Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 411
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Over the past two decades, numerous research projects have concentrated on cognitive radio wireless sensor networks (CR-WSNs) and their benefits. To tackle the problem of energy and spectrum shortfall in CR-WSNs, this research proposes an underpinning decode-&-forward (DF) relaying technique. Using the suggested time-slot architecture (TSA), this technique harvests energy from a multi-antenna power beam (PB) and delivers source information to the target utilizing energy-constrained secondary source and relay nodes. The study considers three proposed relay selection schemes: enhanced hybrid partial relay selection (E-HPRS), conventional opportunistic relay selection (C-ORS), and leading opportunistic relay selection (L-ORS). We present evidence for the sustainability of the suggested methods by examining the outage probability (OP) and throughput (TPT) under multiple primary users (PUs). These systems leverage time switching (TS) receiver design to increase end-to-end performance while taking into account the maximum interference constraint and transceiver hardware inadequacies. In order to assess the efficacy of the proposed methods, we derive the exact and asymptotic closed-form equations for OP and TPT & develop an understanding to learn how they affect the overall performance all across the Rayleigh fading channel. The results show that OP of the L-ORS protocol is 16% better than C-ORS and 75% better than E-HPRS in terms of transmitting SNR. The OP of L-ORS is 30% better than C-ORS and 55% better than E-HPRS in terms of hardware inadequacies at the destination. The L-ORS technique outperforms C-ORS and E-HPRS in terms of TPT by 4% and 11%, respectively.
Go to article

Authors and Affiliations

Mushtaq Muhammad Umer
1 2
ORCID: ORCID
Hong Jiang
1
Qiuyun Zhang
1
ORCID: ORCID
Liu ManLu
1
ORCID: ORCID
Muhammad Owais
1
ORCID: ORCID

  1. School of Information Engineering, Southwest University of Science & Technology (SWUST) Mianyang, 621010, P.R. China
  2. Department of Software Engineering, Mirpur University of Science & Technology (MUST), Mirpur, Azad Jammu & Kashmir, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on polymer composites based on polypropylene filled with various fillers. The physical and thermal properties of the composites are the result of the used polymer matrix as well as the properties and geometric features of the used filler. The geometric shape of the filler is particularly important in the processing of plastics in which the flow is forced, and high shearing tension occurs, which determines the high macromolecular orientation and specific arrangement of the filler particles. Thermal analysis (STA) was used in the research and photographs were taken using a scanning electron microscope (SEM) of fractures of polymer composites. The following fillers were used: talc, fibreglass, glass beads, and a halogen-free nitrogen-phosphorus flame retardant. The test material was obtained by extrusion. Shapes for strength tests, which were subjected to scanning microscopy tests after a static tensile test, were obtained by injection. The carried-out tests allowed us to determine the influence of the type and shape of individual fillers on structural changes in the structure of polypropylene composites and the degree of sample weight loss in a specific temperature range, depending on the used filler.
Go to article

Authors and Affiliations

Przemysław Postawa
1
Bartłomiej Jeż
1
ORCID: ORCID
Sylwester Norwiński
1
Aleksandra Kalwik
1

  1. Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology,Al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, the model of multi–server queueing system with random volume customers, non–identical (heterogeneous) servers and a sectorized memory buffer has been investigated. In such system, the arriving customers deliver some portions of information of a different type which means that they are additionally characterized by some random volume vector. This multidimensional information is stored in some specific sectors of a limited memory buffer until customer ends his service. In analyzed model, the arrival flow is assumed to be Poissonian, customers’ service times are independent of their volume vectors and exponentially distributed but the service parameters may be different for every server. Obtained results include general formulae for the steady–state number of customers distribution and loss probability. Special cases analysis and some numerical computations are attached as well.
Go to article

Authors and Affiliations

Marcin Ziółkowski
1
ORCID: ORCID

  1. Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ-sphere) and the standard spheroid (namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quartermeridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square) error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the deformation parameter of the λ-sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed main geometric characteristics of λ-sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out that the value of the,sup> flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of the λ-sphere (the relative error is of the order of 10−4).
Go to article

Authors and Affiliations

Vasyl Kovalchuk
1
ORCID: ORCID
Ivaïlo M. Mladenov
2 3
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
  2. Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria
  3. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

The present work investigated the properties of rubber vulcanizates containing different nanoparticles (Cloisite 20A and Cloisite Na+) and prepared using different sonication amplitudes. The results showed that a maximum improvement in tensile strength of more than 60% over the reference sample was obtained by the nanocomposites containing 2 wt.% Cloisite 20A and 1 wt.% Cloisite Na+ and mixed with a maximum amplitude of 270 µm. The modulus at 300% elongation increased by approximately 18% and 25% with the addition of 2 wt.% Cloisite 20A and 3 wt.% Cloisite Na+, respectively. The shape retention coefficient of rubber samples was not significantly affected by the mixing amplitude, while the values of the softness measured at the highest amplitude (270 µm) were higher compared to those of mixtures homogenized with lower amplitudes. The loading-unloading and loading-reloading processes showed similar trends for all tested nanocomposites. However, they increased with increasing levels of sample stretching but were not significantly affected by filler content at a given elongation. More energy was dissipated during the loading-unloading process than during the loading-reloading. SEM micrographs of rubber samples before and after cycling loading showed rough, stratified, and elongated morphologies. XRD results showed that elastomeric chains were intercalated in the MMT nanosheets, confirming the improvement of mechanical properties. The difference between the hydrophilic pristine nanoclay (Cloisite Na+) and organomodified MMT (Cloisite 20A) was also highlighted, while the peaks of the stretched rubber samples were smaller, regardless of the rubber composition, due most probably to the decrease of interlayer spacing.
Go to article

Authors and Affiliations

Anita Białkowska
1
Małgorzata Przybyłek
1
Marta Sola-Wdowska
1
Milan Masař
2
Mohamed Bakar
1
ORCID: ORCID

  1. University of Technology and Humanities in Radom, Faculty of Chemical Engineering and Commodity Science, Poland
  2. Tomaš Bata University in Zlin, Centre of Polymer Systems, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Maritime Autonomous Surface Ships (MASS) perfectly fit into the future vision of merchant fleet. MASS autonomous navigation system combines automatic trajectory tracking and supervisor safe trajectory generation subsystems. Automatic trajectory tracking method, using line-of-sight (LOS) reference course generation algorithm, is combined with model predictive control (MPC). Algorithm for MASS trajectory tracking, including cooperation with the dynamic system of safe trajectory generation is described. It allows for better ship control with steady state cross-track error limitation to the ship hull breadth and limited overshoot after turns. In real MASS ships path is defined as set of straight line segments, so transition between trajectory sections when passing waypoint is unavoidable. In the proposed control algorithm LOS trajectory reference course is mapped to the rotational speed reference value, which is dynamically constrained in MPC controller due to dynamically changing reference trajectory in real MASS system. Also maneuver path advance dependent on the path tangential angle difference, to ensure trajectory tracking for turns from 0 to 90 degrees, without overshoot is used. All results were obtained with the use of training ship in real–time conditions.
Go to article

Authors and Affiliations

Anna Miller
1
ORCID: ORCID

  1. Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The high pressure die casting (HPDC) is a technique that allows us to produce parts for various sectors of industry. It has a great application in such sectors as automotive, energy, medicine, as the HPDC allows us to produce parts very fast and very cheaply. The HPDC casting quality depends on many parameters. The parameters among others, are cast alloy alloy metallurgy, filling system design, casting technology elements geometry and orientation, as well as, machine operation settings. In the article, different plunger motion schemes of the HPDC machine were taken into account. Analyses lead to learning about plunger motion influence on the casting porosity and solidification process run. Numerical experiments were run with the use of MAGMASoft® simulation software. Experiments were performed for industrial casting of water pump for automotive. Main parameter taken into account was maximal velocity of the plunger in the second phase. The analysis covered porosity distribution, feeding time through the gate, temperature field during whole process, solidification time. Cooling curves of the casting in chosen points were also analysed. Obtained results allow us to formulate conclusions that connect plunger motion scheme, gate solidification time and the casting wall thickness on the solidification rate and porosity of the casting.
Go to article

Authors and Affiliations

Katarzyna Żak
1
ORCID: ORCID
Rafał Dańko
1
ORCID: ORCID
Paweł L. Żak
1
ORCID: ORCID
Wojcich Kowalczyk
2

  1. AGH University of Krakow, Faculty of Foundry Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Frech Poland Sp. z o.o., Przedmos´c, Główna 8, 46-320 Praszka, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a proposition of the theoretical-experimental method of determination of power losses in the transversely vibrating rubber V-belt of continuously variable transmission. The article comprises the results of experimental tests conducted on a special test stand with a complete scooter drivetrain powered by a small two-stroke internal combustion engine. Such a configuration allows ensuring real CVT working conditions. A high-speed camera was used for the contactless measurement of belt vibrations and time-lapse image analysis was performed in dedicated software. An axially moving Euler–Bernoulli beam was assumed as the mathematical model. Longitudinal vibrations and nonlinear effects were omitted. Additionally, it was assumed that the belt material behaves according to the Kelvin–Voigt rheological model. Analysis of the damped free vibrations of the cantilever beam, made of the belt segment, allowed to determine the equivalent bending damping coefficient. The CVT power losses, due to bending in the rubber transmission belt, were obtained for the fixed working conditions after numerical calculations. The proposed methodology is a new approach in this research area, which allows to obtain results impossible to achieve with other measurement methods.
Go to article

Authors and Affiliations

Waldemar Łatas
1
ORCID: ORCID
Adam Kot
2
ORCID: ORCID

  1. Department of Applied Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Poland
  2. Department of Automotive Vehicles, Faculty of Mechanical Engineering, Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The increasing concern for the safety and sustainability of structures is calling for the development of smart self-healing materials and preventive repair methods. This research is carried out to investigate the extent of self-healing in normal-strength concrete by using Sporosarcina aquimarina – NCCP-2716 immobilized in expanded perlite (EP) as the carrier. The efficacy of crack-healing was also tested using two alternative self-healing techniques, i.e. expanded perlite (EP) concrete and direct introduction of bacteria in concrete. A bacterial solution was embedded in EP and calcium lactate pentahydrate was added as the nutrient. Experiments revealed that specimens containing EP-immobilized bacteria had the most effective crack-healing. After 28 days of healing, the values of completely healed crack widths were up to 0.78 mm, which is higher than the 0.5 mm value for specimens with the direct addition of bacteria. The specimen showed a significant self-healing phenomenon caused by substantial calcite precipitation by bacteria. The induced cracks were observed to be repaired autonomously by the calcite produced by the bacteria without any adverse effect on strength. The results of this research could provide a scientific foundation for the use of expanded perlite as a novel microbe carrier and Sporosarcina aquimarina as a potential microbe in bacteria-based self-healing concrete.
Go to article

