantum tunneling,” Prog. Theor. Phys., vol. 128, no. 6, pp. 1061–1106, 2012, doi: 10.1143/ptp.128.1061.
  3.  M. Dasgupta, D.J. Hinde, N. Rowley, and A.M. Stefanini, “Measuring barriers to fusion,” Annu. Rev. Nucl. Part. Sci., vol. 48, no. 1, pp. 401–461, 1998, doi: 10.1146/annurev.nucl.48.1.401.
  4.  D.J. Griffiths and D.F. Schroeter, Introduction to quantum mechanics, Cambridge University Press, 2018.
  5.  L.F. Canto, P.R.S. Gomes, R. Donangelo, and M.S. Hussein, “Fusion and breakup of weakly bound nuclei,” Phys. Rep., vol. 424, no. 1–2, pp. 1–111, 2006, doi: 10.1016/j.physrep.2005.10.006.
  6.  A. Diaz-Torres and M. Boselli “Low-energy fusion dynamics of weakly bound nuclei,” EPJ Web of Conferences, vol. 117, p. 08002, 2016, doi: 10.1051/epjconf/201611708002.
  7.  A. Diaz-Torres, I.J. Thompson, and C. Beck, “How does breakup influence the total fusion of 6, 7Li at the Coulomb barrier?,” Phys. Rev. C, vol. 68, no. 4, pp. 44607, 2003, doi: 10.1103/physrevc.68.044607.
  8.  L.R. Gasques, D.J. Hinde, M. Dasgupta, A. Mukherjee, and R.G. Thomas, “Suppression of complete fusion due to breakup in the reactions B10,  11 + Bi209,” Phys. Rev. C, vol.79, no.3, pp. 34605, 2009, doi: 10.1103/physrevc.79.034605.
  9.  B. Wang, W.J. Zhao, A. Diaz-Torres, E.G. Zhao, and S.G. Zhou, “Systematic study of suppression of complete fusion in reactions involving weakly bound nuclei at energies above the Coulomb barrier,” Phys. Rev. C, vol. 93, no. 1, pp. 14615, 2016, doi: 10.1103/ physrevc.93.014615.
  10.  M.E. Brandan and G.R. Satchler, “The interaction between light heavy-ions and what it tells us,” Phys. Rep., vol. 285, no. 4–5, pp. 143–243, 1997, doi: 10.1016/s0370-1573(96)00048-8.
  11.  P.R. Silveira Gomes, J.L. Rios, J.R. Borges, and D.R. Otomar, “Fusion, breakup and scattering of weakly bound nuclei at near barrier energies,” Open Nucl. Part. Phys. J., vol. 6, no. 1, 2013, doi: 10.2174/1874415X01306010010.
  12.  P.R.S. Gomes et al., “Break-up and scattering of weakly bound nuclei,” Revista Mexicana De Física, vol. 52, pp. 23–29, 2006 [Online]. Available: https://www.researchgate.net/publication/242365995_Fusion_break-up_and_scattering_of_weakly_bound_nuclei.
  13.  F.A. Majeed and Y.A. Abdul-Hussien, “Semiclassical treatment of fusion and breakup processes of 6, 8He halo nuclei,” J. Theor. Appl. Phys., vol. 10, no. 2, pp. 107–112, 2016, doi: 10.1007/s40094-016-0207-y.
  14.  F.A. Majeed, “The role of the breakup channel on the fusion reaction of light and weakly bound nuclei,” Int. J. Nucl. Energ. Sci. Tech., vol. 11, no. 3, pp. 218–228, 2017, doi: 10.1504/ijnest.2017.088068.
  15.  F.A. Majeed, R.Sh. Hamodi, and F.M. Hussian, “Effect of coupled channels on semiclassical and quantum mechanical calculations for heavy ion fusion reactions,” J. Comput.Theor. Nanosci., vol. 14, no. 5, pp. 2242–2247, 2017, doi: 10.1166/jctn.2017.6816.
  16.  F.A. Majeed, K.H.H. AlAteah and M.S. Mehemed, “Coupled channel calculations using semi-classical and quantum mechanical approaches for light and medium mass systems,” Int. J. Energ. Sci. Tech, vol. 11, no. 7, pp. 291–308, 2018, doi: 10.1504/IJNEST.2017.090652.
  17.  F.A. Majeed and F.A. Mahdi, “Quantum Mechanical Calculations of a Fusion Reaction for Some Selected Halo Systems,” Ukr. J. Phys., vol. 64, no. 1, pp. 11, 2019, doi: 10.15407/ujpe64.1.11.
