Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper the paths of bubbles emitted from the brass nozzle with inner diameter equal to 1.6 mm have been analyzed. The mean frequency of bubble departure was in the range from 2 to 65.1 Hz. Bubble paths have been recorded using a high speed camera. The image analysis technique has been used to obtain the bubble paths for different mean frequencies of bubble departures. The multifractal analysis (WTMM - wavelet transform modulus maxima methodology) has been used to investigate the properties of bubble paths. It has been shown that bubble paths are the multifractals and the influence of previously departing bubbles on bubble trajectory is significant for bubble departure frequency fb > 30 Hz.

Go to article

Authors and Affiliations

Romuald Mosdorf
Tomasz Wyszkowski
Kamil Dąbrowski
Download PDF Download RIS Download Bibtex

Abstract

Combustion technology of the coal-water suspension creates a number of new possibilities to organize the combustion process fulfilling contemporary requirements, e.g. in the environment protection. Therefore the in-depth analysis is necessary to examine the technical application of coal as a fuel in the form of suspension. The research undertakes the complex investigations of the continuous coal-water suspension as well as cyclic combustion. The cyclic nature of fuel combustion results from the movement of the loose material in the flow contour of the circulating fluidized bed (CFB): combustion chamber, cyclone and downcomer. The experimental results proved that the cyclic change of oxygen concentration around fuel, led to the vital change of both combustion mechanisms and combustion kinetics. The mathematical model of the process of fuel combustion has been presented. Its original concept is based on the allowance for cyclic changes of concentrations of oxygen around the fuel. It enables the prognosis for change of the surface and the centre temperatures as well as mass loss of the fuel during combustion in air, in the fluidized bed and during the cyclic combustion.

Go to article

Authors and Affiliations

Agnieszka Kijo-Kleczkowska
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the Reynolds transport theorem (RTT) for three phase systems is developed, in terms associated with a moving control volume. The basic tools applied to the derivation are the generalized transport theorem by Truesdell and Toupin, and generalized surface transport theorem by Aris as well as Slattery. The final results referenced to a generic extensive quantity demonstrate the theorem in the integral instantaneous form. As a further illustration of applicability of the theorem relation developed some specific forms are deduced from such as for multiphase systems in terms of fixed control volume, surface systems and homogeneous spatial systems.

Go to article

Authors and Affiliations

Teodor Skiepko
Download PDF Download RIS Download Bibtex

Abstract

In the paper the experimental analysis of dryout in small diameter channels is presented. The investigations were carried out in vertical pipes of internal diameter equal to 1.15 mm and 2.3 mm. Low-boiling point fluids such as SES36 and R123 were examined. The modern experimental techniques were applied to record liquid film dryout on the wall, among the others the infrared camera. On the basis of experimental data an empirical correlation for predictions of critical heat flux was proposed. It shows a good agreement with experimental data within the error band of 30%. Additionally, a unique approach to liquid film dryout modeling in annular flow was presented. It led to the development of the three-equation model based on consideration of liquid mass balance in the film, a two-phase mixture in the core and gas. The results of experimental validation of the model exhibit improvement in comparison to other models from literature.

Go to article

Authors and Affiliations

Jan Wajs
Dariusz Mikielewicz
Michał Gliński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The tubular type instrument (flux tube) was developed to identify boundary conditions in water wall tubes of steam boilers. The meter is constructed from a short length of eccentric tube containing four thermocouples on the fire side below the inner and outer surfaces of the tube. The fifth thermocouple is located at the rear of the tube on the casing side of the water-wall tube. The boundary conditions on the outer and inner surfaces of the water flux-tube are determined based on temperature measurements at the interior locations. Four K-type sheathed thermocouples of 1 mm in diameter, are inserted into holes, which are parallel to the tube axis. The non-linear least squares problem is solved numerically using the Levenberg-Marquardt method. The heat transfer conditions in adjacent boiler tubes have no impact on the temperature distribution in the flux tubes.

Go to article

Authors and Affiliations

Jan Taler
Dawid Taler
Andrzej Kowal

This page uses 'cookies'. Learn more