Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 58
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Groundwater hydrochemistry of Algerian Sahara (Southwest, Algeria) was used to assess groundwater quality to de-termine its suitability for drinking and agricultural purposes. A total of 26 groundwater samples were analysed for 14 para-meters. Standards laboratory methods were used to determine physicochemical groundwater properties. This study shows that these pH, electric conductivity, total hardness, bicarbonate, and phosphate were within WHO limits. The concentration of magnesium ranging from 30.49 to 120 mg∙dm–3 with an average value of 67.21 mg∙dm–3. 38.56% of the water points analysed have a concentration lower than the value set by the WHO at 75.00 mg∙dm–3. It also showed that 70% of the points studied have potassium concentrations that exceed World Health Organization standards. Groundwater of Algerian Sahara is low in nitrogen (NO3–) and the higher concentration may result in various health risks. The result for this study showed that the water was to be found suitable for drinking purposes except for few samples. Piper diagram indicates that groundwater in Adrar belongs to chlorinated-sulphated, sodium and magnesium facies. The groundwater samples of Adrar present high salinity and low alkalinity fall into the field of C3S1 and C3S2. Based on the RSC values, all samples had values less than 1.25 and were good for irrigation.
Go to article

Authors and Affiliations

Ali Bendida
1 2
ORCID: ORCID
Mohammed Amin Kendouci
1
ORCID: ORCID
Abdellatif El-Bari Tidjani
2
ORCID: ORCID

  1. Universiy Tahri Mohammed Bechar, Faculty of Technology, BP 417, 08000 Bechar, Algeria
  2. University of Science and Technology Oran, Laboratory of Management and Water Treatment (LGTE)
Download PDF Download RIS Download Bibtex

Abstract

A pontoon bridge, also known as a floating bridge, can be used as for pedestrian and vehicle traffic. The buoyancy of the floating bridge limits the maximum load it can carry. This research included experimental runs to study variations of open channel flow characteristics upstream and downstream a floating bridge. Eighty one runs have been carried out using a flume in a hydraulic laboratory. The experimental run program is classified into two main categories; the first investigates the velocity ratios (vds/vus) downstream and upstream the floating bridge. The second category is concerned with the energy head losses (hL) due to the presence of a floating bridge. The experimental runs are carried out using three pontoon lengths, three flow depths, six submerged depths, and three discharges. The results are analysed and graphically presented to help predict hydraulic parameters. The outcomes have shown that the floating bridge upstream, Froude number and submergence of the pontoon are the dominant parameters that affect the studied flow characteristics.
Go to article

Authors and Affiliations

Mohamed M. Ibrahim
1
ORCID: ORCID
Mahmoud A.R. Eltoukhy
1
ORCID: ORCID
Adnan D. Ghanim
2
ORCID: ORCID

  1. Benha University, Shoubra Faculty of Engineering, PO Box 11629, Shoubra, Egypt
  2. Advisor to the President of the Iraqi Council of Representatives, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The article reviews selected systems and technological variants of biogas production. Biogas installations and methods of biogas production were characterized in terms of control and measurement. The required technical and technological criteria for biogas production and treatment were indicated. The conditions of biorefining in the context of the generation of new products were analysed. Based on the amount of manure produced in pig production, the potential of biogas production in Poland was indicated based on the visualization of the biogas production potential by poviats in Poland. The substrate in the form of slurry, manure and other agricultural waste for the production of agricultural biogas in Poland was analysed quantitatively. The economic aspects in the agricultural biogas plant sector were revealed, indicating the operation of the economies of scale for this industry sector.
An example of a pilot biogas production for anaerobic digestion using pig slurry is presented. The paper presents pre-liminary results of experimental studies on the course of changes in the biogas volume flow for the average daily production of agricultural biogas and the qualitative composition of agricultural biogas produced from pig slurry. The results of the measurements show a clear influence of the hydrodynamic mixing system of the substrate for the evaluation of the biogas flow through the adhesive bed in the context of agricultural biogas production in the range (1–14) m3 d–1.
Go to article

Authors and Affiliations

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences, Falenty, Department of Renewable Energy, Poznań Branch, ul. Biskupińska 67, 60-463 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study presents the results of research on the effect of long-term use of phosphorus fertilizers on permanent sugar beet crops for more than 50 years and on the transformation of phosphate forms on light chestnut soil and its yield. Our work aims to establish the main factors of quantitative and qualitative changes in various phosphates in light chestnut soil. Despite the large amount of practical material, the influence duration of phosphorus fertilizer application has not been sufficiently studied on the irrigated soils of Kazakhstan. It should be noted that the current study was carried out in long-term stationary experimental sites for the production of sugar beet with permanent sowing. The introduction of phosphate fertilizers primarily on the permanent crops of sugar beets in the same norms contributes to a more significant increase in gross phosphorus reserves. The soil content of gross phosphorus for 58 years on the control and nitrogen-potassium variants show practically no changes. Furthermore, when phosphorus fertilizers are applied on the variant with the annual application of a single norm of phosphorus and its amount for 58 years (4400 kg∙ha–1 of application doses) its content increased by 2660 mg∙kg–1, and with the introduction of its one and a half norms (6600 kg of application doses) by 2860 mg∙kg–1 of soil.
Go to article