  18.  F.A. Majeed, Y.A. Abdul-Hussien, and F.M. Hussian. “Fusion Reaction of Weakly Bound Nuclei,” in Nuclear Fusion-One Noble Goal and a Variety of Scientific and Technological Challenges, IntechOpen, 2019.
  19.  A.J. Najim, F.A. Majeed, and Kh.H. Al-Attiyah, “Coupled-Channel Calculations for Fusion Cross Section and Fusion Barrier Distribution of 32S+144, 150, 152, 154Sm,” In IOP Conf. Ser.: Mater. Sci. Eng., vol. 571, pp. 012124, 2019, doi: 10.36478/jeasci.2019.10406.10412.
  20.  A.J. Najim, F.A. Majeed and K.H.A. Al-Attiyah, “Description of coupled-channel in Semiclassical treatment of heavy ion fusion reactions,” J. Eng. Appl. Sci., vol. 14, pp. 10406–10412, 2019, doi: 10.1088/1757-899X/571/1/012113.
  21.  H.J. Musa, F.A. Majeed, and A.T. Mohi, “Coupled Channels Calculations of Fusion Reactions for 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm Systems,” Iraqi J. Phys., vol. 18, no. 47, pp. 84–90, 2020, doi: 10.30723/ijp.v18i47.604.
  22.  H.J. Musa, F.A. Majeed, and A.T. Mohi. “Improved WKB Approximation for Nuclear Fusion Reactions,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 871, no. 1, pp. 012063, 2020, doi: 10.1088/1757-899x/871/1/012063.
  23.  M.S. Mehemed, S.M. Obaid, and F.A. Majeed, “Coupled channels calculation of fusion reaction for selected medium systems,” Int. J. Nucl. Energy Sci. Technol., vol. 14, no. 2, pp. 165–180, 2020, doi: 10.1504/IJNEST.2020.112162.
  24.  N. Austern, Direct Nuclear Reaction Theory, Wiley, New York. 1970.
  25.  G.R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford. 1983.
  26.  W.H.Z. Cardenas et al., “Approximations in fusion and breakup reactions induced by radioactive beams,” Nucl. Phys. A, vol. 703, no. 3–4, pp. 633–648, 2002. doi: 10.1016/s0375-9474(01)01672-4.
  27.  M.S. Hussein, “Theory of the heavy-ion fusion cross section,” Phys. Rev. C, vol. 30, no. 6, pp. 1962, 1984, doi: 10.1103/physrevc.30.1962.
  28.  G.R. Satchler, “Absorption cross sections and the use of complex potentials in coupled-channels models,” Phys. Rev. C, vol. 32, no. 6, pp. 2203, 1985, doi: 10.1103/PhysRevC.32.2203.
  29.  N. Rowley, G.R. Satchler, and P.H. Stelson, “On the “distribution of barriers” interpretation of heavy-ion fusion,” Phys. Lett. B, vol. 254, no. 1–2, pp. 25–29, 1991, doi: 10.1016/0370-2693(91)90389-8.
  30.  H. Timmers, D. Ackermann, S. Beghini, L.Corradi, J.H. He, G. Montagnoli, F. Scarlassara, A.M. Stefanini, N. Rowley, “A case study of collectivity, transfer and fusion enhancement,” Nucl. Phys. A, vol. 633, no. 3, pp. 421–445, 1998, doi: 10.1016/s0375-9474(98)00121-3.
  31.  V. Scuderi et al., “Fusion and direct reactions for the system 6He+64Zn at and below the coulomb barrier,” Phys. Rev. C, vol. 84, no. 6, pp. 064604, 2011, doi: 10.1103/physrevc.84.064604.
  32.  P. Moller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, “Nuclear properties for astrophysical and radioactive-ionbeam applications,” At. Data Nucl. Data Tables, vol. 59, pp. 131–343, 1995, doi: 10.1006/adnd.1997.0746.
  33.  K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, “Role of breakup processes in fusion enhancement of drip-line nuclei at energies below the Coulomb barrier,” Phys. Rev. C, vol. 61, no. 3, pp. 0376, 2000, doi: 10.1103/PhysRevC.61.037602.
Go to article