Authors and Affiliations

Usama Bin Amjad
1
Muhammad Shahid Siddique
1
Taha Shahid
1
Ahmed Iftikhar
2
Saleh M. Alogla
3
Jawad Ahmad
1

  1. Department of Civil Engineering, Military College of Engineering, Risalpur, sub-campus of National University of Sciences and Technology,Islamabad, Pakistan
  2. Principal Scientific Officer / Program Leader at Pakistan Agricultural Research Council Islamabad, Pakistan
  3. Department of Civil Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the control design framework for the hybrid synchronization (HS) and parameter identification of the 3-Cell Cellular Neural Network. The cellular neural network (CNN) of this kind has increasing practical importance but due to its strong chaotic behavior and the presence of uncertain parameters make it difficult to design a smooth control framework. Sliding mode control (SMC) is very helpful for this kind of environment where the systems are nonlinear and have uncertain parameters and bounded disturbances. However, conventional SMC offers a dangerous chattering phenomenon, which is not acceptable in this scenario. To get chattering-free control, smooth higher-order SMC formulated on the smooth super twisting algorithm (SSTA) is proposed in this article. The stability of the sliding surface is ensured by the Lyapunov stability theory. The convergence of the error system to zero yields hybrid synchronization and the unknown parameters are computed adaptively. Finally, the results of the proposed control technique are compared with the adaptive integral sliding mode control (AISMC). Numerical simulation results validate the performance of the proposed algorithm.
Go to article

Authors and Affiliations

Nazam Siddique
1
ORCID: ORCID
Fazal ur Rehman
2
Uzair Raoof
3
Shahid Iqbal
1
Muhammad Rashad
3

  1. University of Gujrat, Gujrat, Pakistan
  2. Capital University of Science and Technology, Islamabad, Pakistan
  3. University of Lahore, Lahore, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Readiness and reliability is a special attribute of rescue systems (army, police, fire service), where performance at the highest level is more important than economic efficiency. For this reason, special attention is given to the process of renewal of technical objects. In such systems, a preventive strategy is most often used. Though this is a safe model, it does not always take into account the specifics of the use of a technical object. Moreover, in some situations, it forces the end of life of a device that could still continue to operate as intended. The article analyzes precisely such technical objects, removed from operation after just 10 years of use. It was shown that such approach is not justified and that modern management strategies must be implemented also in relation to machinery and equipment operating in rescue systems. The most important achievements of the article are the use of reliability analysis methods in the systems where it is not common, and the indication of the benefits of such analysis. It has been shown that knowing the characteristics of reliability, you can consciously control each process and make decisions in this regard based on the technical condition of the facility and not on instructions. In the case under study, this would make it possible to undermine the decision to withdraw the analyzed objects from operation.
Go to article

Authors and Affiliations

Anna Borucka
1
ORCID: ORCID

  1. Military University of Technology, Warsaw, Poland

Authors and Affiliations

Paweł Baranowski
1
ORCID: ORCID
Michał Kucewicz
1
ORCID: ORCID
Mateusz Pytlik
2
ORCID: ORCID
Jerzy Małachowski
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  2. Central Mining Institute, Conformity Assessment Body, 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The modeling of P-waves has essential applications in seismology. This is because the detection of the P-waves is the first warning sign of the incoming earthquake. Thus, P-wave detection is an important part of an earthquake monitoring system. In this paper, we introduce a linear computational cost simulator for three-dimensional simulations of P-waves. We also generalize our formulations and derivation for elastic wave propagation problems. We use the alternating direction method with isogeometric finite elements to simulate seismic P-wave and elastic propagation problems. We introduce intermediate time steps and separate our differential operator into a summation of the blocks, acting along the particular coordinate axis in the sub-steps. We show that the resulting problem matrix can be represented as a multiplication of three multi-diagonal matrices, each one with B-spline basis functions along the particular axis of the spatial system of coordinates. The resulting system of linear equations can be factorized in linear O (N) computational cost in every time step of the semi-implicit method. We use our method to simulate P-wave and elastic wave propagation problems. We derive the condition for the stability for seismic waves; namely, we show that the method is stable when τ < C min{ hx,hy,hz}, where C is a constant that depends on the PDE problem and also on the degree of splines used for the spatial approximation. We conclude our presentation with numerical results for seismic P-wave and elastic wave propagation problems.
Go to article

Authors and Affiliations

Marcin Łoś
1
ORCID: ORCID
Pouria Behnoudfar
2
ORCID: ORCID
Mateusz Dobija
3
Maciej Paszynski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, Perth, Western Australia
  3. Jagiellonian University, Faculty of Astronomy, Physics and Applied Computer Science, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

S304H steel is used in the construction of pressure components of boilers with supercritical operating parameters. The paper presents the results of research on the microstructure following ageing for 30,000 hours at 650 and 700°C. Microstructure examination was performed using scanning and transmission electron microscopy. The precipitates were identified using transmission electron microscopy. The paper analyses the precipitation process and its dynamics depending on the temperature and ageing time in detail. MX carbonitrides and the ε_Cu phase were proved to be the most stable phase, regardless of the test temperature. It was also showed that the M₂₃C₆ carbide precipitates in the tested steel and the intermetallic sigma phase (σ) may play a significant role in the loss of durability of the tested steel. This is related to their significant increase due to the influence of elevated temperature, and their coagulation and coalescence dynamics strongly depend on the ageing/operating temperature level. The qualitative and quantitative identification of the secondary phase precipitation processes described in the study is important in the analysis of the loss of durability of the tested steel under creep conditions.
Go to article

Bibliography

  1.  “Poland’s Energy Policy PEP2040”, [Online]. Available: https://www.gov.pl/web/klimat/polityka-energetyczna-polski, [Accessed: 1. Mar. 2021].
  2.  M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 721‒731, 2020, doi: 10.24425/bpasts.2020.133125.
  3.  G. Golański, A. Zieliński, and A. Zielińska-Lipiec, “Degradation of microstructure and mechanical properties in martensitic cast steel after ageing,” Materialwiss. Werkst., vol. 46, no. 3, pp. 248–255, 2015, doi: 10.1002/mawe.201400325.
  4.  J. Horváth, J. Janovec, and M. Junek, “The Changes in Mechanical Properties of Austenitic Creep Resistant Steels SUPER 304H and HR3C Caused by Medium-Term Isothermal Ageing,” Sol. St. Phen., vol. 258, pp. 639‒642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
  5.  A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mat. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
  6.  G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat- Resistant Austenitic Stainless Steel,” Materials, vol.  13, no. 6, p. 1297, 2020, doi: 10.3390%2Fma13061297.
  7.  A.F. Padilha and P.R. Rios, “Decomposition of Austenite in Austenitic Stainless Steels,” ISIJ Intern., vol. 42, no. 4, pp.  325–327, 2002, doi: 10.2355/isijinternational.42.325.
  8.  R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, “A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance,” Mater. Res., vol. 10, no. 4, pp. 453–460, 2007, doi: 10.1590/ s1516-14392007000400021.
  9.  X. Xie, Y. Wu, C. Chi, and M. Zhang, “Superalloys for Advanced Ultra-Super-Critical Fossil Power Plant Application,” Superalloys, 2015, doi: 10.5772/61139.
  10.  A. Zieliński, G. Golański, M. Kierat, M. Sroka, A. Merda, and K. Sówka, “Microstructure of HR6W Alloy at Elevated Temperature after Prolonged Ageing in Air Atmosphere,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 253–256, 2020, doi: 10.12693/aphyspola.138.253.
  11.  M. Sroka, A. Zieliński, A. Śliwa, M. Nabiałek, Z. Kania-Pifczyk, and I. Vasková, “The Effect of Long-Term Ageing on the Degradation of the Microstructure the Inconel 740h Alloy,” Acta Phys. Pol. A, vol. 137, no. 3, pp. 355–360, 2020, doi: 10.12693/aphyspola.137.355.
  12.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi:10.3390/ma11112130.
  13.  A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater. vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017- 0305.
  14.  M. Sroka, A. Zieliński, A. Hernas, Z. Kania, R. Rozmus, T. Tański, and A. Śliwa, “The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy,” Metalurgija, vol. 56, no. 3‒4, pp. 333‒336, 2017.
  15.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The Influence of the Temperature and Ageing Time on the NiCr23Co12Mo Alloy Microstructure,” Rev. Chim-Bucharest., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
  16.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 913‒921, doi: 10.24425/bpasts.2020.134184.
  17.  A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech- Lond., vol. 32, no. 18, pp. 1899‒1910, 2016, doi: 10.1080/02670836.2016.1150242.
  18.  T. Tokairin et al., “Investigation on long-term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C,” Mat. Sci. Eng. A-Struct., vol. 565, pp. 285–291, 2013, doi: 10.1016/j.msea.2012.12.019.
  19.  G. Golański, C. Kolan, A. Zieliński, and P. Urbańczyk, Degradation process of heat–resistant austenitic stainless steel, Energetics, vol. 11, pp. 727‒730, 2017 [in polish].
  20.  M. Igarashi, Alloy design philosophy of creep – resistant steels In: Abe F., Kern T.U., Viswanathan R. (ED.), Creep resistant steels. Cambridge: Woodhead Publishing, 2008.
  21.  C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu, and X. Xie, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, no. 3, pp. 175–185, 2012., doi: 10.1016/j.pnsc.2012.05.002.
  22.  H. Yu and Ch. Chi, “Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat – resistant steel at early aging state”, Chin. J. Mater. Res., vol. 29, pp. 195‒200, 2015.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Robert Wersta
2
Marek Sroka
3
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland
  2. Office of Technical Inspection, Regional Branch Office based in Wrocław, ul. Grabiszyńska 51, 53-503 Wrocław, Poland
  3. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44 100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based alloys are widely used in the construction, automotive, aviation and medical industries. There are many parameters that can be modified during their synthesis in order to obtain an alloy with the desired microstructure and advantageous properties. Modifications to the chemical composition and parameters of the synthesis process are of key importance. In this work, an Mg-based alloy with a rare-earth element addition was synthesized by means of mechanical alloying (MA). The aim of this work was to study the effect of milling times on the Mg-based alloy with a rare-earth addition on its structure and microhardness. A powder mixture of pure elements was milled in a SPEX 8000D high energy shaker ball mill under an argon atmosphere using a stainless steel container and balls. The sample was mechanically alloyed at the following milling times: 3, 5, 8 and 13 h, with 0.5 h interruptions. The microstructure and hardness of samples were investigated. The Mg-based powder alloy was examined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and using a Vickers microhardness test. The results showed that microhardness of the sample milled for 13 h was higher than that of those with milling time of 3, 5 and 8 h.
Go to article

