Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 10273
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To increase their competitive advantage in turbulent marketplaces, contemporary manufacturers must show determination in seeking ways to: fulfill buyer orders with quality merchandise; meet deadlines; handle unexpected production disruptions; and lower the total relevant expense. To tackle the abovementioned challenges, this study explores an economic manufacturing quantity (EMQ) model with machine failure, overtime, and rework/disposal of nonconforming items; the goal is to find the best fabrication uptime that minimizes total relevant expenses. Specifically, we consider a production unit with overtime capacity as an operational feature that is linked to higher unit and setup costs. Further, its EMQ-based process is subject to random nonconforming items and failure rates. Extra screening separates the reworkable nonconforming items from scrap, and the rework is executed at the end of each cycle of regular fabrication. The failures follow a Poisson distribution, and a machine repair task starts as soon as a failure occurs; the fabrication of the lot that was interrupted resumes after the repair has been carried out. A decision model is built to capture the characteristics of the problem. Mathematical and optimization processes help in determining the optimal fabrication uptime. A numerical example not only illustrates the applicability of the research outcomes, but also reveals a diverse set of information about the individual or joint influences of deviations in mean-time-to-failure, overtime factors, and rework/disposal ratios linked to nonconforming rates related to the optimal replenishment uptime, total operating expenses, and various cost contributors; this facilitates better decision making.
Go to article

Authors and Affiliations

Singa Wang Chiu
1
Tiffany Chiu
2
Yuan-Shyi Peter Chiu
3
Hong-Dar Lin
3

  1. Faculty of Business Administration, Chaoyang University of Technology, Taichung City 413, Taiwan
  2. Faculty of Anisfield School of Business, Ramapo College of New Jersey, Mahwah, NJ 07430, USA
  3. Faculty of Industrial Engineering & Management, Chaoyang University of Technology, Taichung City 413, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

Industry 4.0 (I4) as a concept offers powerful opportunities for many businesses. The set of Industry 4.0 technologies is still discussed, and boundaries are not perfectly clear. However, implementation of Industry 4.0 concept becomes strategic principle, and necessary condition for succeeding on turbulent markets. Radio Frequency Identification (RFID) was used before I4 emerged. However, it should be treated as its important part and even enabler. The question arises how adoption of RFID was impacted by I4 paradigm. Therefore, to answer this question a set of technology management tools was selected and applied to forecast RFID potential development in forthcoming years. Moreover, case studies were conducted for technology management tools and their applications for RFID for qualitative discussion of its relevance. It aimed to prove that existing toolset should be applied for modern technologies related to I4. Tools were proven to be necessary and successful. However, some specific challenges were observed and discussed.
Go to article

Authors and Affiliations

Bartlomiej Gladysz
1
Donatella Corti
2
Elias Montini
2

  1. Warsaw University of Technology, Institute of Production Systems Organization, Warsaw, Poland
  2. University of Applied Science and Arts of Southern Switzerland, Department of Innovative Technologies
Download PDF Download RIS Download Bibtex

Abstract

The presence of the spare parts stock is a necessity to ensure the continuity of services. The supply of spare parts is a special case of the global supply chain. The main objective of our research is to propose a global spare parts management approach which allows decision makers to determine the essential points in stock management. Thus, it is important for the stock manager to evaluate the system considered from time to time based on performance indicators. Some of these indicators are presented in the form of a dashboard. The presentation of this chapter chronologically traces the progress of our research work. In the first part, we present the work related to the forecast of spare parts needs through parametric and statistical methods as well as a Bayesian modelling of demand forecasting. To measure the appreciation of the supply of spare parts inventory, the second part focuses on work related to the evaluation of the performance of the spare parts system. Thus, we concretize the link between the management of spare parts and maintenance in the third part, more precisely, in the performance evaluation of the joint -management of spare parts and maintenance, in order to visualize the influence of parameters on the system. In the last section of this chapter, we will present the metaheuristic methods and their use in the management of spare parts and maintenance and make an analysis on work done in the literature.
Go to article