Authors and Affiliations

Balnur Alimbekova
1
ORCID: ORCID
Rakhimzhan Yeleshev
1 2
ORCID: ORCID
Zhenisgul Bakenova
ORCID: ORCID
Aigerim Shibikeyeva
ORCID: ORCID
Marzhan Balkozha
ORCID: ORCID

  1. Kazakh National Agrarian University, Faculty of Agronomy, Abay avenue 8, Almaty 050010, Kazakhstan
  2. National Academy of Sciences of the Republic of Kazakhstan, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The study involved experimental work implemented from April 2014 until March 2017. Its purpose was to observe grape production quality parameters, such as yield, water productivity, berry size and bio-mass. Different irrigation methods, such as drip irrigation (DI), drip irrigation with plastic mulching (DIPM), drip irrigation with organic mulching (DIOM), subsur-face irrigation with stone column (SISC), subsurface irrigation with mud pot (SIMP), and subsurface irrigation with plastic bottles (SIPB) have been used during the experimental work. The crop has been irrigated following the CROPWAT-8.0 model developed by the FAO. Climate parameters are obtained from the automatic weather station located near the experi-mental field. Based on experimental results and analyses, it has been observed that the drip irrigation with the plastic mulching method is the best for irrigation in terms of the grape yield comparing with all other methods due to its highest productivity of 35–40%. Subsurface irrigation with the plastic bottle method is found to be suitable as it gives 20% higher yield than the traditional drip irrigation method. The SIPB method shows the cost-benefit ratio of 112.3, whereas the DIPM method had the ratio of 36.6. Based on the cost-benefit analysis, it is concluded that the SIPB method is economically more viable as compared with all other methods. Hence, based on the findings, it is recommended to use drip irrigation with a plastic mulch-ing and drip irrigation with a plastic bottle as the best options to achieve grape productivity while using minimum water.
Go to article

Authors and Affiliations

Sharad J. Kadbhane
1
ORCID: ORCID
Vivek L. Manekar
2
ORCID: ORCID

  1. Savitribai Phule Pune University, NDMVPS KBT College of Engineering, Nashik, Udoji Maratha Boarding Campus, 422013, Nashik, India
  2. Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

The study has been carried out at two experimental sites. It aims to assess the impact of the reuse of raw wastewater, purified and diluted with conventional water on the physicochemical quality of soils compared to irrigated soils with con-ventional drilled water and non-irrigated soil. The obtained results show that the electrical conductivity EC and sodium gradually increase in all the plots irrigated with wastewater. Additionally, a slight increase in the pH levels at the first site and a slight decrease in the second site was seen, but at both sites the soils remained alkaline. The infiltration rate of water slide decreases in relation to the amount of irrigation, especially in plots irrigated by raw and treated wastewater. For the same plots, the values of organic matter increased, and the values obtained for the exchangeable sodium percentage (ESP) became high in the third year and reached 17.0% and 16.7% respectively.
Go to article

Authors and Affiliations

Smail Njimat
1
ORCID: ORCID
Fouad Elfettahi
2
Hajar Griou
1
ORCID: ORCID
Mohammed Y. El Brouzi
3
Mohammed Aboulouafa
1
ORCID: ORCID
Said Ibn Ahmed
1

  1. Laboratory of Materials, Electrochemistry and Environment, University Ibn Tofail, Faculty of Sciences, Department of Chemistry, 14200, Kenitra, Morocco
  2. Agricultural Technical Institute, Ain Taoujdate, El Hajeb, Morocco
  3. Laboratory of Genetics, Neuroendocrinobiology and Biotechnology. Faculty of Sciences, Department of Biology
Download PDF Download RIS Download Bibtex