Bibliography

  1.  F. Witte, “The history of biodegradable magnesium implants: A review,” Acta Biomater., vol. 6, no. 5, pp. 1680–1692, 2010.
  2.  N. Eliaz, “Corrosion of metallic biomaterials: A review,” Materials (Basel)., vol. 12, no. 3, 2019.
  3.  S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1288–1299, 2018.
  4.  T. Narushima, New-generation metallic biomaterials, 2nd ed. Elsevier Ltd., 2019.
  5.  D. Persaud-Sharma and A. Mcgoron, “Biodegradable magnesium alloys: A review of material development and applications,” J. Biomim. Biomater. Tissue Eng., vol. 12, no. 1, pp. 25–39, 2012.
  6.  N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, and M. Koç, “Review of magnesium-based biomaterials and their applications,” J. Magnes. Alloy., vol. 6, no. 1, pp. 23–43, 2018.
  7.  M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, Mar. 2006.
  8.  S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying,” Materials (Basel)., vol. 14, no. 1, pp. 1–14, 2021.
  9.  A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk Vel Prokopowicz, M. Pawlyta, and K. Lukaszkowicz, “Carbon nanotubes counter electrode for dye-sensitized solar cells application,” Arch. Metall. Mater., vol. 61, no. 2A, pp. 803–806, 2016.
  10.  A. Drygała, M. Szindler, M. Szindler, and E. Jonda, “Atomic layer deposition of TiO2 blocking layers for dye-sensitized solar cells,” Microelectron. Int., vol. 37, no. 2, pp. 87–93, 2020.
  11.  M. Beniyel, M. Sivapragash, S.C. Vettivel, and P.S. Kumar, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm,” Bull. Polish Acad. Sci. Tech. Sci., pp. 1–10, 2021.
  12.  L.A. Dobrzański, L.B. Dobrzański, and A.D. Dobrzańska-Danikiewicz, “Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics,” J. Achiev. Mater. Manuf. Eng., vol. 99, no. 1, pp. 14–41, 2020.
  13.  L.A. Dobrzański, L.B. Dobrzański, and A.D. Dobrzańska-Danikiewicz, “Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage,” J. Achiev. Mater. Manuf. Eng., vol. 98, no. 2, pp. 56–85, 2020.
  14.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 119–124, 2020.
  15.  M.K. Datta et al., “Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011.
  16.  S.A. Abdel-Gawad and M.A. Shoeib, “Corrosion studies and microstructure of Mg-Zn-Ca alloys for biomedical applications,” Surf. Interfaces, vol. 14, no. August 2018, pp. 108–116, 2019.
  17.  M. Krämer et al., “Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system,” Mater. Sci. Eng. C, vol. 59, pp. 129–135, 2016.
  18.  J. Kuhlmann et al., “Fast escape of hydrogen from gas cavities around corroding magnesium implants,” Acta Biomater., vol. 9, no. 10, pp. 8714–8721, 2013.
  19.  B. Hrapkowicz and S.T. Lesz, “Characterization of Ca 50 Mg 20 Zn 12 Cu 18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019.
  20.  J. Wilson, Metallic biomaterials. Elsevier Ltd, 2018.
  21.  H.J. Yu, J.Q. Wang, X.T. Shi, D. V. Louzguine-Luzgin, H.K. Wu, and J.H. Perepezko, “Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility,” Adv. Funct. Mater., vol. 23, no. 38, pp. 4793–4800, 2013.
  22.  B. Zberg, P.J. Uggowitzer, and J.F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants,” Nat. Mater., vol. 8, p. 887, Sep. 2009.
  23.  J. Byrne, E. O’Cearbhaill, and D. Browne, “Comparison of crystalline and amorphous versions of a magnesium-based alloy: corrosion and cell response,” Eur. Cells Mater., vol. 30, no. Supplement 3, p. 75, 2015.
  24.  O. Baulin, D. Fabrègue, H. Kato, A. Liens, T. Wada, and J.M. Pelletier, “A new, toxic element-free Mg-based metallic glass for biomedical applications,” J. Non. Cryst. Solids, vol. 481, no. September 2017, pp. 397–402, 2018.
  25.  M.B. Kannan and R.K.S. Raman, “In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified- simulated body fluid,” Biomaterials, vol. 29, no. 15, pp. 2306–2314, 2008.
  26.  M. Salahshoor and Y.B. Guo, “Biodegradation control of magnesium-calcium biomaterial via adjusting surface integrity by synergistic cutting-burnishing,” Procedia CIRP, vol. 13, pp. 143–149, 2014.
  27.  H. Wang, Y. Estrin, and Z. Zúberová, “Bio-corrosion of a magnesium alloy with different processing histories,” Mater. Lett., vol. 62, no. 16, pp. 2476–2479, 2008.
  28.  Y. Guangyin, L. Manping, D. Wenjiang, and A. Inoue, “Microstructure and mechanical properties of Mg-Zn-Si-based alloys,” Mater. Sci. Eng. A, vol. 357, no. 1–2, pp. 314–320, 2003.
  29.  Z. Liang et al., “Effects of Ag, Nd, and Yb on the microstructures and mechanical properties of Mg-Zn-Ca metallic glasses,” Metals (Basel)., vol. 8, no. 10, pp. 1–10, 2018.
  30.  S. Lesz, T. Tański, B. Hrapkowicz, M. Karolus, J. Popis, and K. Wiechniak, “Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling,” J. Achiev. Mater. Manuf. Eng., vol. 103, no. 2, pp. 49–59, 2020.
  31.  S.M. Al Azar and A.A. Mousa, Mechanical and physical methods for the metal oxide powders production. INC, 2020.
  32.  I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, Novel Materials and Processing Methods. 2017.
  33.  C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018. 2018.
  34.  M. Pogorielov, E. Husak, A. Solodivnik, and S. Zhdanov, “Magnesium-based biodegradable alloys: Degradation, application, and alloying elements,” Interventional Med. Appl. Sci., vol. 9, no. 1. pp. 27–38, 2017.
  35.  Y.Q. Tang, Q.Y. Wang, Q.F. Ke, C.Q. Zhang, J.J. Guan, and Y.P. Guo, “Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing,” Chem. Eng. J., vol. 387, no. January, p. 124166, 2020.
  36.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater Sci., vol. 46, no. 1–2. Pergamon, pp. 1–184, 01-Jan-2001.
  37.  M. Karolus, “Applications of Rietveld refinement in Fe-B-Nb alloy structure studies,” J. Mater. Process. Technol., vol. 175, no. 1–3, pp. 246–250, 2006.
  38.  L.A. Dobrzański, B. Tomiczek, G. Matula, and K. Gołombek, “Role of Halloysite Nanoparticles and Milling Time on the Synthesis of AA 6061 Aluminium Matrix Composites,” Adv. Mater. Res., vol. 939, pp. 84–89, May 2014.
  39.  M. Jurczyk, Bionanomaterials for Dental Applications. Pan Stanford Publishing, 2012.
Go to article

Authors and Affiliations

Sabina Lesz
1
ORCID: ORCID
Bartłomiej Hrapkowicz
1
ORCID: ORCID
Klaudiusz Gołombek
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Patrycja Janiak
1

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based materials constitute promising alternatives for medical applications, due to their characteristics, such as good mechanical and biological properties. This opens many possibilities for biodegradable materials to be used as less-invasive options for treatment. Degradation is prompted by their chemical composition and microstructure. Both those aspects can be finely adjusted by means of proper manufacturing processes, such as mechanical alloying (MA). Furthermore, MA allows for alloying elements that would normally be really hard to mix due to their very different properties. Magnesium usually needs various alloying elements, which can further increase its characteristics. Alloying magnesium with rare earth elements is considered to greatly improve the aforementioned properties. Due to that fact, erbium was used as one of the alloying elements, alongside zinc and calcium, to obtain an Mg₆₄Zn₃₀Ca₄Er₁ alloy via mechanical alloying. The alloy was milled in the SPEX 8000 Dual Mixer/Mill high energy mill under an argon atmosphere for 8, 13, and 20 hours. It was assessed using X-ray diffraction, energy dispersive spectroscopy and granulometric analysis as well as by studying its hardness. The hardness values reached 232, 250, and 302 HV, respectively, which is closely related to their particle size. Average particle sizes were 15, 16, and 17 μm, respectively
Go to article