Authors and Affiliations

Maryam H. Abd Madhi
1
Fouad A. Majeed
1
ORCID: ORCID

  1. Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The cyclicity of the state matrices of positive linear electrical circuits with the chain structure is considered. Two classes of positive linear electrical circuits with the chain structure and cyclic Metzler state matrices are analyzed. Some new properties of these classes of positive electrical circuits are established. The results are extended to fractional linear electrical circuits.
Go to article

Bibliography

  1.  A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Philadelphia: SIAM, 1994.
  2.  L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications. New York: J. Wiley, 2000.
  3.  T. Kaczorek, Positive 1D and 2D Systems. London: Springer-Verlag, 2002.
  4.  T. Kaczorek, “Positive linear systems with different fractional orders,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 3, pp. 453–458, 2010.
  5.  T. Kaczorek, “Normal fractional positive linear systems and electrical circuits,” in Proc. Conf. Automation 2019, Warsaw, 2020, pp. 13–26.
  6.  T. Kaczorek, Selected Problems of Fractional Systems Theory. Berlin: Springer, 2011.
  7.  T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits. Cham: Springer, 2015.
  8.  W. Mitkowski, “Dynamical properties of metzler systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, no. 4, pp. 309–312, 2008.
  9.  W. Mitkowski, Outline of Control Theory. Kraków: Publishing House AGH, 2019.
  10.  P. Ostalczyk, Discrete Fractional Calculus. River Edge, NJ: World Scientific, 2016.
  11.  I. Podlubny, Fractional Differential Equations. San Diego: Academic Press, 1999.
  12.  T. Kaczorek, “Reachability and observability of positive discrete-time linear systems with integer positive and negative powers of the state frobenius matrices,” Arch. Control Sci., vol. 28, no. 1, pp. 5–20, 2018.
  13.  M.D. Ortigueira and J. A. Tenreiro Machado, “New discrete-time fractional derivatives based on the bilinear transformation: definitions and properties,” J. Adv. Res., vol. 25, pp. 1–10, 2020.
  14.  A. Ruszewski, “Stability of discrete-time fractional linear systems with delays,” Arch. Control Sci., vol. 29, no. 3, pp. 549–567, 2019.
  15.  L. Sajewski, “Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 709–714, 2017.
  16.  R. Stanisławski, K. Latawiec, and M. Łukaniszyn, “A comparative analysis of laguerre-based approximatiors to the grunwald-letnikov fractional-order difference,” Math. Probl. Eng., vol. 2015, 2015.
  17.  F.G. Gantmacher, The Theory of Matrices. London: Chelsea Pub. Comp., 1959.
  18.  T. Kaczorek and K. Borawski, “Stability of continuoustime and discrete-time linear systems with inverse state matrices,” Meas. Autom. Monit., vol. 62, no. 4, pp. 132–135, 2016.
  19.  T. Kaczorek, Polynomial and Rational Matrices. London: Springer, 2007.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hybridization of meta-heuristic algorithms plays a major role in the optimization problem. In this paper, a new hybrid meta-heuristic algorithm called hybrid pathfinder algorithm (HPFA) is proposed to solve the optimal reactive power dispatch (ORPD) problem. The superiority of the Differential Evolution (DE) algorithm is the fast convergence speed, a mutation operator in the DE algorithm incorporates into the pathfinder algorithm (PFA). The main objective of this research is to minimize the real power losses and subject to equality and inequality constraints. The HPFA is used to find optimal control variables such as generator voltage magnitude, transformer tap settings and capacitor banks. The proposed HPFA is implemented through several simulation cases on the IEEE 118-bus system and IEEE 300-bus power system. Results show the superiority of the proposed algorithm with good quality of optimal solutions over existing optimization techniques, and hence confirm its potential to solve the ORPD problem.
Go to article