Abstract

Developments in agriculture, industry, and urban life have caused the deterioration of water resources, such as rivers and reservoirs in terms of their quality and quantity. This includes the Saguling Reservoir located in the Citarum Basin, Indonesia. A review of previous studies reveals that the water quality index ( WQI) is efficient for the identification of pollution sources, as well as for the understanding of temporal and spatial variations in reservoir water quality. The NSFWQI (The National Sanitation Foundation water quality index) is one of WQI calculation methods. The NSFWQI is commonly used as an indi-cator of surface water quality. It is based on nitrate, phosphate, turbidity, temperature, faecal coliform, pH, DO, TDS, and BOD. The average NSFWQI has been 48.42 during a dry year, 43.97 during a normal year, and 45.82 during a wet year. The WQI helped to classify water quality in the Saguling Reservoir as “bad”. This study reveals that the strongest and most significant correlation between the parameter concentration and the WQI is the turbidity concentration, for which the coeffi-cient correlation is 0.821 in a dry year, and faecal coli, for which the coefficient correlation is 0.729 in a dry year. Both parameters can be used to calculate the WQI. The research also included a nitrate concentration distribution analysis around the Saguling Reservoir using the Inverse Distance Weighted method.
Go to article

Authors and Affiliations

Mariana Marselina
1
ORCID: ORCID
Anwar Sabar
1
Nurul Fahimah
1
ORCID: ORCID

  1. Bandung Institute of Technology, Faculty of Civil and Environmental Engineering, Jl. Ganesha No 10, Bandung, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

FAO AquaCrop model ver. 6.1 was calibrated and validated by means of an independent data sets during the harvesting seasons of 2016/2017 and 2017/2018, at El Noubaria site in western north of Egypt. To assess the impact of the increase in temperature and CO2 concentration on potato biomass and tuber yield simulations, experiments were carried out with four downscaled and bias-corrected of General Circulation Models (GCMs) data sets based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5) scenarios under demonstrative Concentration Trails (RCPs) 4.5 and 8.5, selected for 2021–2040 and 2041–2060. The study showed that the model could satisfactorily simulate potato canopy cover, biomass, harvest and soil water content under various irrigation treatments. The biomass and yield decreased for all GCMs in both future series 2030s and 2050s. Biomass reduction varied between 5.60 and 9.95%, while the reduction of the simulated yield varied between 3.53 and 7.96% for 2030. The lowest values of biomass and yield were achieved by HadGEM2-ES under RCP 8.5 with 27.213 and 20.409 Mg∙ha–1, respectively corresponding to –9.95 and –7.96% reduction. The lowest reductions were 5.60 and 3.53% for biomass and yield, respectively, obtained with MIROC5 under RCP 8.5 for 2030. Reductions in biomass and yield in 2050 were higher than in 2030. The results are showing that higher temperatures shortened the growing period based on calculated growing degree days (GDD). Therefore, it is very important to study changing sowing dates to alleviate the impact of climate change by using field trials, simulation and deep learning models.
Go to article

Authors and Affiliations

Osama Dewedar
1 2
ORCID: ORCID
Finn Plauborg
2
ORCID: ORCID
Ahmed El-Shafie
1
ORCID: ORCID
Abdelbaset Marwa
1
ORCID: ORCID

  1. Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 33 El Buhouth St. Dokki, P.O. Box 12622, Cairo, Egypt
  2. Aarhus University, Department of Agroecology, Tjele, Denmark
Download PDF Download RIS Download Bibtex

Abstract

In many regions of the world, including Egypt, water shortages threaten food production. An irrigation deficient strategy in dry areas has been widely investigated as a valuable and sustainable approach to production. In this study, the dry matter and grain yield of wheat was decreased by reducing the amount of irrigation water as well as the volume of the root system. As a result of this, there was an increase the soil moisture stress. This negatively affected the absorption of water and nutrients in the root zone of wheat plants, which ultimately had an effect on the dry matter and grain yield of wheat. The values of dry matter and grain yield of wheat increased with the ʻSakha 94ʼ variety compared to the ʻSakha 93ʼ class. It is possible that this was due to the increase in the genetic characteristic of the root size with the ʻSakha 94ʼ variety compared to the ʻSakha 93ʼ class, as this increase led to the absorption of water and nutrients from a larger volume of root spread. Despite being able to increase the water productivity of wheat by decreasing the amount of added irrigation water, the two highest grain yield values were achieved when adding 100% and 80% of irrigation requirements ( IR) needed to irrigate the wheat and no signif-icant differences between the yield values at 100% and 80% of IR were found. Therefore, in accordance with this study, the recommended irrigation for wheat is at 80% IR which will provide 20% IR. When comparing the water productivity of two wheat varieties in study, it becomes clear that ʻSakha 94ʼ was superior to ʻSakha 93ʼ when adding the same amount of irrigation water, and this resulted in increased wheat productivity for ʻSakha 94ʼ. The SALTMED results confirmed good accuracy (R2: 0.92 to 0.98) in simulating soil moisture, roots volume, water application efficiency, dry matter, and grain yield for two varieties of wheat under deficit irrigation conditions. Whilst using sprinkler irrigation system under sandy soils in Egypt.
Go to article

