Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, it was achieved by using the method of impulse noise to detect internal or surface cracks that can occur in the production of ceramic plates. Ceramic materials are often used in the industry, especially as kitchenware and in areas such as the construction sector. Many different methods are used in the quality assurance processes of ceramic materials. In this study, the impact noise method was examined. This method is a test technique that was not used in applications. The method is presented as an examination technique based on whether there is a deformation on the material according to the sound coming from it as a result of a plastic bit hammer impact on the ceramic material. The application of the study was performed on plates made of ceramic materials. Here, it was made with the same type of model plates manufactured from the same material. The noise that would occur as a result of the impact applied on a point determined on the materials to be tested has been examined by the method of time-frequency analysis. The method applied gives pretty good results for distinguishing ceramic plates in good condition from those which are cracked.

Go to article

Authors and Affiliations

Tahir Akinci
Download PDF Download RIS Download Bibtex

Abstract

In the paper a method for correction of heating non-homogeneity applied in defect detection with the use of active thermography is presented. In the method an approximation of thermal background with second- and third-order surfaces was used, what made it possible to remove partially the background. In the paper the simulation results obtained with the abovementioned method are presented. An analysis of the influence of correction of heating non-homogeneity on the effectiveness of defect detection is also carried out. The simulations are carried out for thermograms obtained on the basis of experiments on a test sample with simulated defects, made of a material of low thermal diffusivity.

Go to article

Authors and Affiliations

Sebastian Dudzik

This page uses 'cookies'. Learn more