Bibliography

  1.  C. Suryanarayana and N. Al-Aqeeli, “Mechanically alloyed nanocomposites,” Prog. Mater. Sci., vol. 58, no. 4, pp. 383–502, May 2013.
  2.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001.
  3.  A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk Vel Prokopowicz, M. Pawlyta, and K. Lukaszkowicz, “Carbon nanotubes counter electrode for dye-sensitized solar cells application,” Arch. Metall. Mater., vol. 61, no. 2A, pp. 803–806, 2016.
  4.  L.A. Dobrzański and A. Drygała, “Influence of Laser Processing on Polycrystalline Silicon Surface,” Mater. Sci. Forum, vol. 706–709, pp. 829–834, Jan. 2012.
  5.  L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, and A. Drygała, “Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon,” in Laser Surface Engineering: Processes and Applications, Elsevier Inc., 2015, pp. 3–32.
  6.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001.
  7.  M. Toozandehjani, K.A. Matori, F. Ostovan, S.A. Aziz, and M.S. Mamat, “Effect of milling time on the microstructure, physical and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy,” Materials (Basel)., vol. 10, no. 11, p. 1232, 2017.
  8.  A. Kennedy et al., “A Definition and Categorization System for Advanced Materials: The Foundation for Risk-Informed Environmental Health and Safety Testing,” Risk Anal., vol. 39, no. 8, pp. 1783–1795, 2019.
  9.  M. Tulinski and M. Jurczyk, “Nanomaterials Synthesis Methods,” in Metrology and Standardization of Nanotechnology, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, pp. 75–98.
  10.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 119–124, 2020.
  11.  M. Beniyel, M. Sivapragash, S.C. Vettivel, and P.S. Kumar, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 1–10, 2021.
  12.  M. Abbasi, S.A. Sajjadi, and M. Azadbeh, “An investigation on the variations occurring during Ni3Al powder formation by mechanical alloying technique,” J. Alloys Compd., vol. 497, no. 1–2, pp. 171–175, May 2010.
  13.  F. Neves, F.M.B. Fernandes, I. Martins, and J.B. Correia, “Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying,” J. Alloys Compd., vol. 509, pp. S271–S274, Jun. 2011.
  14.  L. Beaulieu, D. Larcher, R. Dunlap, and J. Dahn, “Nanocomposites in the Sn–Mn–C system produced by mechanical alloying,” J. Alloys Compd., vol. 297, no. 1–2, pp. 122–128, Feb. 2000.
  15.  J.S. Benjamin and T.E. Volin, “The mechanism of mechanical alloying,” Metall. Trans., vol. 5, pp. 1929–1934, 1974.
  16.  S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1288–1299, Sep. 2018.
  17.  S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying,” Materials (Basel)., vol. 14, no. 1, pp. 1–14, 2021.
  18.  S. Lesz, T. Tański, B. Hrapkowicz, M. Karolus, J. Popis, and K. Wiechniak, “Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling,” J. Achiev. Mater. Manuf. Eng., vol. 103, no. 2, pp. 49–59, 2020.
  19.  M. Karolus and J. Panek, “Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment,” J. Alloys Compd., vol. 658, pp. 709–715, Feb. 2016.
  20.  A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, M. Karolus, and B. Kotur, “Influence of rare earth elements on crystallization of Fe 82Nb2B14RE2 (RE = Y, Gd, Tb, and Dy) amorphous alloys,” J. Non. Cryst. Solids, vol. 357, no. 1, pp. 4–9, Jan. 2011.
  21.  B. Hrapkowicz and S.T. Lesz, “Characterization of Ca 50 Mg 20 Zn 12 Cu 18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019.
  22.  M.K. Datta et al., “Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011.
  23.  J. Zhang et al., “The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study,” Acta Biomater., vol. 69, pp. 372–384, 2018.
  24.  M. Yuasa, M. Hayashi, M. Mabuchi, and Y. Chino, “Improved plastic anisotropy of Mg–Zn–Ca alloys exhibiting high-stretch formability: A first-principles study,” Acta Mater., vol. 65, pp. 207–214, Feb. 2014.
  25.  L.M. Plum, L. Rink, and H. Haase, “The essential toxin: impact of zinc on human health.,” Int. J. Environ. Res. Public Health, vol. 7, no. 4, pp. 1342–65, 2010.
  26.  M. Salahshoor and Y. Guo, “Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.,” Mater. (Basel, Switzerland), vol. 5, no. 1, pp. 135–155, Jan. 2012.
  27.  H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, and M.V. Manuel, “Magnesium as a biodegradable and bioabsorbable material for medical implants,” Jom, vol. 61, no. 9. pp. 31–34, 2009.
  28.  M. Pogorielov, E. Husak, A. Solodivnik, and S. Zhdanov, “Magnesium-based biodegradable alloys: Degradation, application, and alloying elements,” Interventional Medicine and Applied Science, vol. 9, no. 1. pp. 27–38, 2017.
  29.  N. Hort et al., “Magnesium alloys as implant materials – Principles of property design for Mg–RE alloys,” Acta Biomater., vol. 6, no. 5, pp. 1714–1725, May 2010.
  30.  Y. Kawamura and M. Yamasaki, “Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure,” Mater. Trans., vol. 48, no. 11, pp. 2986–2992, 2007.
  31.  C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018. p. 9216314, 2018.
  32.  S. Seetharaman, S. Tekumalla, B. Lalwani, H. Patel, N.Q. Bau, and M. Gupta, “Microstructure and Mechanical Properties New Magnesium- Zinc-Gadolinium Alloys,” in Magnesium Technology 2016, Cham: Springer International Publishing, 2016, pp. 159–163.
  33.  S. Seetharaman et al., “Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg-Al alloys,” J. Alloys Compd., vol. 648, pp. 759–770, Jul. 2015.
  34.  R. Ahmad, N.A. Wahab, S. Hasan, Z. Harun, M.M. Rahman, and N.R. Shahizan, “Effect of erbium addition on the microstructure and mechanical properties of aluminium alloy,” in Key Engineering Materials, 2019, vol. 796, pp. 62–66.
  35.  C.L. Chen and Y.M. Dong, “Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys,” Mater. Sci. Eng. A, vol. 528, no. 29–30, pp. 8374–8380, Nov. 2011.
  36.  K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, “The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy,” J. Mater. Eng. Perform., vol. 25, no. 10, pp. 4469–4477, Oct. 2016.
  37.  L.A. Dobrzański, B. Tomiczek, G. Matula, and K. Gołombek, “Role of Halloysite Nanoparticles and Milling Time on the Synthesis of AA 6061 Aluminium Matrix Composites,” Adv. Mater. Res., vol. 939, pp. 84–89, May 2014.
  38.  J. Dutkiewicz, S. Schlueter, and W. Maziarz, “Effect of mechanical alloying on structure and hardness of TiAl-V powders,” in Journal of Metastable and Nanocrystalline Materials, 2004, vol. 20–21, pp. 127–132.
Go to article

Authors and Affiliations

Bartłomiej Hrapkowicz
1
ORCID: ORCID
Sabina Lesz
1
ORCID: ORCID
Marek Kremzer
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Wojciech Pakieła
1
ORCID: ORCID

