Search results

Filters

  • Journals

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper present the results of experimental investigations of condensation of R134a refrigerant in pipe minichannels with internal diameters 0.64, 0.90, 1.40, 1.44, 1.92 and 3.30 mm subject to periodic pressure instabilities. It was established that as in conventional channels, the displacement velocity of the pressure instabilities distinctly depends on the frequency of their hydrodynamic generation. The void fraction distinctly influences the velocity of the pressure instabilities. The form of this relationship depends on the internal diameter of the minichannels and on the method of calculating the void fraction.

Go to article

Authors and Affiliations

Waldemar Kuczyński
Henryk Charun
Download PDF Download RIS Download Bibtex

Abstract

Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.

Go to article

Authors and Affiliations

Zheshu Ma
Jieer Wu
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a method for determination of the near-critical region boundary is proposed. The boundary is evaluated with respect to variations of specific heat capacity along isobars. It is assumed that the value of specific heat capacity inside the near-critical region exceeds by more than 50% the practically constant value typical for fluids under normal conditions. It appears that large variations of heat capacity are also present for high-pressure subcritical states sufficiently close to the critical point. Therefore, such defined near-critical region is located not only in supercritical fluid domain but also extends into subcritical fluid. As an example, the boundaries of the near-critical region were evaluated for water, carbon dioxide and R143a.

Go to article

Authors and Affiliations

Roman Kwidziński
Marian Trela
Dariusz Butrymowicz
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to the problems of exergetic cost determination. A brief description of theoretical fundamentals of exergetic cost determination and its application are presented. The applied method of calculations is based on the rules of determination of cumulative exergy consumption. The additional possibilities ensured by the exergetic cost analysis in comparison to the direct exergy consumption analysis are discussed. The presented methodology was applied for the analysis of influence of operational parameters on exergetic cost indices of steam power plant. Results of calculations concern one of the modern Polish power plant unit. Basing on the obtained results several conclusions have been formulated that show advantages of application of exergetic cost analyses.

Go to article

Authors and Affiliations

Michał Budnik
Wojciech Stanek

This page uses 'cookies'. Learn more