Bibliography

  1.  M. Gwozd and L. Ciepliński, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter-part 1”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 401–408, 2020, doi: 10.24425/BPASTS.2020.133383.
  2.  M.N. Acosta, D. Topic, and M.A. Andrade, “Optimal Microgrid–Interactive Reactive Power Management for Day–Ahead Operation”, Energies, vol. 14, no. 5, p. 1275, 2021, doi: 10.3390/en14051275.
  3.  A.M. Tudose, I.I. Picioroaga, D.O. Sidea, and Co. Bulac, “Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm”, Energies, vol. 14, no. 5, p. 1222, 2021, doi: 10.3390/en14051222.
  4.  E. Canelas, T. Pinto-Varela, and B. Sawik, “Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study”, Energies, vol. 13, no. 9, p. 2249, 2020, doi: 10.3390/en13092249.
  5.  V. Suresh and S.S. Kumar, “Optimal reactive power dispatch for minimization of real power loss using SBDE and DE-strategy algorithm”, J. Ambient Intell. Hum. Comput., 2020, doi: 10.1007/s12652-020-02673-w.
  6.  H. Yapici and N. Cetinkaya, “A new meta-heuristic optimizer: pathfinder algorithm”, Appl. Soft Comput., vol. 78, pp. 545–568, 2019, doi: 10.1016/j.asoc.2019.03.012.
  7.  R. Storn and K. Price, “Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces,” J. Global Optim., vol. 11, pp. 341– 359, 1997, doi: 10.1023/A:1008202821328.
  8.  R.P. Singha and S.P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers”, Appl. Soft Comput., vol. 29, pp. 298–309, 2015, doi: 10.1016/j.asoc.2015.01.006.
  9.  M. Ghasemi et. al, “A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables,” Appl. Soft Comput., vol. 22, pp. 126–140, 2014, doi: 10.1016/j.asoc.2014.05.006.
  10.  M. Ghasemi and M. Ghanbarian, “Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study”, Inf. Sci., vol. 278, pp. 231–249, 2014, doi: 10.1016/j.ins.2014.03.050.
  11.  B. Mandal and P.K. Roy, “Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization”, Electr. Power Energy Syst., vol. 53, pp. 123–134, 2013, doi: 10.1016/j.ijepes.2013.04.011.
  12.  S Mouassa and A. Salhi, “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems”, Eng. Sci. Technol., vol. 20, pp 885–895, 2017, doi: 10.1016/j.jestch.2017.03.006.
  13.  S. Mugemanyi et. al., “Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm”, IEEE Access, vol. 8, pp. 65830–65867, 2020, doi: 10.1109/ACCESS.2020.2982988.
  14.  W.M. Villa-Acevedo and J.M. Lopez-Lezama, “A novel constraint handling approach for the optimal reactive power dispatch problem”, Energies, vol. 11, p. 2352, 2018, doi: 10.3390/en11092352.
  15.  R. Zimmerman, C.E. Murillo-Sanchez, and D. Gan, “MATPOWER 6.0, power systems engineering research center (PSERC)”, 2005, [Online]. Available: https://matpower.org/docs/MATPOWER-manual-6.0.pdf.
Go to article

Authors and Affiliations

V. Suresh
1
S. Senthil Kumar
1

  1. Department of Electrical and Electronics Engineering, Government College of Engineering, Salem-11, India
Download PDF Download RIS Download Bibtex

Abstract

In the paper the new paradigm for structural optimization without volume constraint is presented. Since the problem of stiffest design (compliance minimization) has no solution without additional assumptions, usually the volume of the material in the design domain is limited. The biomimetic approach, based on trabecular bone remodeling phenomenon is used to eliminate the volume constraint from the topology optimization procedure. Instead of the volume constraint, the Lagrange multiplier is assumed to have a constant value during the whole optimization procedure. Well known MATLAB topology based optimization code, developed by Ole Sigmund, was used as a tool for the new approach testing. The code was modified and the comparison of the original and the modified optimization algorithm is also presented. With the use of the new optimization paradigm, it is possible to minimize the compliance by obtaining different topologies for different materials. It is also possible to obtain different topologies for different load magnitudes. Both features of the presented approach are crucial for the design of lightweight structures, allowing the actual weight of the structure to be minimized. The final volume is not assumed at the beginning of the optimization process (no material volume constraint), but depends on the material’s properties and the forces acting upon the structure. The cantilever beam example, the classical problem in topology optimization is used to illustrate the presented approach.
Go to article