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Go to article

Bibliography

  1.  K. Talbot, P. Duley, and M. Hyatt, “Specific emitter identification and verification,” Technol. Rev. J., vol.  Spring/Summer, pp. 113‒133, 2003.
  2.  G. Baldini, G. Steri, and R. Giuliani, “Identification of wireless devices from their physical layer radio-frequency fingerprints,” in Encyclopedia of Information Science and Technology, 4th Ed., 2018, ch. 533, pp. 6136‒6146.
  3.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, no. 1, pp. 34–41, 2016, doi: 10.1109/cjece.2015.2496143.
  4.  Y. Pan, H. Peng, T. Li, and W. Wang, “High-fidelity symbol synchronization for specific emitter identification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 15‒17 March 2019, pp.  393‒398, doi: 10.1109/ITNEC.2019.8729181.
  5.  S. Ching-Sung and L. Chin-Teng, “A vector neural network for emitter identification,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1120–1127, 2002, doi: 10.1109/TAP.2002.801387.
  6.  R. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance,” in 2009 IEEE International Conference on Communications, 14‒18 June 2009, pp. 1‒5, doi: 10.1109/ICC.2009.5199451.
  7.  O. Ureten and N. Serinken, “Bayesian detection of Wi-Fi transmitter RF fingerprints,” Electron. Lett., vol. 41, no. 6, pp.  373–374, 2005, doi: 10.1049/el:20057769.
  8.  J. Hall, M. Barbeau, and E. Kranakis, “Radio frequency fingerprinting for intrusion detection in wireless networks,” IEEE Trans. Dependable Secure Comput., vol. 12, pp. 1–35, 2005.
  9.  S. Guo, S. Akhtar, and A. Mella, “A Method for Radar Model Identification using Time-domain Transient Signals,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1‒1, 2021, doi: 10.1109/TAES.2021.3074129.
  10.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert–Huang transform-based time–frequency–energy distribution features,” IET Commun., vol. 8, no. 13, 2404–2412, 2014.
  11.  U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 581–591, 2019, doi: 10.1109/ tifs.2018.2855665.
  12.  L. Li, H. B. Ji, and L. Jiang, “Quadratic time-frequency analysis and sequential recognition for specific emitter identification,” IET Signal Proc., vol. 5, pp. 568–574, 2011, doi: 10.1049/iet-spr.2010.0070.
  13.  J. Zhang, F. Wang, Z. Zhong, and O. Dobre, “Novel Hilbert Spectrum-Based Specific Emitter Identification for Single-Hop and Relaying Scenarios,” in 2015 IEEE Global Communications Conference (GLOBECOM), 6–10 Dec. 2015 2015, pp. 1–6, doi: 10.1109/ GLOCOM.2015.7417299.
  14.  Z. Tang and S. Li, “Steady Signal-Based Fractal Method of Specific Communications Emitter Sources Identification,” in Wireless Communications, Networking and Applications, Q.-A. Zeng, Ed., Springer India, New Delhi, 2016, pp. 809–819, doi: 10.1007/978-81- 322-2580-5_73.
  15.  F. Zhuo, Y. Huang, and J. Chen, “Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance,” Procedia Comput. Sci., vol. 107, pp. 472–477, 2017, doi: 10.1016/j.procs.2017.03.092.
  16.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, pp. 34–41, 2016, doi: 10.1109/CJECE.2015.2496143.
  17.  M. Liu and J.F. Doherty, “Specific emitter identification using nonlinear device estimation,” in 2008 IEEE Sarnoff Symposium, 28‒30 April 2008, pp. 1–5, doi: 10.1109/SARNOF.2008.4520119.
  18.  M. Liu and J.F. Doherty, “Nonlinearity estimation for specific emitter identification in multipath channels,” IEEE Trans. Inf. Forensics Secur., vol. 6, no. 3, pp. 1076–1085, 2011, doi: 10.1109/TIFS.2011.2134848.
  19.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 2, pp. 391–396, 2015, doi: 10.1515/bpasts-2015-0044.
  20.  Y. Zhao, L. Wu, J. Zhang, and Y. Li, “Specific emitter identification using geometric features of frequency drift curve,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 99–108, 2018, doi: 10.24425/119063.
  21.  Ł. Rybak and J. Dudczyk, “A geometrical divide of data particle in gravitational classification of moons and circles data sets,” Entropy, vol. 22, p. 16, 2020, doi: 10.3390/e22101088.
  22.  J. Han, T. Zhang, D. Ren, and X. Zheng, “Mechanism analysis and feature extraction algorithm of communication emitter fingerprint,” AEU Int. J. Electron. Commun., vol. 106, 2019, doi: 10.1016/j.aeue.2019.04.020.
  23.  M.K.M. Fadul, D.R. Reising, and M. Sartipi, “Identification of OFDM-based radios under rayleigh fading using RF-DNA and deep learning,” IEEE Access, vol. 9, pp. 17100–17113, 2021, doi: 10.1109/ACCESS.2021.3053491.
  24.  J. Dudczyk, “A method of feature selection in the aspect of specific identification of radar signals,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, pp. 113–119, 2017, doi: 10.1515/bpasts-2017-0014.
  25.  K. Sa, D. Lang, C. Wang, and Y. Bai, “Specific emitter identification techniques for the internet of things,” IEEE Access, vol. 8, pp. 1644– 1652, 2020, doi: 10.1109/ACCESS.2019.2962626.
  26.  Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter identification based on deep residual networks,” IEEE Access, vol. 7, pp. 54425–54434, 2019, doi: 10.1109/ACCESS.2019.2913759.
  27.  L.J. Wong, W.C. Headley, S. Andrews, R.M. Gerdes, and A.J. Michaels, “Clustering learned CNN features from raw I/Q data for emitter identification,” in MILCOM 2018 – 2018 IEEE Military Communications Conference (MILCOM), 29–31 Oct. 2018, pp. 26–33, doi: 10.1109/MILCOM.2018.8599847.
  28.  M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for automatic cognitive radio waveform recognition,” IEEE Access, vol. 5, pp. 11074–11082, 2017, doi: 10.1109/ACCESS.2017.2716191.
  29.  N.E. West and T.O. Shea, “Deep architectures for modulation recognition,” in 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 6‒9 March 2017, pp.  1‒6, doi: 10.1109/DySPAN.2017.7920754.
  30.  Q. Wu et al., “Deep learning based RF fingerprinting for device identification and wireless security,” Electron. Lett., vol. 54, pp. 1405–1407, 2018, doi: 10.1049/el.2018.6404.
  31.  L. Ding, W. Shilian, F. Wang, and W. Zhang, “Specific emitter identification via convolutional neural networks,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2591–2594, 2018, doi: 10.1109/LCOMM.2018.2871465.
  32.  G. Baldini, C. Gentile, R. Giuliani, and G. Steri, “A comparison of techniques for radiometric identification based on deep convolutional neural networks,” Electron. Lett., vol. 55, pp. 90–92, 2018, doi: 10.1049/el.2018.6229.
  33.  K. Huang, J. Yang, H. Liu, and P. Hu, “Deep adversarial neural network for specific emitter identification under varying frequency,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136716, 2021, doi: 10.24425/bpasts.2021.136737.
  34.  B. Wu, S. Yuan, P. Li, Z. Jing, S. Huang, and Y. Zhao, “Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism,” Sensors, vol. 20, p.  6350, 2020, doi: 10.3390/s20216350.
  35.  T.J. Shea and N. West, “Radio Machine Learning Dataset Generation with GNU Radio,” Proceedings of the GNU Radio Conference, vol 1, no.1, 2016. [Online]. Available: https://pubs.gnuradio.org/index.php/grcon/article/view/11.
  36.  T.J. O’Shea, T. Roy, and T.C. Clancy, “Over-the-Air deep learning based radio signal classification,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 168‒179, 2018, doi: 10.1109/JSTSP.2018.2797022.
  37.  A. Hirose and S. Yoshida, “Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence,” IEEE Trans. Neural Networks, vol. 23, pp.  541–551, 2012, doi: 10.1109/TNNLS.2012.2183613.
  38.  C. Trabelsi et al., “Deep complex networks,” presented at the ICLR 2018, 2018.
  39.  Y. Ying and J. Li, “Radio frequency fingerprint identification based on deep complex residual network,” IEEE Access, vol. 8, pp. 204417– 204424, 2020, doi: 10.1109/ACCESS.2020.3037206.
  40.  S. Woo, J. Park, J.-Y. Lee, and I.S. Kweon, “CBAM: Convolutional Block Attention Module,” in Computer Vision – ECCV 2018, Cham, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., Springer International Publishing, 2018, pp. 3–19.
Go to article

Authors and Affiliations

Lingzhi Qu
1
Junan Yang
1
Keju Huang
1
Hui Liu
1

  1. College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

The application of micro components in various fields such as biomedical, medical, automobile, electronics, automobile and aviation significantly improved. To manufacture the micro components, different techniques exist in the non-traditional machining process. In those techniques, electrochemical micromachining (ECMM) exhibits a unique machining nature, such as no tool wear, non-contact machining process, residual stress, and heat-affected zone. Hence, in this study, micro holes were fabricated on the copper work material. The sodium nitrate (NaNO₃) electrolyte is considered for the experiments. During the experiments, magnetic fields strength along with UV rays are applied to the electrolyte. The L₁₈ orthogonal array (OA) experimental design is planned with electrolyte concentration (EC), machining voltage (MV), duty cycle (DC) and electrolyte temperature (ET). The optimization techniques such as similarity to ideal solution (TOPSIS), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and grey relational analysis (GRA) were employed to find the optimal parameter combinations. The entropy weight method is used to assess the weight of responses such as MR and OC. The optimal combination using TOPSIS, VIKOR and GRA methods shows the same results for the experimental runs 8, 9 and 7, and the best optimal parameter combination is 28 g/l EC, 11 V MV, 85 % DC and 37°C ET. Based on the analysis of variance (ANOVA) results, electrolyte concentration plays a significant role by contributing 86 % to machining performance. The second and least contributions are DC (3.86 %) and ET (1.74 %) respectively on the performance. Furthermore, scanning electron microscope (SEM) images analyses are carried out to understand the effect of magnetic field and heated electrolyte on the work material.
Go to article

Bibliography

  1. X. Wu, L. Li, N. He, M. Zhao, and Z. Zhan, “Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper,” Int. J. Adv. Manuf. Technol., vol. 79, pp. 321–327, 2015, doi: 10.1007/s00170-015-6828-5.
  2.  R. Thanigaivelan, R.M. Arunachalam, and P. Drukpa, “Drilling of micro-holes on copper using electrochemical micromachining,” Int. J. Adv. Manuf. Technol. vol. 61, pp.1185–1190, 2012, doi: 10.1007/s00170-012-4093-4.
  3.  S.S. Anasane and B. Bhattacharyya, “Electrochemical Micromachining of Titanium and Its Alloys,” in Non-traditional Micromachining Processes. Materials Forming, Machining and Tribology, G. Kibria, B. Bhattacharyya, J. Davim, Eds., Springer, Cham, 2017, pp. 337–365, doi: 10.1007/978-3-319-52009-4_9.
  4.  S. Min, D.-E. Lee, A. de Grave, C.M. De Oliveira Valente, J. Lin, and D.A. Dornfeld, “Surface and edge quality variation in precision machining of single crystal and polycrystalline materials,” Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., vol. 220, no. 4, pp. 479–487, 2006, doi: 10.1243/095440506X77599.
  5.  M. Soundarrajan and R. Thanigaivelan, “Effect of coated geometrically modified tools on performance of electrochemical micromachining,” Mater. Manuf. Processes, vol. 35, no. 7, pp. 775–782, 2020, doi: 10.1080/10426914.2020.1740252.
  6.  T. Zhang, Z. Liu, and C. Xu, “Influence of size effect on burr formation in micro cutting,” Int. J. Adv. Manuf. Technol. vol. 68, pp.1911– 1917, 2013, doi: 10.1007/s00170-013-4801-8.
  7.  S. Ao, K. Li, W. Liu, X. Qin, T. Wang, Y. Dai, and Z. Luo, “Electrochemical micromachining of NiTi shape memory alloy with ethylene glycol–NaCl electrolyte containing ethanol,” J. Manuf. Process, vol. 53, pp. 223–228, 2020, doi: 10.1016/j.jmapro.2020.02.019.
  8.  M. Soundarrajan, R. Thanigaivelan, and S. Maniraj, “Investigation on Electrochemical Micromachining (EMM) of AA-MMC Using Acidified Sodium Nitrate Electrolyte,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 367–376, doi: 10.1007/978-981-15-4739-3_30.
  9.  K. Pooranachandran, J. Deepak, P. Hariharan, and B. Mouliprasanth, “Effect of Flushing on Electrochemical Micromachining of Copper and Inconel 718 Alloy,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 61–69, doi: 10.1007/978- 981-13-1724-8_6.
  10.  Y. Pan, Z. Hou, and N. Qu, “Improvement in accuracy of micro-dimple arrays prepared by micro-electrochemical machining with high- pressure hydrostatic electrolyte,” Int. J. Adv. Manuf. Technol., vol.100, no. 5, pp.1767–1777, 2019, doi: 10.1007/s00170-018-2822-z.
  11.  M. Baoji, P. Cheng, K. Yun, and P. Yin, “Effect of magnetic field on the electrochemical machining localization,” Int. J. Adv. Manuf. Technol., vol. 102, no. 1–4, pp. 949–956, 2019, doi: 10.1007/s00170-018-3185-1.
  12.  J. VinodKumaar, R. Thanigaivelan, and V. Dharmalingam, “A Study on the Effect of Oxalic Acid Electrolyte on Stainless Steel (316L) Through Electrochemical Micro-machining,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 93–103 2019, doi: 10.1007/978-981-32-9425-7_8.
  13.  N. Rajan, R. Thanigaivelan, and K.G. Muthurajan, “Machinability studies on an A17075 composite with varying amounts of B4C using an induction-heated electrolyte in electrochemical machining,”Mater. Tehnol., vol. 53, no. 6, pp. 873–880, 2019.
  14.  R. Thanigaivelan, R.M. Arunachalam, M. Kumar, and B.P. Dheeraj, “Performance of electrochemical micromachining of copper through infrared heated electrolyte,” Mater. Manuf. Processes, vol. 33, no. 4, pp. 383–389, 2018, doi: 10.1080/10426914.2017.1279304.
  15.  K. Jiang et al., “Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte,” Int. J. Adv. Manuf. Technol., vol. 97, no. 9–12, pp. 3565–3574, 2018, doi: 10.1007/s00170-018-2190-8.
  16.  W. Liu et al., “Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte,” J. Mater. Process. Technol., vol. 255, pp. 784–794, 2018, doi: 10.1016/j.jmatprotec.2018.01.009.
  17.  A. Malik and A. Manna, “Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance,” Int. J. Adv. Manuf. Technol., vol. 96, no. 9–12, pp. 3917–3932, 2018, doi: 10.1007/s00170-018-1846-8.
  18.  H. Zhang, S. Ao, W. Liu, Z. Luo, W. Niu, and K. Guo, “Electrochemical micro-machining of high aspect ratio micro-tools using quasi-solid electrolyte,” Int. J. Adv. Manuf. Technol., vol. 91, no. 9‒12, pp. 2965–2973, 2017, doi: 10.1007/s00170-016-9900-x.
  19.  A. Speidel, J. Mitchell-Smith, D.A. Walsh, M. Hirsch, and A. Clare, “Electrolyte jet machining of titanium alloys using novel electrolyte solutions,” Procedia CIRP, vol. 42, pp. 367‒372, 2016, doi: 10.1016/j.procir.2016.02.200.
  20.  T. Sekar, M. Arularasu, and V. Sathiyamoorthy, “Investigations on the effects ofnano-fluid in ECM of die steel,” Measurement, vol. 83, pp. 38‒43. 2016, doi: 10.1016/j.measurement.2016.01.035.
  21.  A. Mohanty, G. Talla, S. Dewangan, and S. Gangopadhyay, “Microstructural investigation and multi response optimization using Fuzzy-TOPSIS during the electrochemical machining of Inconel 825,” Int. J. Precis. Technol., vol. 5, pp. 201–216, 2015, doi: 10.1504/ IJPTECH.2015.073825.
  22.  D. Singh and R.S. Shukla, “Optimization of electrochemical micromachining and electrochemical discharge machining process parameters using firefly algorithm,” Int. J. Mechatron. Manuf. Syst., vol. 9, pp.137–59, 2016, doi: 10.1504/IJMMS.2016.076169.
  23.  A. Mehrvar, A. Basti, and A. Jamali, “Optimization of electrochemical machining process parameters: Combining response surface methodology and differential evolution algorithm,” Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng., vol. 231, pp.1114–1126, 2017, doi: 10.1177/0954408916656387.
  24.  O.V. Mythreyi, P. Hariharan, and S. Gowri, “Multi-objective optimization of electrochemical micro drilling of titanium alloy,” Int. J. Precis. Technol., vol. 7, pp.188‒204, 2017, doi: 10.1504/IJPTECH.2017.090775.
  25.  M. Soundarrajan and R. Thanigaivelan, “Investigation of Electrochemical Micromachining Process Using Ultrasonic Heated Electrolyte,” in Advances in Micro and Nano Manufacturing and Surface Engineering, M. Shunmugam, M. Kanthababu, Eds., Springer, 2019, pp. 423–434, doi: 10.1007/978-981-32-9425-7_38.
  26.  M. Soundarrajan and R. Thanigaivelan, “Investigation on electrochemical micromachining (ECMM) of copper inorganic material using UV heated electrolyte,” Russ. J. Appl. Chem., vol. 91, no. 11, pp. 1805–1813, 2018, doi: 10.1134/S1070427218110101.
  27.  K. Motoyama, T. Umemoto, H. Shang, and T. Hasegawa “Effects of magnetic field and far-ultraviolet radiation on the structures of bright-rimmed clouds,” Astrophys. J., vol. 766, no 1, p. 50. 2013, doi: 10.1088/0004-637X/766/1/50.
  28.  T. Mythili and R. Thanigaivelan, “Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 403–1412, 2020, doi: 10.24425/bpasts.2020.135382.
  29.  J.R. Vinod Kumaar and R. Thanigaivelan, “Performance of magnetic field-assisted citric acid electrolyte on electrochemical micro- machining of SS 316L,” Mater. Manuf. Processes, vol. 35, no. 9, pp. 969–977, 2020, doi: 10.1080/10426914.2020.1750630.
Go to article