Authors and Affiliations

Oumaima Bounou
1
Abdellah El Barkany
1
Ahmed El Biyaali
1

  1. Mechanical Engineering Laboratory, Faculty of Science and Techniques, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Artificial neural network (ANN), a Computational tool that is frequently applied in the modeling and simulation of manufacturing processes. The emerging forming technique of sheet metal which is typically called single point incremental forming (SPIF) comes into the map and the research interest towards its technological parameters. The surface quality of the end product is a major issue in SPIF, which is more critical with the hard metals. The part of the brass metal is demanded in many industrial uses because of its high load-carrying capacity and its wear resistance property. Considering the industrial interest and demand of the brass metal products, the present study is done with the SPIF experiment on calamine brass Cu67Zn33 followed by an ANN analysis for predicting the absolute surface roughness. The modeling result shows a close agreement with the measured data. The minimum and maximum errors are found in experiment 3 and experiment 7 respectively. The error of predicted roughness is found in the range of –30.87 to 20.23 and the overall coefficient of performance of ANN modeling is 0.947 which is quite acceptable.
Go to article

Authors and Affiliations

Manish Oraon
1
Vinay Sharma
1

  1. Birla Institute of Technology, Faculty of Production Engineering, India
Download PDF Download RIS Download Bibtex

Abstract

So far, numerous studies have been published on the selection of appropriate maintenance tactics based on some factors affecting them such as time, cost, and risk. This paper aims to develop the TRIZ contradiction matrix by explaining the dimensions and components of each of the following Reactive maintenance tactics. The related findings of previous studies were analyzed by adopting “Rousseau and Sandoski” seven-step method to identify and extract the relationships between TRIZ principles and Reactive maintenance tactics. Thereafter, 5 Reactive maintenance tactics were replaced TRIZ’s 40 principles in the TRIZ contradiction matrix. Finally, the ANP method were used to extract and prioritize the appropriate Reactive maintenance tactics. The proposed matrix in this research was used in the desalination section of one of the oil companies to select on the appropriate Reactive maintenance tactics. The results of this research is useful for managers and maintenance specialists of units in making decisions to provide appropriate Reactive maintenance tactics for the desired equipment.
Go to article

Authors and Affiliations

Mohammad Amin Mortazavi
1
Atefeh Amindoust
1
Arash Shahin
2
Mehdi Karbasian
3

  1. Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  2. Department of Management, University of Isfahan, Isfahan, Iran
  3. Department of Industrial Engineering, Malek-Ashtar University of Technology, Isfahan, Iran
Download PDF Download RIS Download Bibtex

Abstract

Industry 4.0 promises to make manufacturing processes more efficient using modern technologies like cyber-physical systems, internet of things, cloud computing and big data analytics. Lean Management (LM) is one of the most widely applied business strategies in recent decades. Thus, implementing Industry 4.0 mostly means integrating technologies in companies that already operate according to LM. However, due to the novelty of the topic, research on how LM and Industry 4.0 can be integrated is still under development. This paper explores the synergic relationship between these two domains by identifying six examples of real cases that address LM-Industry 4.0 integration in the extant literature. The goal is to make explicit the best practices that are being implemented by six distinct industrial sectors
Go to article

Authors and Affiliations

Beatrice Paiva Santos
1
Daisy Valle Enrique
1 2
Vinicius B.P. Maciel
1
Tânia Miranda Lima
1
Fernando Charrua-Santos
1
Renata Walczak
3

