Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1342
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effect of Ageratina adenophora on pathological characteristics of the liver and lungs as well as serum biochemical parameters in horses were investigated. Ten horses without ingestion history of Ageratina adenophora were classified into the control group, and 10 poisoned but survived horses with 3 months ingestion history were set as the case group. Results showed that serum AST, ALT, ALP, magnesium and phosphorus were elevated significantly, while creatinine was decreased remarkably. Hematoxylin and eosin staining of liver tissues showed diffuse swelling or destruction of hepatocytes, narrowing or atrophy of the hepatic sinusoids, and little lymphocytic infiltration; lung tissues presented destroyed alveoli and inflammatory cell infiltration.
Go to article

Bibliography


Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180: 31-43.

Jie F, Hu YC, Chen WH, Weng JH, Hu LW, Zhen S, He YJ, Quan M, Wang Y, Ren ZH (2018) Dosage-dependent effects of Eupatorium adenophorum on Saanen goat blood levels and the histopathology of several organs. Pratacul Sci 2: 11.

O’Sullivan BM (1979) Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 55: 19-21.

O’Sullivan BM (1985) Investigations into Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 62: 30-32.

Pessoa CR, Pessoa AF, Maia LA, Medeiros RM, Colegate SM, Barros SS, Soares MP, Borges AS, Riet-Correa F (2013) Pulmonary and hepatic lesions caused by the dehydropyrrolizidine alkaloid-producing plants Crotalaria juncea and Crotalaria retusa in donkeys. Toxicon 71: 113-120.

Rhiouani H, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute and sub-chronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J Ethnopharmacol 118: 378-386.

Sun W, Zeng C, Yue D, Liu S, Ren Z, Zuo Z, Deng J, Peng G, Hu Y (2019) Ageratina adenophora causes spleen toxicity by inducing oxida-tive stress and pyroptosis in mice. R Soc Open Sci 6: 190127.
Go to article

Authors and Affiliations

X.L. Gu
1
F.Y. Dai
1
X. Xiao
1
G.Z. Li
2
L.M. Zhang
1
W.J. Qu
1

  1. College of Veterinary Medicine, Yunnan Agricultural University, Jin Hei Road No.65, Panlong District, 650051, Kunming, P.R. China
  2. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

In recent years there have been a growing number of reports on applying viruses in oncological treatment. In the present study, we demonstrated for the first time that animal virus EHV-1 productively replicates in the human adenocarcinoma cell line (A549) without the need for adaptation. Real-time PCR analysis and immunofluorescence assay showed that EHV-1 could infect and causes lysis of human lung cancer cells. According to our results, we can assume that EHV-1 has oncolytic potential.
Go to article

Bibliography


Chodkowski M, Cymerys J, Słońska A, Bańbura M (2017) Oncolytic animal viruses and their applications in anti-cancer therapies. Med Weter 73: 4-9.

Courchesne MJ, White MC, Stanfield BA, Frampton AR (2012) Equine herpesvirus type 1-mediated oncolysis of human glioblastoma multi-forme cells. J Virol 86: 2882-2886.

Cymerys J, Dzieciątkowski T, Słońska A, Bierla J, Tucholska A, Chmielewska A, Golke A, Bańbura MW (2010) Equine herpesvirus type 1 (EHV-1) replication in primary murine neurons culture. Pol J Vet Sci 13: 701-708.

Cymerys J, Słońska A, Brzezicka J, Tucholska A, Chmielewska A, Rola J, Bańbura MW (2016) Replication kinetics of neuropathogenic and non-neuropathogenic equine herpesvirus type 1 (EHV-1) strains in primary murine neurons and ED cell line. Pol J Vet Sci 19: 777-784.

Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Nat Acad Sci 99: 9864-9869.

Liu BL, Robinson M, Han ZQ (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10: 292-303.

Słońska A, Cymerys J, Godlewski MM, Bańbura MW (2016) Application of scanning cytometry and confocal-microscopy-based image analysis for investigation the role of cytoskeletal elements during equine herpesvirus type 1 (EHV-1) infection of primary murine neurons. J Virol Met 237:1-9.