Authors and Affiliations

K.G. Saravanan
R. Thanigaivelan
M. Soundarrajan
Download PDF Download RIS Download Bibtex

Abstract

All universities are responsible for assessing the quality of education. One of the required factors is the results of the students’ research. The procedure involves, most often, the preparation of the questionnaire by the staff, which is voluntarily answered by students; then, the university staff uses the statistical methods to analyze data and prepare reports. The proposed EQE method by the application of the fuzzy relations and the optimistic fuzzy aggregation norm may show a closer connection between the students’ answers and the achieved results. Moreover, the objects obtained by the application of the EQE method can be visualized by using the t-SNE technique, cosine between vectors and distances of points in five-dimensional space.
Go to article

Bibliography

  1.  A. Mrówczyńska, A. Król, and P. Czech, “Artificial immune system in planning deliveries in a short time,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 969–980, 2019, doi: 10.24425/bpas.2019.126630.
  2.  G. Kovacs, “Layout design for efficiency improvement and cost reduction,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 547–555, 2019, doi: 10.24425/bpasts.2019.129653.
  3.  A. Zaborowski, “Data processing in self-controlling enterprise processes, “ Bull. Pol. Acad Sci. Tech. Sci, vol. 67, no. 1, pp. 3–20, 2019, doi: 10.24425/bpas.2019.127333.
  4.  M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, and F. Herrera, “An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field,” J. Infom., 5, pp. 146–166, 2011, doi: 10.1016/j.joi.2010.10.002.
  5.  V. Osińska, O. Sokolov, and A. Mreła, “Nonlinear Estimation of Similarity Between Scientists’ Disciplinary Profiles. Case Study,” ZIN Studia Informacyjne, 57(2A), pp. 12–27, 2019, doi: 10.36702/zin.467.
  6.  Law on higher education (Dz.U. 2005 nr 164 poz. 1365). [On line]. Available: http://isap.sejm.gov.pl/isap.nsf/DocDetails. xsp?id=WDU20051641365. (Accessed: 30 Jun. 2019) [in Polish].
  7.  R. Biswas, “An application of fuzzy sets in students’ evaluation,” Fuzzy Sets Syst., vol. 74, no. 2, pp. 187–194, 1995, doi: 10.1016/0165- 0114(95)00063-Q.
  8.  S.M. Chen and C.H. Lee, “New methods for students’ evaluating using fuzzy sets,” Fuzzy Sets Syst., vol. 104, no. 2, pp. 209–2018, 1999.
  9.  J. Ma and D. Zhou, “Fuzzy set approach to the assessment of students-centered learning,” IEEE Trans. Educ., vol. 43, no. 2, pp. 237–241, 2000, doi: 10.1109/13.848079.
  10.  D. Molodsov, “Soft Set Theory – First Results,” Comput. Math. Appl., vol. 37, pp. 19–31, 1999, doi: 10.1016/S0898-1221(99)00056-5.
  11.  B. Ahmad and A. Kharal, “On Fuzzy Soft Sets,” Adv. Fuzzy Syst., vol. 2009, no. 4–9, pp. 1–6, 2019, doi: 10.1155/2009/586507.
  12.  P. Majumdar and S.K. Samanta, “A Generalized Fuzzy Soft Set Based Student Ranking System,” Int. J. Adv. Soft Comput. Appl., vol. 3, no. 3, pp. 42‒51, Nov. 2011. [Online]. Available: http://home.ijasca.com/data/documents/A-Generalised-Fuzzy-Soft-Set.pdf (Accessed: 20 Aug. 2019).
  13.  S. Weon and J. Kim, “Learning achievement evaluation strategy using fuzzy membership function,” in Proc. 31st ASEE/IEEE Frontiers in Education Conference, Reno, NV, USA, 2001, pp. T3A-19, doi: 10.1109/FIE.2001.963904. [Online]. Available: http://archive.fie- conference.org/fie2001/papers/1215.pdf (Accessed: 21 Aug. 2019).
  14.  S.M. Bai and S.M. Chen, “Evaluating students’ learning achievement using fuzzy membership functions and fuzzy rules,” Expert Syst. Appl., vol. 34, no. 1, pp. 399–410, 2008, doi: 10.1016/j.eswa.2006.09.010.
  15.  F. Dayan, M. Zulqarnain, and N. Hassan, “A Ranking Method for Students of Different Socio Economic Backgrounds Based on Generalized Fuzzy Soft Sets,” Int. J. Sci. Res. (IJSR), vol. 6, no 9, pp. 691‒694, Sep. 2017, [Online] Available: https://www.ijsr.net/search_index_ results_paperid.php?id=ART20176512. (Accessed: 20 Aug. 2019).
  16.  A. Mreła, O. Sokolov, and W. Urbaniak, “The method of learning outcomes assessment based on fuzzy relations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 527‒533, 2019, doi: 10.24425/bpasts.2019.129651.
  17.  Report on the quality of education in Adam Mickiewicz University in Poznań. [Online]. Available: http://brjk.amu.edu.pl/badanie-jakosci- ksztalcenia/badanie-jakosci-ksztalcenia-na-uam (Accessed: 30 Jun. 2019) [in Polish].
  18.  Report on the quality of education at Warsaw University of Technology, Faculty of Materials Science and Engineering. [Online]. Available: https://www.wim.pw.edu.pl/content/download/1668/14211/file/ankietyzacja.pdf (Accessed: 30 Jun. 2019) [in Polish].
  19.  Report on the quality of education at Kazimierz Wielki University in Bydgoszcz, [Online]. Available: https://www.ukw.edu.pl/download/34273/raport_oceny_ankietyzacja_2017_2018_ukw_bydgoszcz.pdf (Accessed: 30 Jun. 2019) [in Polish].
  20. [20]  L.A. Zadeh, “Fuzzy sets,” Inf.Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.
  21.  L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning –1,” Inf. Sci., vol. 8, pp. 199–249, 1975, doi: 10.1016/0020-0255(75)90036-5.
  22.  L. Rutkowski, Methods and techniques of artificial intelligence, PWN, Warsaw, pp. 1–452, 2012, [in Polish].
  23.  O. Sokolov, W. Osińska, A. Mreła, and W. Duch, “Modeling of Scientific Publications Disciplinary Collocation Based on Optimistic Fuzzy Aggregation Norms,” in Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018., eds. J. Światek, L. Borzemski and Z. Wilmowska, Advances in Intelligent Systems and Computing. Information Systems Architecture and Technology Part II, vol. 853, pp. 145–156, 2019, doi: 10.1007/978-3-319-99996-8.
  24.  L.J.P. Van der Maaten and G.E. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008, [Online]. Available: https://research.tilburguniversity.edu/en/publications/visualizing-high-dimensional-data-using-t-sne (Accessed: 21 Jun. 2019).
  25.  C.L. Hwang and K. Yoon, “Methods for multiple attribute decision making”, in Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-48318-9_3.
Go to article