Authors and Affiliations

Ramadan E. Abdelraouf
1
Mohamed A. El-Shawadfy
1
Osama M. Dewedar
1
Mahmoud Hozayn
2

  1. National Research Center, Department of Field Irrigation and Water Relations, 33 EL Bohouth St., Dokki, Giza, 12622, Egypt
  2. National Research Center, Field Crops Research Department, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The biodiversity of aqueous environments has been affected due to the disposal of wastewater highly contaminated with heavy metal ions, causing much damage to ecosystems. These pollutants are very toxic and bioaccumulate in living organisms. This work attempts to evaluate the adsorption of nickel ad cadmium ions using three biomasses from agricultur-al residues (corn cob – CC, orange peel – OP, and oil palm bagasse – PB) modified with alumina nanoparticles. The bio-masses were characterized via compositional analysis and a point of zero charges to quantify the presence of lignin, cellu-lose, hemicellulose, and the feasible pH, taking advantage of the biomass charge. After modification with Al2O3 nanoparti-cles. The resulting adsorbents were characterized via FT-IR analysis to identify the functional groups that most contributed to the adsorption performance. Furthermore, the influence of Al2O3 nanoparticles was analysed on the adsorption capacities of the evaluated biomasses using batch systems at a temperature of 25°C and pH 6. All biomasses displayed a high content of cellulose, estimating a weight percentage of about 19.9%, 14.3%, and 13.1% for PB, OP, and CC samples, respectively. The FT-IR spectrum confirmed hydroxyl and carboxyl functional groups, which contribute to enhancing the adsorption capacities of the modified biomasses. Functional adsorption capacity was observed for all biomasses after modification with Al2O3 nanoparticles, achieving at pH 6.0 a cadmium removal from 92% (CC-Al2O3 and PB-Al2O3) up to 95.8±0.3% (OP-Al2O3). In nickel ions, it was estimated a broader adsorption capacity at pH 6.0 of about 86±0.4% after using the CC-Al2O3 sample, 88±0.1% for the PB-Al2O3 adsorbent, and 98±0.2% for the OP-Al2O3 sample, confirming the suitability of these Al2O3-modified biomasses for the removal of heavy metal ions.
Go to article

Authors and Affiliations

Adriana Herrera-Barros
1
ORCID: ORCID
Candelaria Tejada-Tovar
1
ORCID: ORCID
Angel D. Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the mor-phological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops.
Go to article

Authors and Affiliations

Shubhangani Sharma
1
ORCID: ORCID
Jyotshana Sharma
1
ORCID: ORCID
Vineet Soni
1
ORCID: ORCID
Hazem M. Kalaji
2
ORCID: ORCID
Nabil I. Elsheery
3
ORCID: ORCID

  1. Mohanlal Sukhadia University, Department of Botany, Udaipur, India
  2. Institute of Technology and Life Sciences, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  3. Tanta University, Faculty of Agriculture, Agricultural Botany Department, Tanta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The objectives of developing oil palm plantations should feasible economically and without causing massive erosion. This research proposes soil and water conservation strategies that are ideal and optimal for oil palm cultivation depending on land capability class. The conservation test for plants was performed according to land capability classes on a plot measuring 22 m × 4 m. Runoff and erosion rates were measured using Multislot Divisor Method. Nutrient leaching was analysed based on the content of C-organic (Ctot) (Walkley–Black method), total nitrogen (Ntot) (Kjeldahl method), P-available (Bray-1 method) and K2O (extraction with 1N NH4OAc at pH 7.0). From the results, land capability class III, cover crops (soybean) + manure (P3) treatment effectively reduced runoff and soil erosion (22.63 m3∙ha–1∙y–1 and 13.04 Mg∙ha–1∙y–1), as well as nutrient leaching, compared to other treatments. Furthermore, sediment trap + cover crop + manure (P3) controlled runoff, erosion and nutrient leaching on land capability class IV, producing the lowest runoff (129.40 m3∙ha–1∙y–1), soil erosion (11.39 Mg∙ha–1∙y–1), C-organic (1.3%), and P (1.95 mg kg–1). Soil conservation treatment significantly reduced erosion and runoff (p < 0.05) on land capability class VI. The bench terrace + cover plants + manure treatment-controlled runoff, erosion, and soil nutrient leaching.
Go to article

Authors and Affiliations

Halus Satriawan
1
ORCID: ORCID
Zahrul Fuady
1
ORCID: ORCID
Rini Fitri
2
ORCID: ORCID