White MC, Frampton AR Jr (2013) The histone deacetylase inhibitor valproic acid enhances equine herpesvirus type 1 (EHV-1)-mediated oncolysis of human glioma cells. Cancer Gene Ther 20: 88-93.
Go to article

Authors and Affiliations

M. Chodkowski
1 2
A. Słońska
1
M. Bartak
1
M.W. Bańbura
1
J. Cymerys
1

  1. Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  2. Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present study aimed to investigate the impact of age, season and ejaculation on ram testicular blood flow and echotexture. The survey was conducted biweekly on 7 Chios rams for one year, including breeding and non-breeding periods. The rams were divided into 2 age groups: 3 rams 2-6 years old (mature) and 4 rams 9-13 years old (old). Hemodynamic indices [Pulsatility index (PI), Resistive index (RI), End-diastolic velocity (EDV), testicular artery Diameter (D), Time-averaged maximum velocity (TAVM), Blood flow volume (BFV)] and echotexture parameters [Mean value (MV), Contrast (Con), Gray value distribution (GVD), Run length distribution (RunLD), Long run emphasis (LRunEm), Entropy (Ent), Correlation (Cor), Standard deviation (StD), Gray variance (GV) and Gradient mean value (GMV)] were evaluated in each testis before and after ejaculation. Ejaculation did not affect testes blood flow or echotexture (p>0.05). PI and RI were higher in the breeding period compared to the non-breeding period, for both testes (p<0.001). Left testis GV and Cor before ejaculation were lower (p=0.01) and higher (p=0.03), respectively, in the breeding compared to the non-breeding period. Left testis D (p=0.005) and BFV (p<0.001) were higher in old compared to mature rams after ejaculation. Right testis Con (p=0.03) and Cor (p=0.05) before ejaculation were higher in old rams, whereas right testis Ent after ejaculation was higher in mature rams (p=0.05). In conclusion, testicular blood flow and echotexture are affected by season and ram age, but not by ejaculation.
Go to article

Bibliography


Ahmadi B, Lau CP, Giffin J, Santos N, Hahnel A, Raeside J, Christie H, Bartlewski P (2012) Suitability of epididymal and testicular ultraso-nography and computerized image analysis for assessment of current and future semen quality in the ram. Exp Biol Med 237: 186-193.

Allison WJ, Barr LL, Massot JR, Berg PG, Krasner BH, Garra BS (1994) Understanding the process of quantitative ultrasonic tissue charac-terization. Radiographics 14: 1099-1108.

Andrade AK, Soares AT, Freitas FF, Silva SV, Pena-Alfaro CE, Batista AM, Guerra MM (2014) Testicular and epididymal ultrasonography in Santa Inês lambs raised in Brazil. Anim Reprod 11: 110-118.

Aschkenasy SV, Muntwyler J, van Der Loo B, Oechslin E, Jenni R (2005) Texture analysis in digitally acquired echocardiographic images: The effect of JPEG compression and video storage. Ultrasound Med Biol 31: 361-366.

Batissaco L, Celeghini EC, Pinaffi FL, de Oliveira BM, de Andrade AF, Recalde EC, Fernandes CB (2013) Correlations between testicular hemodynamic and sperm characteristics in rams. Braz J Vet Res Anim Sci 50: 384-395.

Boyd A, Pozor MA, Bailey CS, Verstegen J (2006) Effect of seasonality on testicular blood flow in mature stallions. Anim Reprod Sci 94: 144-145.

Camela ES, Nociti RP, Santos VJ, Macente BI, Murawski M, Vicente WR, Bartlewski PM, Oliveira ME (2019) Changes in testicular size, echotexture and arterial blood flow associated with the attainment of puberty in Dorper rams raised in a subtropical climate. Reprod Dom Anim 54: 131-137.

Chandolia RK, Bartlewski PM, Omeke BC, Beard AP, Rawlings NC, Pierson RA (1997) Ultrasonography of the developing reproductive tract in ram lambs: effects of a GnRH agonist. Theriogenology 48: 99-117.

Cook JL, Dewbury K (2000) The changes seen on high-resolution ultrasound in orchitis. Clin Radiol 55: 13-18.