Authors and Affiliations

Grzegorz Śmigielski
1
ORCID: ORCID
Aleksandra Mreła
1
ORCID: ORCID
Oleksandr Sokolov
2
ORCID: ORCID
Mykoła Nedashkovskyy
1
ORCID: ORCID

  1. Kazimierz Wielki University in Bydgoszcz, Institute of Informatics, ul. Kopernika 1, 85-074 Bydgoszcz, Poland
  2. Nicolaus Copernicus University in Toruń, Faculty of Physics, Astronomy and Informatics, ul. Grudziądzka 5, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper contains a description of the geometry of Beveloid gears. It describes the distribution of forces in a Beveloid gear with a straight tooth line and a helical tooth line. The paper presents research on the experimentally determined parameters of transmission operation, including the sound pressure level and the amount of heat emitted during operation. The design and construction of the test stand were presented. The research methodology was described. Operational tests are carried out on household appliances with Beveloid gears: Grinder and Jam mixer. Thanks to an appropriately selected narrowing angle, estimated values of service life extension of the above-mentioned transmissions are given.
Go to article

Bibliography

  1. S. Beermann, “Estimation of lifetime for plastic gears,” Fall Technical Meeting of the American Gear Manufacturers Association, Detroit, Michigan, Oct. 2007, pp. 1‒17.
  2.  R. Keresztes, L. Zsidai, G. Kalácska, and P. De Baets, “Friction of polymer/steel gear pairs,” Scientific Bulletin of North University of Baia Mare, serie C, vol. XXIII, pp. 63–72, Jan. 2009.
  3.  P. Strojny, “Wpływ kąta zwężenia kół zębatych typu Beveloid na płynność przeniesienia napędu w przekładniach zębatych z tworzyw polimerowych,” Przegląd Mechaniczny, no. 6, Jun. 2016, [in Polish].
  4.  N. Agbetossou, A. Afio, K. Attipou, D. Koffi, K. Kassegne, and S. Tiem, “Modeling and Prediction of Wear for Gears in Plastic Materials and Their Composites,” Int. J. Eng. Res. Technol., vol.  9, no. 7, pp. 90–106, Jul. 2020.
  5.  A.J Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  6.  N.B. Thamba et al., “Study of Effect of Linear Tip Relief Modification in Power Transmission Efficiency of Spur Gears,” Arch. Acoust., vol. 45, no. 2, pp. 271–282, 2020.
  7.  G. Yu, H. Liu, K. Mao, C. Zhy and Z. Lu, “Examination on the wear process of polyformaldehyde gears under dry and lubricated conditions,” Friction, vol. 9, pp. 538–550, Jan. 2020.
  8.  Flir, [Online]. Available: www.flir.com (accessed Feb. 12, 2021).
  9.  A. Gebhardt, Rapid Prototyping, Carl Hanser Verlag GmbH & Co. KG, Munich, 2003.
  10.  W.F. Liu, Rapid Prototyping and engineering applications – a toolbox for prototype development, Taylor & Francis Group, Boca Raton, USA, 2008.
  11.  R.E. Śliwa, G. Budzik, J. Bernaczek, and T. Dziubek, “The rapid Prototyping of aircraft wheel hub model with the use of techniques JS, SLA, FDM,” J. KONES Powertrain Transp., vol. 18,pp.  439–443, Mar. 2011.
  12.  T. Singh, S. Kumar, and S. Sehgal, “3D printing of engineering materials: A state of the art review,” Mater. Today Proc., vol. 28, no. 3, pp. 1927‒1931, 2020.
  13.  N.B. Thamba et al., “Fault Analysis of Worm Gear Box Using Symlets Wavelet,” Arch. Acoust., vol 45, no. 3, pp. 521–540, 2020.
  14.  A. Hamrol, J. Gawlik, and J. Sładek, “Mechanical engineering in Industry 4.0,” Manag. Prod. Eng. Rev., vol. 10, pp.  14–28, Sep. 2019.
  15.  Dupont. [Online]. Available: www.dupont.com (accessed Feb. 10, 2021).
  16.  J.F. Rabek, “Współczesna wiedza o polimerach,” Tom 1. Budowa strukturalna polimerów i metody badawcze, PWN, Warszawa, 2017 [in Polish].
  17.  M. Sobolak and P. Strojny, “Effect of the narrowing angle in beveliod gear on the temperature profile on the active flank of tooth,” Adv. Sci. Technol. Res. J., vol. 7, pp. 67–69, Dec. 2013.
  18.  M. Płocica and A. Marciniec, Methodology of Preparing Hypoid Gears for Vibroacoustic Diagnostics in Laboratory Conditions, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2018.
Go to article

Authors and Affiliations

Piotr Strojny
1

  1. The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Developing novel methods, approaches and computational techniques is essential for solving efficiently more and more demanding up-to-date engineering problems. Designing durable, light and eco-friendly structures starts at the conceptual stage, where new efficient design and optimization tools need to be implemented. Nowadays, apart from the traditional gradient-based methods applied to optimal structural and material design, innovative techniques based on versatile heuristic concepts, like for example Cellular Automata, are implemented. Cellular Automata are built to represent mechanical systems where the special local update rules are implemented to mimic the performance of complex systems. This paper presents a novel concept of flexible Cellular Automata rules and their implementation into topology optimization process. Despite a few decades of development, topology optimization still remains one of the most important research fields within the area of structural and material design. One can notice novel ideas and formulations as well as new fields of their implementation. What stimulates that progress is that the researcher community continuously works on innovative and efficient topology optimization methods and algorithms. The proposed algorithm combined with an efficient analysis system ANSYS offers a fast convergence of the topology generation process and allows obtaining well-defined final topologies.
Go to article