  1. Almuslim University, Faculty of Agriculture, Department of Agrotechnology, Bireuen, Aceh, 24261, Indonesia
  2. University of Trisakti, Faculty of Landscape Architecture and Environmental Technology, Department of Landscape Architecture, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Groundwater is a vital resource for domestic, agricultural, industrial activities and ecosystem services. Despite its multi-ple purposes, the resource is under significant threat owing to increasing contamination from anthropogenic activities and climate change. Hence, in order to ensure the reliability and sustainable use of groundwater for the present and future gener-ations, effective management of groundwater (quality and quantity) is highly important. This can be achieved by identifying areas more vulnerable to contamination and implementing protective measures. The present study aims at assessing the vul-nerability of groundwater using GIS-based DRASTIC index in the Quaternary catchment (A21C) within Limpopo River Basin. The vulnerability index varied from 87 to 207. About 53.6% (408 km2) of the catchment area also exhibited high risk of groundwater contamination mostly in central, north-eastern and western part of the sub-catchment. The medium and low vulnerability classes cover only 18.1% (137.5 km2) and 21.7% (165.1 km2) of the study area, respectively. The shallow groundwater at the Doornfontein Campus belongs to very high vulnerability area. The sensitivity analysis indicates that depth to water level, recharge, aquifer media, soil and topography are the important contributors to vulnerability assessment. The correlation analysis performed to validate the final vulnerability map shows a moderate positive correlation, indicating the model’s applicability to the urbanised environment. The study indicates an area that is highly vulnerable to pollution, and hence protective measures are necessary for sustainable management of the groundwater resource in the study area. The result of this study can also be further improved and verified by using other vulnerability assessment models.
Go to article

Authors and Affiliations

Simeneh S. Moges
1
ORCID: ORCID
Megersa O. Dinka
1
ORCID: ORCID

  1. University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the review of scientific publications of world literature on the use of the larvae of black soldier fly ( Hermetia illucens) when feeding poultry. Nowadays, the issue of replacing traditional sources of protein when feeding poultry is very urgent, especially in connection with the global food crisis. Insects are the natural food of most birds; thus, the use of fly larvae for feed production has a biological basis. The research results presented in published works show that there are no negative effects on bird health and meat quality when feeding poultry, quail and other birds. In some cases, the experimental groups of birds gained weight slightly more slowly than the control group. Other reports indicate that birds grew at the same rate as normal birds. The quantity and quality of eggs did not differ significantly, but dietary changes affected the colour of yolks and eggshell. The effect of the addition of live larvae to the diet of young turkeys on the weight characteristics of was studied. Replacing 10% of the daily amount of feed with live Hermetia illucens larvae in the diet of turkeys showed that the daily feed intake and body weight gain of the experimental birds were significantly higher compared to the control groups, which led to a significantly higher body weight of chicks at the age of five weeks (2.19 kg vs. 2.015 kg, respectively) and a significantly lower feed conversion rate. Most researchers agree that replacing protein in poultry feed with insect flour should be partial, in the 15–30% range. Feeding with larvae that have undergone processing – grinding, chitin removing, heat treatment – is more preferable than using whole larvae, since the chitinous membrane makes larvae difficult to be digested in the digestive tract of birds.
Go to article

Authors and Affiliations

Svetlana V. Sverguzova
1
ORCID: ORCID
Ildar H. Shaikhiev
2
ORCID: ORCID
Zhanna A. Sapronova
1
ORCID: ORCID
Ekaterina V. Fomina
1
ORCID: ORCID
Yulia L. Makridinа
1
ORCID: ORCID

  1. Belgorod State Technological University named after V.G. Shoukhov, Department of Industrial Ecology, Kostyukov str., 46, Belgorod, 308012, Russia
  2. Kazan National Research Technological University, Department of Engineering Ecology, Karl Marx st., 68, Kazan, 420015, Russia
Download PDF Download RIS Download Bibtex

Abstract

Plastic mulch provides a range of benefits including helping modulate soil temperature, reduce soil erosion, evaporation, fertilizer leaching and weed problems and increasing the quality and yields of the product. But when the crops are harvested, plastic mulch needs to be removed from the ground for disposal. Otherwise, these wastes are mixed with the soil and have a negative impact on yields by reducing the access of nutrients and moisture in the soil. The purpose of the current study is, therefore, to propose a roller for plastic mulch retriever which is applicable when the crops are harvested, and the plastic mulch needs to be removed from the ground for disposal. The winding mechanism of the plastic mulch retriever performs the main function and must have the high-quality performance of the winding operation in the removal technology. Research based on requirements of tensile strength test method and changes of strength characteristics of plastic mulch from various factors under natural conditions. The coefficient of compaction of the used plastic mulch (Krel), was the ratio of the diameter of the standard plastic mulch which was wound in the factory to the diameter of the used plastic mulch during the winding.
Go to article