  1. Electromechanical Department, C-MAST, University of Beira Interior, Covilhã, Portugal
  2. Industrial Engineering Department, Federal University of Rio Grande do Sul, Brazil
  3. University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Major manufactures are moving towards a sustainability goal. This paper introduces the results of collaboration with the leading company in the packaging and advertising industry in Germany and Poland. The problem addresses the manufacturing planning problem in terms of minimizing the total cost of production. The challenge was to bring a new production planning method into cardboard manufacturing and paper processing which minimizes waste, improves the return of expenses, and automates daily processes heavily dependent on the production planners’ experience. The authors developed a module that minimizes the total cost, which reduces the overproduction and is used by the company’s manufacturing planning team. The proposed approach incorporates planning allowances rules to compromise the manufacturing requirements and production cost minimization.
Go to article

Authors and Affiliations

Kateryna Czerniachowska
1
ORCID: ORCID
Krzysztof Żywicki
2
ORCID: ORCID
Radosław Wichniarek
2
ORCID: ORCID

  1. Wroclaw University of Economics and Business, Wroclaw, Poland
  2. Poznan University of Technology, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The industrial revolution taking place since the 18th century has brought the global economies to the stage of mass production, mass industrialization and spreading ideas connected with its efficiency. The most famous of its kind is Fordism and its modern variations called PostFordism or Neo-Fordism. We can still see traditional way of producing things in some parts of the world, and the leading economies are using Ford’s ideas or the modifications of the Ford’s concepts. But there is a question about the place of these models in the modern economy, especially because mass-production causes mass-waste and modern societies has woken up to the reality of the global pollution, climate change or just the simple fact that the amount of the raw materials is limited. The social mood is slowly changing so there should be a change to the way we produce and consume things as well. There is a question: can we proceed within existing models or should we think outside the box so we can invent more suitable way of looking at efficiency and effectiveness. The objective of this paper is to contribute to the discussion about the future of how are we going to produce things. It is based on the literature review considering Fordism and its variations, Product Life Cycle facing issues like pollution, massive waste and changes in modern economy, as well as on the case study of implementing waste reduction activities in the product’ design phase in the industrial plant based in one of the EU countries – Poland.
Go to article

Authors and Affiliations

Mariusz Bednarek
1 2
Aneta Parkes
3

  1. Wyższa Szkoła Bankowa, Warszawa, Poland
  2. Universidad Autonoma de Chile, Temuco, Chile
  3. Społeczna Akademia Nauk, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

As the corporate culture and re/setting of employer – employee relations is crucial due to changes in workplace due to impact of COVID-19, this article aims to identify types of organizational culture, and to find impact on the implementation of HR activities and employer branding, including classification of organizations by their defined strategies. A model of organizational culture, including its systematic relationships, is proposed and tested using a sample of 402 organizations across sectors operating in the Czech Republic as a characteristic economy in Central Eastern European region. This model includes different dimensions of internal brand management and manifestations of organizational culture. Data are analyzed using bivariate and multivariate statistics. Identification of a suitable type of organizational culture leads towards successful employer branding and work engagement; brand identification and communication directly raise positive perception of organizational culture. Three major areas of use of organizational culture and branding have been identified: re-setting of personnel processes depending on the change of organization’s size, on the decline in labor productivity and on organizational mergers, changes in scope of business and in market position. The results suggest that orientation on employee engagement is a better predictor of (positive) organizational culture than increase in productivity. Furthermore, the results explain supportive roles of organizational culture towards customers and employees. The results extend theory by empirical analysis of organizational culture and internal brand management from the employers’ perspective.
Go to article

Authors and Affiliations

Hana Urbancová
1
Lucie Depoo
2

  1. University of Economics and Management, Department of Human Resources
  2. University of Economics and Management, Department of Management
Download PDF Download RIS Download Bibtex