Bibliography

  1.  M.P. Bendsoe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, pp. 193–202, 1989.
  2.  O. Sigmund, “A 99 line topology optimization code written in MATLAB,” Struct. Multidiscip. Optim., vol. 21, pp. 120–127, 2001.
  3.  E. Andreassen, A. Clausen, M. Schvenels, B.S. Lazarov, and O. Sigmund, “Efficient topology optimization in Matlab using 88 lines of code,” Struct. Multidiscip. Optim., vol. 4, pp.  1–16, 2011.
  4.  K. Liu and A. Tovar, “An efficient 3D topology optimization code written in Matlab,” Struct. Multidiscip. Optim., vol.  50, pp. 1175–1196, 2014.
  5.  X.M. Xieand and G.P. Steven, Evolutionary Structural Optimization, Berlin: Springer, 1997.
  6.  Q.M. Querin, G.P. Steven, and Y.M. Xie, “Evolutionary structural optimization using a bi-directional algorithm,” Eng. Comput., vol. 15, pp. 1034–1048, 1998.
  7.  K. Nabaki, J. Shen, and X. Xuang, “Evolutionary topology optimization of continuum structures considering fatigue failure,” Mater. Des., vol. 166, pp.13, 2019.
  8.  C. Kane, F. Jouveand, and M. Schoenauer, “Structural topology optimization in linear and nonlinear elasticity using genetic algorithms” in Proc. 21st ASME Design Automatic Conference, 1995, pp.1‒8.
  9.  R. Balamurugan, C. Ramakrishnan, and N. Singh, “Performance evaluation of a two stage adaptive genetic algorithm in structural topology optimization,” Appl. Soft Comput., vol. 8, pp.  1607–1624, 2008.
  10.  H.S. Gebremedhen, D.E. Woldemichael, and F.M. Hashimi, “A firefly algorithm based hybrid method for structural topology optimization,” Adv. Model. Simul. Eng. Sci., vol. 7, no. 44, p. 20, 2020.
  11.  A.A. Jaafer, M. Al-Bazoon, and A.O. Dawood, “Structural topology design optimization using the binary bat algorithm,” Appl. Sci., vol. 10, no. 4, p. 1481, 2020.
  12.  D. Gaweł, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741–750, 2017.
  13.  S.Y. Chang and S.K.Youn, “Material cloud method for topology optimization,” Numer. Methods Eng., vol. 65, pp.  1585–1607, 2006.
  14.  H.A. Eschenauer, V.V. Kobelevand, and A. Schumacher, “Bubble method for topology and shape optimization of structures,” Struct. Optim., vol. 8, pp. 42–51, 1993.
  15.  M.Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, pp. 227–246, 2003.
  16.  P. Wei, Z. Li, X. Li, and M.Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidiscip. Optim., vol. 58, pp. 831–849, 2018.
  17.  E. Biyikliand and A.C. To, “Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in Matlab,” PLoSONE, vol. 10, pp. 1–23, 2015.
  18.  Y. Xian and D.W. Rosen, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidiscip. Optim., vol. 62, pp. 19–39, 2020.
  19.  B. Xing and W.J. Gao, Innovative computational intelligence: a rough guide to 134 clever algorithms, Switzerland: Springer, 2014.
  20.  T. Tarczewski, L.J. Niewiara, and L.M. Grzesiak, “Artificial bee colony based state feedback position controller for PMSM servo-drive–the efficiency analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 997–1007, 2020.
  21.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 679–685, 2019.
  22.  A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C 0 separators for efficient isogeometric analysis simulations with direct solvers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907–917, 2018.
  23.  J. Von Neumann, Theory of self-reproducing automata, Urbana IL: University of Illinois Press, 1966.
  24.  S. Ulam, “Random processes and transformations,” in Proc. International Congress of Mathematics, 1952, vol. 2, pp. 85–87.
  25.  B. Chopard and M. Droz, “Cellular automata model for the diffusion equation,” J. Stat. Phys., vol. 64, pp. 859–892, 1991.
  26.  J.P. Crutchfield and J.E. Hanson, “Turbulent pattern bases for cellular automata,” Physica D, vol. 69, pp. 279–301, 1993.
  27.  Y. Zhao, S.A. Billings, and D. Coca, “Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighborhoods,” Int. J. Model. Identif. Control, vol.  2, no. 6, pp. 119–25, 2009.
  28.  P. Rosin, A. Adamatzky, and X. Sun (eds.), Cellular Automata in Image Processing and Geometry, Switzerland: Springer International Publishing, 2014.
  29.  N. Inou, N. Shimotai, and T. Uesugi, “A cellular automaton generating topological structures,” in Proc. 2nd European Conference on Smart Structures and Materials, 1994, vol. 2361, pp. 47–50.
  30.  N. Inou, T. Uesugi, A. Iwasaki, and S. Ujihashi, “Self-organization of mechanical structure by cellular automata,” Key Eng. Mater., vol. 145‒149, pp. 1115–1120, 1998.
  31.  E. Kita and T. Toyoda, “Structural design using cellular automata,” Struct. Multidiscip. Optim., vol. 19, pp. 64–73, 2000.
  32.  P. Hajela and B. Kim, “On the use of energy minimization for CA based analysis in elasticity,” Struct. Multidiscip. Optim., vol. 23, pp. 24–33, 2001.
  33.  B. Tatting and Z. Gurdal, “Cellular automata for design of two-dimensional continuum structures,” in Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000, p. 10.
  34.  S. Missoum, Z. Gurdal, and S. Setoodeh, “Study of a new local update scheme for cellular automata in structural design,” Struct. Multidiscip.  Optim., vol. 29, pp. 103–112, 2005.
  35.  M.M. Abdalla and Z. Gurdal, “Structural design using cellular automata for eigenvalue problems,” Struct. Multidiscip.  Optim., vol. 19, pp. 64–73, 2004.
  36.  B. Hassani and M. Tavakkoli, “A multi-objective structural optimization using optimality criteria and cellular automata,” Asian J Civ. Eng. Build. Hous., vol. 8, pp. 77–88, 2007.
  37.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” in Proc. 8th World Congress on Struct. Multidiscip. Optim., 2009, p. 10.
  38.  J. Jia et al., “Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata,” Struct. Multidiscip. Optim.,vol. 62, pp. 757–770, 2020.
  39.  M. Afrousheh, J. Marzbanrad, and D. Gohlich, “Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm,” Struct. Multidiscip.  Optim., vol. 60, pp. 1021‒1034, 2019.
  40.  A. Tovar, N.M. Patel, and A.K. Kaushik, “Hybrid cellular automata: a biologically-inspired structural optimization technique,” in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p.15.
  41.  A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, and J.E. Renaud, “Topology optimization using a hybrid cellular automaton method with local control rules,” J. Mech. Des., vol. 128, pp. 1205–1216, 2006.
  42.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” Int. J. Pure Appl. Math., vol. 66, pp. 245–262, 2011.
  43.  B. Bochenek and K. Tajs-Zielinska, “Novel local rules of Cellular Automata applied to topology and size optimization,” Eng. Optim., vol. 44, pp. 23–35, 2012.
  44.  B. Bochenek and K. Tajs-Zielinska, “Topology optimization with efficient rules of cellular automata,” Eng. Comput., vol. 30, pp. 1086– 1106, 2013.
  45.  B. Bochenek and K. Tajs-Zielinska, “Minimal compliance topologies for maximal buckling load of columns,” Struct. Multidiscip.  Optim., vol. 51, pp. 1149–1157, 2015.
  46.  B. Bochenek and K. Tajs-Zielinska, “GOTICA – generation of optimal topologies by irregular cellular automata,” Struct. Multidiscip.  Optim., vol. 55, pp. 1989–2001, 2017.
  47.  M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197–224, 1988.
  48.  J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Mater. Des., vol. 190, pp.16, 2020.
  49.  P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,” Struct. Multidiscip. Optim., vol. 62, pp. 2117– 2130, 2020.
  50.  J. Wu and J. Wu, “Revised level set-based method for topology optimization and its applications in bridge construction,” Open Civ. Eng. J., vol. 11, pp. 153–166, 2017.
  51.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  52.  L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, “Connecting architecture and engineering through structural topology optimization,” Eng. Struct., vol. 59, pp. 716–726, 2014.
  53.  K. Tajs-Zielinska and B. Bochenek, “Topology optimization – engineering contribution to architectural design,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, pp.10, 2017.
  54.  F. Regazzoni, N. Parolini, and M. Verani, “Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers,” Comput. Methods Appl. Mech. Eng., vol. 338, pp. 562–596, 2018.
  55.  S. Das and A. Sutradhar, “Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems,” Mater. Des., vol. 193, pp.13, 2020.
  56.  M.P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York: Springer, 2003.
  57.  O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip. Optim., vol.48, pp. 1031–1055, 2013.
  58.  J.D. Deaton, and R.V. Grandhi, “A survey of structural and multidisciplinary continuum topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, pp. 1–38, 2014.
  59.  J. Liu et al., “Current and future trends in topology optimization for additive manufacturing,” Struct. Multidiscip.  Optim., vol. 57, pp. 2457– 2483, 2018.
  60.  M.A. Herfelt, P.N. Poulsen, and L.C. Hoang, “Strength-based topology optimization of plastic isotropic von Mises materials,” Struct. Multidiscip. Optim., vol.59, pp. 893–906, 2019.
  61.  B. Błachowski, P. Tauzowski, and J. Lógó, “Yield limited optimal topology design of elastoplastic structures,” Struct. Multidiscip.  Optim., vol.61, pp. 1953–1976, 2020.
  62.  L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Struct. Multidiscip. Optim., vol. 55, pp. 569–581, 2017
  63.  B. Bochenek and M. Mazur, “A novel heuristic algorithm for minimum compliance optimization,” Eng. Trans., vol. 64, pp.  541–546, 2016.
Go to article

Authors and Affiliations

Katarzyna Tajs-Zielińska
1
Bogdan Bochenek
1

  1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Bibliography

  1.  S. Luhar, T.W. Cheng, D. Nicolaides, I. Luhar, D. Panias, and K. Sakkas, “Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review,” Constr. Build. Mater., vol. 222, pp. 673–687, 2019.
  2.  K. Zulkifly et al., “Elevated-Temperature Performance, Combustibility and Fire Propagation Index of Fly Ash-Metakaolin Blend Ge- opolymers with Addition of Monoaluminium Phosphate (MAP) and Aluminum Dihydrogen Triphosphate (ATP),” Materials, vol.  14, p. 1973, 2020.
  3.  S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, and M. Hakimi, “Enhanced glass forming ability, mechanical, and magnetic properties of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass with minor addition of Cu,” J. Non-Cryst. Solids, vol. 497, pp. 40–47, 2018.
  4.  J. Zhou, W. Yang, C. Yuan, B. Sun, and B. Shen, “Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties,” J. Alloys Compd., vol. 742, pp. 318‒324, 2018.
  5.  M. Nabiałek et al., “Relationship between the shape of X-ray diffraction patterns and magnetic properties of bulk amorphous alloys Fe65Nb5Y5+xHf5–xB20 (where: 0, 1, 2, 3, 4, 5),” J. Alloys Compd., vol. 820, p. 153420, 2020.
  6.  S. Chen et al., “Elevated-temperature tensile deformation and fracture behavior of particle-reinforced PM 8009Al matrix composite,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138846, 2021, doi: 10.24425/bpasts.2021.138846.
  7.  S. Berdowska, J. Berdowski, and F. Aubry, “The relationship between the structural anisotropy of the PFA polymer/compressed expanded graphite-matrix composites and acoustic emission characteristics,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138235, 2021, doi: 10.24425/bpasts.2021.138235.
  8.  M. Mikuśkiewicz, “Silicon nitride/carbon nanotube composites: preparation and characterization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138234, 2021, doi: 10.24425/bpasts.2021.138234.
  9.  L. Sozańska-Jędrasik, W. Borek, and J. Mazurkiewicz, “Mechanisms of plastic deformation in light high-manganese steel of TRIPLEX type,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137412, 2021, doi: 10.24425/bpasts.2021.137412.
  10.  A. Zieliński, R. Wersta, and M. Sroka, “Analysis of the precipitation process of secondary phases after long-term ageing of S304H steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137520, 2021, doi: 10.24425/bpasts.2021.137520.
  11.  K. Pawlik, “Structure and properties of suction-cast Pr-(Fe, Co)-(Zr, Nb)-B rod magnets,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  69, no. 5, p. e138971, 2021, doi: 10.24425/bpasts.2021.138971.
  12.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with rare-earth element addition by means of mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
  13.  B. Hrapkowicz, S. Lesz, M. Kremzer, M. Karolus, and W. Pakieła, “Mechanical alloying of Mg-Zn-Ca-Er alloy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137587, 2021, doi: 10.24425/bpasts.2021.137587.
  14.  A.M. Țițu, A.B. Pop, M. Nabiałek, C.C. Dragomir, and A.V. Sandu, “Experimental modeling of the milling process of aluminum alloys used in the aerospace industry,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138565, 2021, doi: 10.24425/bpasts.2021.138565.
  15.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al- RE alloy substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137549, 2021, doi: 10.24425/bpasts.2021.137549.
  16.  R. Szklarek et al., “High temperature resistance of silicide-coated niobium,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137416, 2021, doi: 10.24425/bpasts.2021.137416.
  17.  T. Tański, W. Smok, and W. Matysiak, “Characterization of morphology and optical properties of SnO2 nanowires prepared by electrospinning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e 137507, 2021, doi: 10.24425/bpasts.2021.137507.
Go to article

Authors and Affiliations

Bogusław Major
1
ORCID: ORCID
Andrei Victor Sandu
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
Marcin Nabiałek
4
ORCID: ORCID
Tomasz Tański
5
ORCID: ORCID
Adam Zieliński
6
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science Polish Academy of Science, ul. Reymonta 25, 30-059 Kraków, Poland
  2. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, 71 D. Mangeron Blvd., 700050 Iasi, Romania
  3. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  4. Institute of Physics, Czestochowa University of Technology, ul. Dabrowskiego 69, 42-201 Czestochowa, Poland
  5. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
  6. Sieć Badawcza Łukasiewicz – Instytut Metalurgii Żelaza im. Stanisława Staszica, (Łukasiewicz Research Network – Institute for Ferrous Metallurgy), ul. K. Miarki 12-14, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more