Bibliography

  1.  W. Wang et al., “Space-time topology optimization for additive manufacturing”, Struct. Multidiscip. Optim., vol. 61, no. 1, pp. 1‒18, 2020, doi: 10.1007/s00158-019-02420-6.
  2.  Y. Saadlaoui, et al., “Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes”, J. Manuf. Syst., vol. 43, pp. 178‒286, 2017, doi: 10.1016/j.jmsy.2017.03.006.
  3.  J. Zhu, et al., “A review of topology optimization for additive manufacturing: Status and challenges”, Chin. J. Aeronaut., vol. 34, no. 1, pp. 9‒110, 2021, doi: 10.1016/j.cja.2020.09.020.
  4.  O. Sigmund, “A 99 line topology optimization code written in Matlab”, Struct. Multidiscip. Optim., vol. 21, no. 2, pp. 120‒127, 2001, doi: 10.1007/s001580050176.
  5.  M. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York, Springer, 2003, doi: 10.1007/978-3-662-05086-6.
  6.  M. Bendsoe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197‒224, 1988.
  7.  O. Sigmund and K. Maute, “Topology optimization approaches”, Struct. Multidiscip. Optim., vol. 48, pp. 1031‒1055, 2013, doi: 10.1007/ s00158‒013‒0978‒6.
  8.  Z. Ming and R. Fleury, “Fail-safe topology optimization”, Struct. Multidiscip. Optim., vol. 54, no. 5, pp. 1225‒1243, 2016, doi: 10.1007/ s00158-016-1507-1.
  9.  L. Krog et al., “Topology optimization of aircraft wing box ribs”, AIAA Paper, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004, doi: 10.2514/6.2004-4481.
  10.  Z. Luo et al., “A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures”, Aerosp. Sci. Technol., vol. 10, pp. 364‒373, 2006, doi: 10.1016/j.ast.2005.12.006.
  11.  M. Zhou et al., “Industrial application of topology optimization for combined conductive and convective heat transfer problems”, Struct. Multidiscip. Optim., vol. 54, no 4, pp. 1045‒1060, 2016, doi: 10.1007/s00158-016-1433-2.
  12.  G. Allaire et al., “The homogenization method for topology optimization of structures: old and new”, Interdiscip. Inf. Sci., vol.25/2, pp. 75‒146, 2019, doi: 10.4036/iis.2019.B.01.
  13.  G. Allaire and R.V. Kohn, “Topology Optimization and Optimal Shape Design Using Homogenization”, Topology Design of Structures. NATO ASI Series – Series E: Applied Sciences, M. Bendsoe, C. Soares – eds., vol. 227, pp. 207‒218, 1993, doi: 10.1007/978-94-011- 1804-0_14.
  14.  G. Allaire et al., ”Shape optimization by the homogenization method”, Numer. Math., vol. 76, no. 1, pp. 27‒68, 1997, doi: 10.1007/ s002110050253.
  15.  G. Allaire, Shape Optimization by the Homogenization Method, Springer, 2002, doi: 10.1007/978-1-4684-9286-6.
  16.  J. Wolff, “The Classic: On the Inner Architecture of Bones and its Importance for Bone Growth”, Clin. Orthop. Rel. Res., vol. 468, no. 4, pp. 1056‒1065, 2010, doi: 10.1007/s11999-010-1239-2.
  17.  H. M. Frost, The Laws of Bone Structure, C.C. Thomas, Springfield, 1964.
  18.  R. Huiskes et al., ”Adaptive bone-remodeling theory applied to prosthetic-design analysis”, J. Biomech., vol. 20, pp. 1135‒1150, 1987.
  19.  R. Huiskes, “If bone is the answer, then what is the question?”, J. Anat., vol. 197, no. 2, pp. 145‒156, 2000.
  20.  D.R. Carter, “Mechanical loading histories and cortical bone remodeling”, Calcif. Tissue Int., vol. 36, no. Suppl. 1, pp. 19‒24, 1984, doi: 10.1007/BF02406129.
  21.  R.F.M. van Oers, R. Ruimerman, E. Tanck, P.A.J. Hilbers, R. Huiskes, “A unified theory for osteonal and hemi-osteonal remodeling”, Bone, vol. 42, no. 2, pp. 250‒259, 2008, doi: 10.1016/j.bone.2007.10.009.
  22.  M. Nowak, J. Sokołowski, and A. Żochowski, “Justification of a certain algorithm for shape optimization in 3D elasticity”, Struct. Multidiscip. Optim., vol. 57, no. 2, pp. 721‒734, 2018, doi: 10.1007/s00158-017-1780-7.
  23.  M. Nowak, J. Sokołowski, and A. Żochowski, “Biomimetic approach to compliance optimization and multiple load cases”, J. Optim. Theory Appl., vol. 184, no. 1, pp. 210‒225, 2020, doi: 10.1007/s10957-019-01502-1.
  24.  J. Sokołowski and J-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992, doi: 10.1007/978- 3-642-58106-9.
  25.  D. Gaweł et al., “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741‒750, 2017, doi: 10.1515/bpasts-2017-0080.
Go to article

Authors and Affiliations

Michał Nowak
1
ORCID: ORCID
Aron Boguszewski
1

  1. Poznan University of Technology, Division of Virtual Engineering, ul. Jana Pawła II 24, 60-965 Poznań, Poland

This page uses 'cookies'. Learn more