Abstract

Commercialization processes are modeled and analyzed from the point of view of the implementation of activities under particular stages. These issues are the subject of many studies and analyzes, which is why the extensive literature is available on this subject. Technology valuation at various stages of the commercialization process is a separate issue. Such valuation is prepared in most cases by consulting companies for determining the price in the buying and selling processes. These valuations use known methods also used in other cases, e.g., real estate valuation. The work carried out presents the author’s concept of the commercialization process model, taking into account the costs and value of the technology at various stages of the product life cycle. The model uses a stochastic approach to determine future revenues and costs, which allows estimating the value of the technology by or in determining the probability of assessment validity. The proposed stochastic approach greatly increases the chances of using the presented solutions in practical activities related to technology valuation for the purposes of purchase and sale transactions.
Go to article

Authors and Affiliations

Bozena Kaczmarska
1
Wacław Gierulski
1
ORCID: ORCID
Josef Zajac
2
Anton Bittner
2
Wacław Gierulski
1

  1. Kielce University of Technology, Poland
  2. Technical University of Kosice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The market of consumer goods requires nowadays quick response to customer needs. As a consequence, this is transferred to the time restrictions that the semi-finished product manufacturer must meet. Therefore the cost of manufacturing cannot determine how production processes are designed, and the main evaluation function of manufacturing processes is the response time to customers’ orders. One of the ideas for implementing this idea is the QRM (Quick Response Manufacturing) production organization system. The purpose of the research undertaken by the authors was to develop an innovative solution in the field of production structure, allowing for the implementation of the QRM concept in a Contract Manufacturer, which realizes its tasks according to engineering-to-order (ETO) system in conditions defined as High Mix, Low Volume, High Complexity. The object of the research was to select appropriate methods for grouping products assuming that certain operations will be carried out in traditional but well-organized technological and/or linear cells. The research was carried out in one of the largest producers of sheet metal components in Europe. Pre-completed groupings for data obtained from the company had indicated that – among the classical methods – the best results had been given by the following methods: King’s Algorithm (otherwise called: Binary Ordering, Rank Order Clustering), k-means, and Kohonen’s neural networks. The results of the tests and preliminary simulations based on the data from the company proved that the implementation of the QRM concept does not have to be associated with the absolute formation of multi-purpose cells. It turned out that the effect of reducing the response time to customer needs can be obtained by using hybrid structures that combine solutions characteristic of cellular systems with traditional systems such as a technological, linear, or mixed structure. However, this requires the application of technological solutions with the highest level of organization.
Go to article

Authors and Affiliations

Jerzy Duda
1
Andrzej Macioł
2
Stanisław Jedrusik
2
Bogdan Rebiasz
2
A. Stawowy
ORCID: ORCID
Monika Sopinska-Lenart
3
Adam Stawowy
2

  1. AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  3. Addit Sp. z o.o., Wegrow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer and aerodynamic drag of novel small-sized heat sinks with lamellar fins, designed for electronic cooling, were experimentally investigated under conditions of forced convection in the range of Reynolds numbers 1 250–10 500. It was found that a gradual reduction in the fin spacing from 6 mm to 3 mm with a 29° angle of taper between the outermost fins leads to an increase in the heat transfer intensity by 15–32% with a significant increase in aerodynamic drag compared to the surface with a constant fin spacing of 6 mm. Incomplete cross-section cutting of fins at the relative depth of 0.6 in addition to the gradual reduction in the fin spacing provides aerodynamic drag decrease by 5–20% and increase of heat transfer intensity by 18–20% in comparison with the similar heat sink without fins cutting. Proposed novel designs of heat sinks enabled us to decrease by 7°С–16°С the maximum overheating of the heat sink's base in the flow speed range from 2.5 m/s to 7.5 m/s at constant heat load. To ensure a constant value of maximum overheating of the heat sink base the inlet flow velocity for the surface with constant fin spacing should be 1.6–2 times higher than that for the heat sink with 29° taper angle between outermost fins and partially fins cutting. In this case, the aerodynamic drag for the latter will be higher only by 1.6–2.7 times, which is quite acceptable.
Go to article