Davies Morel MC (2008) Equine reproductive physiology, breeding and stud management. 3rd ed., Wallingford, UK: CAB International.

DesCôteaux L (2010) Practical atlas of ruminant and camelid reproductive ultrasonography. 1st ed., Willey-Blackwell, USA.

Galloway MM (1975) Texture analysis using gray level run lengths. Comp Graph Im Proc 4: 172-179.

Giffin JL, Bartlewski PM, Hahnel AC (2014) Correlations among ultrasonographic and microscopic characteristics of prepubescent ram lamb testes. Exp Biol Med 239: 1606-1618.

Gouletsou PG (2017) Ultrasonographic examination of the scrotal contents in rams. Small Rumin Res152: 100-106.

Gouletsou PG, Amiridis GS, Cripps PJ, Lainas T, Deligiannis K, Saratsis P, Fthenakis GC (2003) Ultrasonographic appearance of clinically healthy testicles and epididymides of rams. Theriogenology 59: 1959-1972.

Hedia MG, El-Belely MS, Ismail ST, El-Maaty AM (2019) Monthly changes in testicular blood flow dynamics and their association with testicular volume, plasma steroid hormones profile and semen characteristics in rams. Theriogenology 123: 68-73.

Marai IF, El-Darawany AA, Fadiel A, Abdel-Hafez MA (2007) Physiological traits as affected by heat stress in sheep-A review. Small Ru-min Res 71: 1-12.

Mittwoch U (1988) Ethnic differences in testicle size: A possible link with the cytogenetics of true hermaphroditism. Hum Reprod 3: 445-449.

Nailon HW (2010) Texture analysis methods of medical image characterization. Biomedical Imaging. ISBN: 978-953-307-071-1, InTech.

Ntemka A, Kiossis E, Boscos C, Theodoridis A, Kourousekos G, Tsakmakidis I (2018) Effects of testicular hemodynamic and echogenicity changes on ram semen characteristics. Reprod Dom Anim 53: 50-55.

Ntemka A, Kiossis E, Boscos C, Theodoridis A, Kourousekos G, Tsakmakidis I (2019) Impact of old age and season on Chios ram semen quality. Small Rumin Res 178: 15-17.

Nutrient Requirements of Sheep (1985) 6th ed., National Academy Press.

Pitas Ι (2010) Digital image processing. 2nd ed., Private edition.

Pozor MA (2007) Evaluation of testicular vasculature in stallions. Clin Tech Equine Pract 6: 271-277.

Pratt WK (1978) Digital image processing. New York, NY, Willey.

Samir H, Nyametease P, Nagaoka K, Watanabe G (2018) Effect of seasonality on testicular blood flow as determined by color Doppler ultra-sonography and hormonal profiles in Shiba goats. Anim Reprod Sci 197: 185-192.

Sarlós P, Egerszegi I, Balogh O, Molnár A, Cseh S, Rátky J (2013) Seasonal changes of scrotal circumference, blood plasma testosterone concentration and semen characteristics in Racka rams. Small Rumin Res 111: 90-95.

Tapping CR, Cast JE (2008) Scrotal ultrasound: a pictorial review. Ultrasound 16: 226-233.

Turner OR (2007) Pathogenesis, Diagnosis, and Management of Testicular Degeneration in Stallions. Clin Tech Equine Pract 4: 278-284.

Valckx FM, Thijssen JM (1997) Characterization of echographic image texture by co-occurrence matrix parameters. Ultrasound Med Biol 23: 559-571.

Vosniakou AG, Doney M, Tsakalof P (1989) A note on the seasonal oestrous period in three breeds of Greek dairy sheep. Anim Sci 49: 147-150.

Go to article

Authors and Affiliations

A. Ntemka
1
E. Kiossis
1
C. Boscos
1
A. Theodoridis
2
M. Patsikas
3
I. Tsakmakidis
1

  1. Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Voutyra 11, 54627, Thessaloniki, Greece
  2. Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, P.O. Box 410, 54124 Thessaloniki, Greece
  3. Laboratory of Diagnostic Imaging, Clinic of Companion Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Voutyra 11, 54627, Thessaloniki, Greece

This page uses 'cookies'. Learn more