Authors and Affiliations

Kanat M. Khazimov
1
ORCID: ORCID
Adilkhan K. Niyazbayev
1
ORCID: ORCID
Zhanbota S. Shekerbekova
2
ORCID: ORCID
Aigul A. Urymbayeva
2
ORCID: ORCID
Gulzhanat A. Mukanova
2
ORCID: ORCID
Tursunkul A. Bazarbayeva
2
ORCID: ORCID
Vladimir F. Nekrashevich
3
ORCID: ORCID
Marat Zh. Khazimov
1 2 4
ORCID: ORCID

  1. Kazakh National Agrarian University, Faculty of IT – Technology, Automation and Mechanization of Agro-Industrial Complex, Valikhanov St 137, Almaty 050000, Kazakhstan
  2. Al-Farabi Kazakh National University, Faculty of Geography and Environmental Sciences, Almaty, Kazakhstan
  3. Ryazan State Agrotechnological University, Ryazan, Russia
  4. Almaty University of Power Engineering and Telecommunications, Faculty of Heat Power Engineering and Heating Engineering, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Sedimentation tanks have a vital role in the overall efficiency of solid particles removal in treatment units. Therefore, an in-depth study these tanks is necessary to ensure high quality of water and increasing the system efficiency. In this work, an experimental rectangular sedimentation tank has been operated with and without a baffle to investigate the system behaviour and effectiveness for the reduction of solid particles. Turbid water was prepared using clay, which was collected from the water treatment plant of Al Maqal Port (Iraq), mixed with clear water in a plastic supply tank. Raw and outflow samples were tested against turbidity after plotting a calibration curve between inflow suspended solids versus their corresponding turbidity values. The key objective was to assess the impact of different flow rates, particle concentrations, heights and positions of the baffle on the system efficiency. Findings showed that the tank performance was enhanced significantly (p < 0.05) with the use of a baffle placed at a distance of 0.15 of tank length with height equal to 0.2 of tank depth. Higher removal efficiency (91%) was recorded at a lower flow rate (0.015 dm3∙s–1) and higher concentration (1250 mg∙dm–3), as the treatment efficiency enhanced by 34% compared with the operation without a baffle. Placing the baffle in the middle of the sedimentation tank produced the worst results. System efficiency for solids removal reduced with increasing baffle height. Further research is required to evaluate the efficiency of an inclined baffle.
Go to article

Authors and Affiliations

Dina A. Yaseen
1
ORCID: ORCID
Saad Abu-Alhail
1
ORCID: ORCID
Rusul N. Mohammed
2
ORCID: ORCID

  1. University of Basrah, College of Engineering, Department of Civil Engineering, P.O. Box 49, Basra city, 61004, Iraq
  2. University of Basrah, College of Engineering, Department of Chemical Engineering, Basra city, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The article deals with effect the use of organic (biohumus) and mineral (biochar) fertilizers based on the products of chicken vital activity on changing the fertility of technogenic sod-podzolic soils exposed to constant and unstable magnetic fields. The germination and growth dynamics of grasses and onions were investigated. The rational rate of introduction of the studied fertilizers into the technogenic soil is determined. Running (RMF) and direct (DMF) magnetic fields were applied in two ways: with fertilizers added and without fertilizers added. It has been established that the effect of preliminary magnetization of technogenic soil has a significant effect on lawn grass germination and the length of onion feathers, which are more than twice the height when exposed to the RMF, as compared with DMF. The effect of RMF on grass germination was also twice as high for DMF, when fertilizers were added. The DMF mag-netization and biohumus helps to increase the grass sprout height by 10–20%. Onion sprouts were higher in two cases: DMF and biohumus; RMF and biochar. The influence of the factor of fertilizer type has a significant effect in 30–40% of cases, whilst at a spread rate of more than 5%, significant chemical activity of biochar negatively affects the germination of both grass and onion.
Go to article

Authors and Affiliations

Maria Vasilyeva
1
ORCID: ORCID
Stanislav Kovshov
2
ORCID: ORCID
Johnny Zambrano
3
ORCID: ORCID
Maxim Zhemchuzhnikov
4
ORCID: ORCID

  1. Saint Petersburg Mining University, Faculty of Mechanical Engineering, Department of Transport and Technological Processes and Machines, 2, 21st Line, St Petersburg 199106, Russia
  2. Saint Petersburg Mining University, Department of Industrial Safety, St Petersburg, Russia
  3. Escuela Politecnica Nacional, Departamento de Petróleos, Quito, Ecuador
  4. JSC Roskar Poultry Farm, Pervomayskoe settlement, Leningrad region, Russia
Download PDF Download RIS Download Bibtex