Authors and Affiliations

Aleksandr Terekh
1
Aleksandr Rudenko
1
Yevhenii Alekseik
1

  1. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Educational and Scientific Institute of Atomic and Thermal Energy, 37, Beresteisky Av., Kyiv, 03056, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This work examines biochar from carbonization of grape waste, and oat and buckwheat husks at 450ºC. The main aspects of the work concern the analysis of the fixed carbon and ash content in accordance with the European Standard. Obtained results showed that biochar from oat and buckwheat husk can be used for barbeque charcoal and barbeque charcoal bri-quettes production, whereas biochar derived from grape waste can be used for the charcoal briquettes production. Thermo-gravimetric analysis showed that biochar from grape stalk is characterized by the highest ignition and burnout performance, but in relation to the remaining samples, combustion process occurs in a narrow range of time and temperature. Obtained results showed that biochar from oat and buckwheat husks has properties, as well as combustion stability and reactivity, similar to commercial charcoal.
Go to article

Authors and Affiliations

Jacek Kluska
1
Jakub Ramotowski
2

  1. Insittute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  2. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering and EkoTech Center, Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of the present work is to examine the characteristics of unsteady incompressible magnetohydrodynamic fluid flow around a permeable rotating vertical cone. The effects of thermal radiation, viscous dissipation, and the Soret and Dufour effects are investigated in the analysis of heat and mass transfer. The viscosity of the fluid is considered inversely proportional to the temperature, and the thermal conductivity of the fluid is considered directly proportional to the temper-ature. The governing equations are converted into ordinary differential equations using suitable similarity transformations, which are then solved numerically using bvp4c from MATLAB. Results obtained in this study are in excellent correlation with previously conducted studies. The results demonstrate that the Dufour and Soret effects subsequently reduce the heat transit rate (by –3.3%) and mass transit rate (by –1.2%) of the system. It is also detected that fluids with higher viscosity tend to increase tangential skin friction (+8.9%) and azimuthal skin friction (+8.3%). The heat transit rate of the system is found to be more efficient for fluids with higher viscosity and lower thermal conductivity and Eckert numbers. Further-more, the thickness of the momentum, thermal, and concentration boundary layers significantly reduces while the heat and mass transit rates (+17.8% and +18.3%, respectively) of the system become more efficient for greater values of the un-steadiness parameter.
Go to article

Authors and Affiliations

Temjennaro Jamir
1
Hemanta Konwar
1

  1. Kohima Science College, Jotsoma, Kohima 797001, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents numerical results for flow behavior between a cold inner cylinder and a hot outer cylinder. Both cyl-inders are placed horizontally. The space separating the two compartments is completely filled with a fluid of a complex rheological nature. In addition, the outer container is subjected to a constant and uniform rotational speed. The results of this work were obtained after solving the differential equations for momentum and energy. The parameters studied in this research are: the intensity of thermal buoyancy, the speed of rotation of the outer container and the rheological nature of the fluid. These elements are expressed mathematically by the following values: Richardson number (Ri = 0 and 1), Reyn-olds number (Re = 1 to 40), power-law number (n = 0.8, 1 and 1.4) and Prandtl number (Pr = 50). The results showed that the speed of rotation of the cylinder and the rheological nature of the fluids have an effective role in the process of heat transfer. For example, increasing the rotational speed of the enclosure and/or changing the nature of fluid from shear-thickening into shear-thinning fluid improves the thermal transfer rate.
Go to article

Authors and Affiliations

Abdeljalil Benmansour
1
Houssem Laidoudi
1

  1. Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, USTO-MB, BP 1505, El-Menaouer, Oran, 31000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Based on the finite element simulation software ANSYS Workbench, this study reports the thermal characteristics of a high-speed motorized spindle. The temperature field distribution and axial thermal deformation of the motorized spindle are then detected on an experimental platform. A comparison between the experimental and simulation results revealed the temperature rise of the motorized spindle during the working process. Under steady-state conditions of the working mo-torized spindle, the temperatures of the front bearing, rear bearing and stator were determined as 20°C, approximately 30°C and 25°C, respectively. The axial thermal elongation of the motorized spindle is approximately 10 μm.
Go to article