Abstract

The analysis of ecological hazards on soil pollution by oil products has been provided in the impact zone of the railway. The results of oil product migration in soils in the area of influence on section Lviv–Khodoriv are given. To study this problem, a method was used to take soil samples according to the standard DSTU ISO 10381-4: 2005. To determine the content of petroleum products used the method MVV No. 081/12-0116-03 Pochvy. Based on the results of the study it was found that contamination with petroleum products in the study area exceeds the norm in the area of influence of the railway at a distance of 5 to –50 m on average 3.5 times. It is proposed to make management decisions to prevent violations of the sanitary protection zone of the railway and the placement of agricultural plots on it. For rehabilitation of contaminated soils, it is advisable to use a natural sorbent – glauconite, which is widespread in the bowels of Ukraine. The adsorption capacity of glauconite relative to diesel fuel has been experimentally established. According to our experiments it is proved the high efficiency of the proposed sorbent, which is 90%. Therefore, in the future it is necessary to periodically monitor the condition of the soil in the area to prevent pollution. This study proves that this practice is necessary.
Go to article

Authors and Affiliations

Oksana Chayka
1
ORCID: ORCID
Igor Petrushka
1
ORCID: ORCID
Maria Ruda
1
ORCID: ORCID
Nadiya Paranyak
1
ORCID: ORCID
Olena Matskiv
1
ORCID: ORCID

  1. Lviv National Polytechnic University, Faculty of Ecological Safety and Environmental Protection, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This study looks at determining the main trends in the application of microwaves on plants in agricultural production in the processing of grain material, it provides examples of their effectiveness and an overview of the use of microwaves on plants available on the Russian market. Additionally, the research studied the experience and developments of leading scien-tists in the field of microwave radiation. Analysis of the available sources provided information on the positive effect of microwave radiation in the processing of crops. The use of microwaves on plants during drying destroys pathogens and bacteria, in particular, microwave processing of red lentils reduces grey mould damage by up to 30%. Positive results are also noted in the microwave processing of other crops, providing an increase in germination capacity of up to 7% and yield growth of up to 6%. The microwave plant market in Russia is represented mainly by dryers, and the use of microwaves on plants combining several functions of drying, disinfection, and pre-sowing stimulation.
Go to article

Authors and Affiliations

Fedor A. Kipriyanov
1
ORCID: ORCID
Petr A. Savinykh
2
ORCID: ORCID
Alexey Yu. Isupov
2
Yulia A. Plotnikova
1
Natalia A. Medvedeva
1
Svetlana V. Belozerova
1

  1. Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
  2. Federal Agricultural Research Center of the North-East, Kirov, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the monitoring of horizontal displacements of the channel of Dniester, the second largest river in Ukraine, based on topographic maps, satellite images, as well as geological, soil and quaternary sediment maps. Data pro-cessing has been carried out using the geographic information system ArcGIS. The monitoring over a 140-year period (1874–2015) has been performed at the river’s transition from a mountainous to plain terrain on the 67 km section of the river. During this period, maximum displacements in the study area were 590–620 m. The research examines water protection zones needed for channel displacements. The article describes the monitoring methodology and analyses changes over a pe-riod of 18 years (2000–2018). The analysis includes the anthropogenic influence on the channel in the monitoring area. Results of the research may be useful for construction and cadastral works related to the channel in the area concerned, as well as for water management.
Go to article

Authors and Affiliations

Volodymyr Shevchuk
1
ORCID: ORCID
Khrystyna Burshtynska
1
ORCID: ORCID
Iryna Korolik
1
ORCID: ORCID
Maksym Halochkin
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Geodesy, Department of Photogrammetry and Geoinformatics, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

A wide variety of soil and climatic conditions requires extensive study of the characteristics of the use of fertilizers and chemical plant protection products, which sometimes negatively affects the environment. Therefore, there is a need not only to know the ways and amount of application of fertilizers and chemical protectors but also to have a clear idea of the processes occurring in the soil, plants, ecology of the production environment and the rural population. This knowledge will allow us to carefully approach the practical issues of chemicalizing the crop industry and prevent possible negative consequences. To study the integrated interdisciplinary object of management accounting related to the assessment of the reproduction of agri-cultural land fertility, the functions and complex interaction of IT management, and analysis of specific situations of the impact of costs on fertilizers and chemical plant protection products on the gross crop production in the Kuban economic entities were applied. The study found that modern science has formulated the main theoretical aspects of the economic and environmental efficiency of the use of mineral fertilizers and chemical plant protection products in agriculture. Noting the significant achievements of scientists and practitioners in this field of agricultural development, we believe that the use of digital technologies for assessing the quality of soil fertility, methods and methods of using chemical agents can qualitatively improve information on the costs of their use, and determine the most rational and environmentally friendly areas. The studied experience in the application of methods indicates a fairly high accuracy in assessing the quality of soil fertility. Moreover, the results make it possible to change the associated types of managerial work, such as the planning of the procurement of fertilizers and plant protection products, precisely determine their types, and coordinate the place and time of their use.
Go to article

Authors and Affiliations

Zhanna V. Degaltseva
1
ORCID: ORCID
Victor V. Govdya
1
ORCID: ORCID
Konstantin A. Velichko
1
ORCID: ORCID

  1. Kuban State Agrarian University after I. T. Trubilin, Department of Accounting Krasnodar, st. Kalinina, 13, 350044, Russia
Download PDF Download RIS Download Bibtex

Abstract

The growing demand for fresh water and its scarcity are the major problems encountered in semi-arid cities. Two different techniques have been used to assess the main determinants of domestic water in the Sedrata City, North-East Algeria: prin-cipal component analysis (PCA) and artificial neural networks (ANNs). To create the ANNs models based on the PCA, twelve explanatory variables are initially investigated, of which nine are socio-economic parameters and three physical char-acteristics of building units. Two optimum ANNs models have been selected where correlation coefficients equal to 0.99 in training, testing and validation phases. In addition, results demonstrate that the combination of socio-economic parameters with physical characteristics of building units enhances the assessment of household water consumption.
Go to article

Authors and Affiliations

Menal Zeroual
1
Azzedine Hani
1
Amir Boustila
2

  1. University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of water resource and sustainable development, BP 12 / 23000 Annaba, Algeria
  2. University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of natural resource and development, Annaba, Algeria
Download PDF Download RIS Download Bibtex

Abstract

A flood occurs for many reasons, such as excessive rainfall, runoff coefficient, or an insufficient river channel capacity. The discharge flowing through the floodway depends on the maximum main river dimension that can be normalized. LU/LC changes are affected by runoff discharge, and runoff discharge is affected by the floodway design. The study dis-cusses the effect of land use (LU) or land cover (LC) changes and the design of floodway channel dimensions in the Kali Kemuning watershed, East Java Province, Indonesia. The Nakayasu synthetic unit hydrograph has been used to analyse the runoff discharge, and the Hydrologic Engineering Center’s River Analysis System software analysed the hydraulic proper-ties of river and floodway channels. Results show that the floodway channel design is determined by LU/LC conditions, and the river channel is normalized toward its maximum dimensions. Normalized channel depths and widths vary from 4 to 7 m and 16 to 46 m, respectively. The floodway channel is rectangular, with a bottom width of 10 m and depth of 4.5 m. With the runoff coefficient equal to 0.75, these normalized channel and floodway dimensions are suitable for the flood up to the 100-year return period runoff discharge.
Go to article

Authors and Affiliations

Agus Suharyanto
1
ORCID: ORCID
Yatnanta P. Devia
1
ORCID: ORCID
Indradi Wijatmiko
1
ORCID: ORCID

  1. Universitas Brawijaya, Faculty of Engineering, Civil Engineering Department, Jl. MT Haryono 167, Malang 65145, Jawa Timur, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The study has investigated the technical characteristics of a number of sorption materials (natural mineral) and the pos-sibility of their use for the purification of surface and wastewater from oil and oil products. At the first step, regularities of the process of purification of oily waters have been established taking into account the processes of filtration and sorption. After that, the sorption capacity of the sorbents has been estimated, and the factors influencing it analysed. As a final step, the optimal conditions for the sorption process have been selected depending on the conditions and nature of purification. Results indicated that the maximum purification degree has been reached at the concentration of 500 mg∙dm–3 and temper-ature of 20°С.
Go to article

Authors and Affiliations

Saltanat T. Tleuova
1
ORCID: ORCID
Banu A. Userbayeva
2
ORCID: ORCID
Alibek S. Tleuov
1
ORCID: ORCID
Marina M. Yeskendirova
1
ORCID: ORCID
Raissa R. Yakubova
1
ORCID: ORCID
Kulyash Z. Kerimbayeva
2

  1. M. Auezov South Kazakhstan State University, Department of Chemical Technology of Inorganic Substances, Tauke khan aven, 5, Shymkent, 160012, Kazakhstan
  2. South Kazakhstan State Pedagogical University, Department of Chemistry, Shymkent, Kazakhstan

This page uses 'cookies'. Learn more