Authors and Affiliations

Wei Zhang
1
ORCID: ORCID
Huaqiao Jiang
2

  1. China Light Industry Plastic Mold Engineering Technology Research Center, Ningbo Polytechnic, Ningbo 315800, China; Ningbo Shuaitelong Group Co., Ltd, Ningbo 315000, China
  2. Ningbo Shuaitelong Group Co., Ltd, Ningbo 315000, China
Download PDF Download RIS Download Bibtex

Abstract

Carbon capture and sequestration from a stationary source comprises four distinct engineering processes: separation of CO2 from the other flue gases, compression, transportation, and injection into the chosen storage site. An analysis of the thermodynamic and transport properties of CO2 shows that dissolving this gas in seawater at depths more than 600 m is, most likely, an optimal long-term storage method; and that for transportation, the CO2 must be in the denser supercritical state at pressures higher than 7.377 MPa. The separation, compression, transportation, and injection processes require significant energy expenditures, which are determined in this paper using realistic equipment efficiencies, for the cases of two currently in operation coal power plants in Texas. The computations show that the total energy requirements for carbon removal and sequestration are substantial, close to one-third of the energy currently generated by the two power plants. The cost analysis shows that two parameters – the unit cost of the pipeline and the discount factor of the corporation – have a very significant effect on the annualized cost of the CCS process. Doubling the unit cost of the pipeline increases the total annualized cost of the entire CCS project by 36% and increasing the discount rate from 5% to 15% increases this annualized cost by 32%.
Go to article

Authors and Affiliations

Efstathios E. Michaelides
1

  1. Department of Engineering, Texas Christian University, Fort Worth, TX, 76129, USA
Download PDF Download RIS Download Bibtex

Abstract

This study aims to investigate and compare the thermal performance of a solar air heater using a passive technique to enhance heat transfer between the absorber plate and the flowing fluid. The technique involves generating turbulence near the heat transferring surface through the use of artificial rib roughness. The study focuses on two different novel roughness geome-tries: full symmetrical arc rib roughness and half symmetrical arc rib roughness. By introducing additional gaps and varying the number of gaps in the roughness geometries, the study examines their effects on the solar air heaters thermal performance. The artificially roughened surface creates different turbulent zones, which are essential to the development of different types of turbulence in the vicinity of the heat transferring surface. The study finds that an optimal escalation in Nusselt number and friction factor by 2.36 and 3.45 times, respectively, occurs at certain gap numbers as 6 and ng as 5 for full symmetrical arc rib roughness. The maximum thermal-hydraulic performance parameter of 1.66 is attained at a Reynolds number of 6 000. The study also conducts correlation, mathematical modeling, and performance prediction under different operating circumstances.
Go to article

Authors and Affiliations

Jitendra Singh
1
Atul Lanjewar
1

  1. MANIT, Bhopal 462033, India
Download PDF Download RIS Download Bibtex

Abstract

This research article aims to provide a detailed numerical study of the multifaceted impact of S-shaped and broken arc roughness on solar air heaters. Therefore, a strong comparison was made between the modified heaters and smooth heaters for Reynolds numbers ranging from 2 00022 000. Also, the impact of two parameters, i.e. pitch and gap was analyzed to optimize the performance of the heater. The gap varies from 0.3 mm to 0.9 mm in both types of ribs with a step size of 0.2 mm. Afterwards, the pitch distance between both types of roughness was varied from 15 mm to 25 mm in the step size of 5 mm. Notably, it has been observed that among all the considered configurations, the gap length of 0.9 mm and pitch length of 25 mm have shown significant improvements in heat transfer characteristics. The specific combination of the gap of 0.9 mm and pitch of 25 mm has demonstrated better heat transfer capabilities at the expense of an increased friction factor. Lastly, the thermal performance factor of the systems was analyzed and reported. It was reported that the pitch length of 25 mm and gap length of 0.9 mm have shown a maximum thermal performance factor value from 2.9 to 3.3, while the pitch length of 25 mm and gap length of 0.3 mm have depicted the lowest thermal performance factor value. In terms of the overall performance, i.e. the thermal performance factor, the combination with a gap of 0.9 mm and pitch of 25 mm has shown the best performance, while a gap of 0.3 mm and pitch of 25 mm has yielded the worst performance.
Go to article

Authors and Affiliations

Shivam Haldia
1
Vijay Singh Bisht
1
Prabhakar Bhandari
2
Lalit Ranakoti
3
Akashdeep Negi
3

  1. Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India
  2. Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurgaon, Haryana-122103, India
  3. Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India
Download PDF Download RIS Download Bibtex

Abstract

Building heating is an indispensable part of people's winter life in cold regions, but energy conservation and emission reduction should also be taken into account during the heating process. This paper provides a concise overview of the heating system based on air-source heat pump radiant floor and its control strategy. It also optimizes a control system based on thermal comfort and energy efficiency ratio, and analyzes a room in Xining City, Qinghai Province, to test the heating system performance under two control strategies. The final results show that under the traditional control strategy, the cumulative working time of the heating system within a day was 15 hours, the average indoor temperature was 17.36℃, the temperature standard deviation was 2.08℃, and the average power consumption was 189.6 kWh. Under the improved control strategy, the cumulative working time of the heating system within a day was reduced to 10 hours, the average indoor temperature was 18.56℃, the temperature standard deviation was 0.92℃, and the average power consumption was 132.5 kWh.
Go to article

Authors and Affiliations

Wanting He
1
Hai Huang
2

  1. Chongqing Industry Polytechnic College, Yubei, Chongqing 401120, China
  2. Chongqing Vocational Institute of Engineering JiangJin Chongqing 402260, China
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to propose a thermal model for predicting the average air temperature inside the passenger cabin of a small-sized car that uses an HVAC system. The adopted model is a lumped parameter model that accounts for nine heat sources acting on the cabin. Additionally, the model presents a methodology for calculating the temperature at the evaporator outlet considering a linear temperature drop between its inlet and outlet as a function of sensitive heat, latent heat, evaporator input temperature, absolute humidity, enthalpy and specific heat. Sixteen experimental tests were con-ducted on a commercial vehicle under various operating conditions to validate the presented model. The maximum average relative deviation between the experimental and theoretical results was 17.73%.
Go to article

Authors and Affiliations

Ramon de Paoli Mendes
1
Juan José Garcia Pabon
2
Willian Moreira Duarte
1
Luiz Machado
1

  1. Federal University of Minas Gerais, Av. Pres. Antônio Carlos, Belo Horizonte/MG 31270-901, Brazil
  2. Federal University of Itajubá, Av.. BPS, Itajubá/MG 37500 903, Brazil
Download PDF Download RIS Download Bibtex

Abstract

This article discusses selected aspects of modelling blood flow in the arteries. The method of reproducing the variable-in-time geometry of coronary arteries is given based on a sequence of medical images of different resolutions. Within the defined shapes of the arteries, a technique of generation of numerical meshes of the same topology is described. The boundary conditions and non-Newtonian rheological models used in blood flow are discussed, as well as the description of blood as a multiphase medium. The work also includes a discussion of tests on the phantom of the carotid artery for the accuracy of measurements made using ultrasonography.
Go to article

Authors and Affiliations

Ryszard Białecki
1
Wojciech Adamczyk
1
Ziemowit Ostrowski
1

  1. Silesian University of Technology, Department of Thermal Technology, Faculty of Energy and Environmental Engineering, Konarskiego 22, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more